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Abstract: Financial institutions, investors, central banks and relevant corporations need an efficient
and reliable forecasting approach for determining the future of crude oil price in an effort to reach
optimal decisions under market volatility. This paper presents an innovative research framework for
precisely predicting crude oil price movements and interpreting the predictions. First, it compares
six advanced machine learning (ML) models, including two state-of-the-art methods: extreme
gradient boosting (XGB) and the light gradient boosting machine (LGBM). Second, it selects novel
data, including user search big data, digital currencies and data on the COVID-19 epidemic. The
empirical results suggest that LGBM outperforms other alternative ML models. Finally, it proposes
an interpretable framework for facilitating decision making to interpret the prediction results of
complex ML models and for verifying the importance of various features affecting crude oil price.
The results of this paper provide practical guidance for participants in the crude oil market.
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1. Introduction

With oil being one of the most vital commodities in the world nowadays, fluctuations
in the price of crude oil can have a substantial impact on global economic stability and
development. As a globally priced commodity, it is not the current supply of crude oil
or current economic growth that decides the price of crude oil, but rather the market’s
expectations of future supply and demand trends, which largely determine the direction
of crude oil price fluctuations. Crude oil reached a low of USD 9.1 per barrel during the
Asian financial crisis in 1998. However, a 10-year boom then began, and crude oil price hit
an all-time high of nearly USD 150 per barrel in July 2008 and sank dramatically to below
USD 40 five months later at the end of 2008 [1]. Crude oil demand has been growing at an
average annual rate of 1.3% from 2001 to 2008 and 1.6% from 2010 to 2019. These dramatic
changes in oil price have increased the concern of people from all walks of life [2]. The
volatility of supply and demand expectations and the spread of free capital in the financial
markets then contribute to the high volatility of crude oil price [3].

Crude oil is the primary supply material for fuels and chemicals. As the main en-
ergy supply for industrialization, it plays a very vital role in the economic and industrial
development of countries all over the world, and it is one of the most valuable natural
resources affecting economic development [4]. Crude oil price fluctuations have a sig-
nificant impact on various macroeconomic indicators, including inflation rate, economic
growth rate, exchange rate, international trade balance, etc. From a global perspective,
the impact of crude oil on the GDP fluctuates between 0.5% and 4.5%. The most critical
component affecting the relationship between crude oil and the GDP is the evolution of
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oil price, behind which the result of the intertwining of many factors in global political
changes, military changes, economic changes, disputes and conflicts is reflected [5]. Hence,
predicting the fluctuation of crude oil price in the international market is of great theoretical
significance and practical value.

Crude oil price is dependent on numerous social and economic factors. Typically, it
is driven by supply from exporting countries and demand from industrialized countries.
Moreover, other factors such as GDP, exchange rates, and financial asset price influence
the crude oil price, and it is also affected by economic crises and political events. Since the
outbreak of COVID-19 in December 2019, the global economy has contracted and aggregate
demand remains subdued. Throughout the COVID-19 period, the crude oil price trend has
become more challenging to predict, as all crude oil markets have exhibited high volatility.
The aforementioned variables affecting crude oil price have non-linear and chaotic behavior,
so forecasting crude oil price has become a worldwide challenge. Oil price volatility is
a crucial component of the international financial landscape, affecting the judgment and
decisions of financial institutions, investors, central banks and other organizations [6,7].
Therefore, it is crucial to develop a reliable and accurate model for forecasting crude oil
price nowadays.

The remainder of this paper is organized as follows. Section 2 describes the method-
ology for crude oil price forecasting and further compares the research related to crude
oil price forecasting based on machine learning methods. Section 3 provides a detailed
description of the data utilized in this paper. Section 4 describes the methods applied in
this paper and summarizes sixmachine learning models for predicting crude oil price, as
well as the SHAP method for interpreting the prediction results of these complex models.
The results obtained are discussed in Section 5. Finally, Section 6 summarizes the full paper
and suggests future research directions.

2. Related Works

By reviewing the literature in recent years, we found that research on crude oil price
forecasting has shifted from linear econometric models to nonlinear econometric models
and machine learning models.

2.1. Forecasting Models for Crude Oil Price

Over the past decades, traditional econometric models have been widely applied to
crude oil price forecasting, such as the differential integrated moving average autoregressive
(ARIMA) model, the generalized autoregressive conditional heteroskedasticity (GARCH)
model, the vector autoregressive (VAR) model, the error correction model (ECM) [8],
etc. These traditional methods focus on predicting the future and understanding long-
term trends by deriving fixed-form relational equations to describe linear relationships
between variables.

Guliyev and Mustafayev state in their study that crude oil price forecasting has
gradually undergone a methodological evolution [4]. Chen et al. employed a flexible
autoregressive conditional heterogeneity (ARCH) model to explain volatility and other
extensions of crude oil, and the proposed HAR-S-RV-J-FIGARCH model had a stronger
predictive power in predicting the medium- and long-term volatility of crude oil price [9].
Duan and Liu forecasted future international crude oil price with a gray forecasting model
(GM) [10]. He et al. newly proposed an autoregressive conditional interval (ACI) model
for forecasting crude oil price [11]. Compared with existing models, the interval-based
ACI model was able to capture the dynamics of oil price in terms of levels and ranges
of variability within a unified framework, and in terms of oil price volatility (conditional
variance) forecasting. It also had advantages for forecasting oil price volatility (conditional
variance), resulting in better forecasting results. The accuracy of forecasting models is
steadily improving over time with technological updates. Baumeister and Kilian used
a VAR model to construct a real-time forecast portfolio while including EIA forecasts in
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the forecast portfolio, and concluded that a properly constructed forecast portfolio should
replace the traditional judgmental oil price forecasts [12].

Prior to 2007, stocks, bonds and exchange rates had little correlation with crude oil
price. After 2008, there was a strong correlation between crude oil price, financial asset
price and exchange rates for a variety of reasons. In recent years, oil price and the S&P 500
have tended to co-move, while oil price have tended to move in the opposite direction of
the U.S. dollar exchange rate and U.S. Treasuries. As a result, some studies have gradually
incorporated macroeconomic indicators, including stock indices, exchange rates and global
economic activity, into forecasting models [13]. Zolfaghari et al. examined the association
between stock price, exchange rates and crude oil price volatility for WTI oil price using the
S&P 500 and the EUR/USD exchange rate [14]. Gkillas et al. suggested that, considering the
spillover effects of jumps in the crude oil, gold and bitcoin markets, joint modeling of the
linkages between these three markets with higher-order moments is required; otherwise,
inaccurate risk assessments and investment inferences may occur [15]. There has been
an abundance of research exploring the interaction between crude oil price and precious
metals price, with time-varying parametric vector autoregressive (TVP-VAR) models, vector
autoregressive asymmetric dynamic correlation generalized autoregressive conditional
heteroskedasticity (VAR-ADCC-GARCH) models, and many other approaches yielding
time-varying links between oil price and gold [16,17]. All these previous studies have
suggested that there may be potential relationships between different markets/assets, and
that putting as many relevant economic factors as possible into the forecasting model as
predictors will improve the predictive accuracy of the results.

2.2. Crude Oil Price Forecasting Based on Machine Learning Methods

Based on the assumption of strict linearity, the time series model is able to better
portray the linear characteristics of the crude oil price series, but in practice the real
data are always nonlinear and chaotic. Therefore, traditional econometric models have
difficulty fitting the nonlinear characteristics of the crude oil price series. For this reason,
scholars have applied machine learning models and brought them into crude oil price
forecasting. Machine learning models with powerful adaptive learning capabilities and
flexible structural designs, especially neural networks, are gradually becoming one of the
most important forecasting models. Ma et al. developed a hybrid nonlinear regression and
SVM model to model and forecast future daily electricity price [18]. Sun et al. proposed
an interval decomposition integration (IDE) learning method to predict interval crude oil
price [19]. Machine learning models such as artificial neural networks (ANN), support
vector machines (SVM) and extreme gradient boosting (XGB) have been gradually used for
crude oil price volatility analyses [20].

In most scenarios, crude oil price fluctuate to varying degrees, driven by macroeco-
nomic and financial markets. Macroeconomic factors, such as exchange rates, industrial
production and unemployment rates, crude oil refining costs and oil production levels all
have an impact on crude oil price. Zhao et al. proposed an oil price prediction method
based on deep learning and integration learning, which contains 198 exogenous variables
and uses a stacked denoising self-encoder (SDAE) to model and predict oil price [13].
Jabeur et al. (2021) predicted crude oil price during the COVID-19 outbreak using LGBM,
CATB, XGB, random forests (RFs), and neural network tools by using variables such as
green energy resources (GER), the global environmental index (ESG) and the stock mar-
ket [21]. Khashman and Carstea proposed an efficient oil price prediction system based on
supervised neural networks [22].

Researchers using ML tools in the crude oil price forecasting process generally agree
that advanced and hybrid ML tools are superior to single ML and traditional statistical
tools. This is because each model has inherent advantages and disadvantages, whether
it is a statistical and econometric model or an artificial intelligence and machine learning
model. Therefore, hybrid and integrated forecasting models have been proposed that have
achieved some forecasting advantages. Hybrid and integrated approaches are combinations
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of several models that are used to model data and predict future data. More details can be
found in the literature [23–25].

• Contributions

The most relevant study to this paper is Jabeur et al. [26]. However, in contrast to its
and previous studies, our study contributes to its foundation in two broad ways: data and
model application.

• Data: (1) Data are collected with a higher frequency. Most of the variables are collected
on a daily frequency, which can be more effective at detecting the influential nature
of the explanatory variables on crude oil price. (2) More novel data are used. New
types of data such as digital currencies and user Web search big data are considered.
(3) It is unrealistic to ignore data on international commodity price forecasting in the
context of the COVID-19 pandemic. Our study fully takes into account the number
of new crown daily confirmations and additions. To our knowledge, this has hardly
been done in previous studies.

• Model: (1) Auto-ML is used. We use advanced automatic parametric optimization
methods. Each parameter optimization creates priori knowledge between the parame-
ters and the model performance, which in turn helps to discover the optimal model
structure efficiently. The optimal model structure ensures scientific and rational model
interpretation results. (2) The ML is interpretable. We propose a framework for inter-
pretable machine learning models. The framework not only provides researchers with
a high-precision forecasting tool, but also supports them in interpreting the obtained
prediction results, which is undoubtedly important in finance and economics, which
are research fields that require understanding and trust.

3. Data and Variables

Table 1 gives more information about the data and variables used in this study.

Table 1. Data and variables.

Variables Meaning Frequency Data Source

Oil WTI crude oil settlement price (USD/BBL) Daily https://www.eia.gov (accessed on 20 July 2022)
Inventory EIA global crude oil reserves (MBO) Weekly https://www.eia.gov
Gold LBMA gold afternoon fixing price (USD/oz) Daily https://www.gold.org (accessed on 20 July 2022)

Silver LBMA silver afternoon fixing price (USD/oz) Daily https://www.investing.com (accessed on 20
July 2022)

Bitcoin Bitcoin price (USD) Daily https://www.investing.com
SP500 S&P 500 index (pips) Daily https://www.investing.com
USD_CNY USD/CNY exchange rate Daily https://fxtop.com (accessed on 20 July 2022)
USD_EUR USD/EUR exchange rate Daily https://fxtop.com
Covid_Con COVID-19 daily new cases (persons) Daily https://www.who.int (accessed on 20 July 2022)
Covid_Death COVID-19 daily death cases (persons) Daily https://www.who.int

Google_Oilpri Google search trends of “crude oil price” Weekly https://trends.google.com/trends (accessed on
20 July 2022)

Google_Oilcon Google search trends of “crude oil consumption” Weekly https://trends.google.com/trends

Note: WTI: West Texas Intermediate; EIA: Energy Information Administration; LBMA: The London Bullion
Market Association.

In this paper, we examined the impact of several explanatory variables on crude oil
price in the context of the COVID-19 pandemic, given in U.S. dollars. The data cover
daily observations since the discovery of COVID-19 in China (1 February 2020 to 30 June
2022). For non-trading days, the missing data were filled in using linear interpolation
methods. In an effort to acquire a clearer comparison of the prediction performance
regarding these machine learning techniques, a 10-fold cross-validation approach was used
to develop the models. Moreover, the prediction performance evaluation of the model on
each fold was obtained separately, averaging over the 10 folds to obtain the final prediction
result [27]. Table 2 gives the descriptive statistics of the obtained time series data. Some
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specific machine learning methods (e.g., KNN) required a measure of the distance between
variables. Therefore, before commencing the experiments, it was necessary to ensure that
the explanatory variables in the feature space had a homogeneous impact on the distance
of crude oil price. In this paper, we adopted a Z-score standardization method, as shown in
Equation (1), to ensure all the variables obeyed the distribution with µ = 0 and σ = 1:

Z =
x− µ

σ
(1)

where x is the variable, and µ and σ are the mean value and standard deviation, respectively.

Table 2. Descriptive statistics.

Oil Inventory Gold Silver Bitcoin S&P 500

Min 12.93 1,678,509.00 1474.25 12.00 4970.79 2237.40
Median 63.44 1,914,785.57 1811.45 23.96 34,668.55 3941.48
Max 124.77 2,117,643.00 2067.15 29.58 67,566.83 4796.56
Mean 63.54 1,905,664.12 1810.87 23.07 31,543.72 3871.05
Std. Dev 25.26 125,158.78 96.45 3.68 17,989.08 598.41
Kurtosis −0.57 −0.86 0.62 0.19 −1.35 −0.78
Skewness 0.39 −0.17 −0.55 −0.99 0.03 −0.48

USD_CNY EUR_USD Covid_Con Covid_Death Google_Oilcon Google_Oilpri

Min 6.30 1.04 426.00 1.00 32.00 9.00
Median 6.50 1.16 486,157.00 7147.00 46.71 14.29
Max 7.13 1.23 4,036,647.00 20,006.00 100.00 100.00
Mean 6.63 1.15 617,940.63 7188.61 48.93 17.53
Std. Dev 0.26 0.05 640,003.35 3684.05 9.38 9.74
Kurtosis −1.03 −0.95 8.34 −0.34 6.17 19.59
Skewness 0.69 −0.38 2.71 0.00 2.06 3.81

In real-world applications, financial transaction data often contain many irrelevant
or redundant features. These irrelevant or redundant features usually slow down the
model’s speed of learning or even reduce the accuracy of the model. Therefore, it was
necessary to perform feature correlation tests on the selected variables. Mutual information
is a widely used method for describing common information between variables, i.e., the
degree of reducing uncertainties of one variable when the other is known. Figure 1 shows
the mutual information evaluation of the variables selected in this paper (>0.6), and the
selected explanatory variables were all highly correlated with crude oil price.

Figure 1. Normalized mutual information matrix between variables.



Axioms 2022, 11, 374 6 of 19

4. Methodology

In this section, we first present 6 machine learning models for predicting crude oil
price. Then, we describe the metrics used to evaluate their predictive performance. Finally,
we introduce the SHAP method used in this study to interpret the prediction results of
the models.

4.1. Machine Learning Models

• Multiple Linear Regression

Multiple linear regression is a commonly used statistical analysis method for esti-
mating the marginal effects of selected independent variables on explanatory dependent
variables. In multiple linear regression, the ordinary least squares (OLS) method is a
simple method for estimating the relationship between the independent variable and the
explanatory variable. The model can be expressed as:

Yt = β0 + β1X1 + . . . + βkXk + εt, (2)

where Yt is the expected value at the moment t, β0 denotes the regression constant, β1 ∼ βk
represent the regression coefficients, X1 ∼ Xk are the explanatory variables at the moment
t, and ε is the random error term at the moment t.

Multiple linear regression is the simplest, most commonly used and most fundamental
regression model that can fit the time series observational data well. It can be used for
short or simple time series or smooth time series. Part of the literature has revealed the
correlation between oil price and other price in financial markets [28,29] and assessed the
accuracy of linear and nonlinear models in predicting daily crude oil price [30].

• K-Nearest Neighbor Regression

Nearest neighbor is a classical concept in machine learning. It was first proposed as a
classifier: given an unlabeled sample, it can find its K most similar (closest) labeled samples
and use most of their classes to predict the category of unlabeled samples. Subsequently,
this classical idea has been rapidly extended to the field of regression, and the related
method is known as K-nearest neighbor regression (KNN) [31]. In this regression context,
samples have relevant predictive target values rather than class- or category-based data.
The basic idea can be summarized as follows: given a sample with an unknown predicted
value Yt, the target values of its K nearest neighbors are pooled, e.g., by averaging or
taking the median to predict the unknown target value. Here, we use Euclidean distance to
measure the similarity between different samples, as shown in Equation (3):

d(x, y) =
√
(x1 − y1)

2 + (x2 − y2)
2 + . . . + (xn − yn)

2 =
√

∑ n
i=1(xi − yi)

2. (3)

where d(x, y) denotes the distance between samples x and y, xi represents the feature vector
of sample x, and yi is the feature vector of sample y.

The application of KNN algorithms for forecasting in various fields is becoming more
and more widespread. The KNN model is used to forecast crude oil price, while comparing
with NNAR and ARIMA [31,32]. The results have all indicated that the proposed KNN
model has a higher forecasting accuracy.

• Random Forest

The random forests algorithm was proposed by Breiman in 2001, and consists of a
number of deep and uncorrelated decision trees built on different samples of the entire
data [33]. It is a popular tree-based regression method designed to reduce the variance
of statistical models, model the variability of the data by randomly extracting bootstrap
samples from a single training set and aggregate predictions of new records [33,34]. In
general, the basic steps can be summarized as follows: (1) randomly generate a subset of
samples based on the bootstrap method; (2) use the idea of a random subspace, randomly
extract features, split nodes, and construct regression sub-decision trees; (3) repeat the



Axioms 2022, 11, 374 7 of 19

above steps to construct T regression decision sub-trees and form a random forest; (4) for
the predicted values of T decision sub-trees, take the mean value as the final prediction
result.

Recently, several studies have shown its effectiveness in economics and finance
(see [35–37]). RF has been widely used in recent years due to its more robust performance
compared to other traditional models [26].

• XGB

The XGB algorithm was proposed in 2016 and is a relatively new approach [38]. In
recent years, it has been applied to various disciplines such as energy [39,40], security [41]
(Parsa et al., 2020), commodities [26] and credit scoring [42]. XGB is an integrated classifica-
tion and regression tree (CART) using the boosting method integration model. It has the
advantages of fast training and high prediction accuracy. The result of XGB is the sum of
the prediction scores of all CART (Chen and Guestrin, 2016), as shown in Equation (4):

ŷ = ∑ N
n=1 fm(X), (4)

where N denotes the number of trees in the model, fm represents each CART tree and ŷ is
the predicted outcome.

The introduction of the XGB method for oil price prediction not only improves the
accuracy of the prediction, but also takes more influencing factors into account [43]. These
studies on crude oil price involved making predictions using variables such as green energy
resources, the stock market, and bitcoin during the COVID-19 outbreak [21,44]. The results
showed that the XGB model outperformed the traditional model.

• Light Gradient Boosting Machine

Light gradient boosting machine (LGBM) is a novel gradient boosting framework
proposed by Ke et al. in 2017 to address the efficiency and scalability problems of GBDT
and XGB when applied to problems with high-dimensional input features and large data
volumes [45]. According to Wen et al. [46], LGBM outperforms other gradient enhancement
methods in terms of training speed and prediction accuracy because it combines gradient-
based one-side sampling (GOSS) and exclusive feature bundling (EFB). Specifically, the
estimation function of LGBM is defined as follows:

yt = ∑ T
h=1 ft(x), (5)

where ft(x) is the regression tree and T denotes the number of regression trees.
Several previous studies have concluded that LGBM exhibits higher efficiency and

accuracy in ML tasks compared to other advanced algorithms [26,46]. As a decision tree-
based model, LGBM has the additional advantage of being robust to multicollinearity.
Therefore, the inclusion of correlated independent variables, which is very common in
economics data, is not a consideration for the LGBM.

• Catboost

Catboost is a novel gradient boosting algorithm that has been proposed in recent years
to handle categorical features efficiently and reasonably well with fewer parameters, with
an ability to match categorical variables and a high accuracy [47]. It uses gradient boosting
of decision trees to classify categorical data. The decision tree is created by dividing
the training dataset into similar parts. To better handle categorical features, Catboost
uses ordered boosting and innovative algorithms to process the data, outperforming
other boosting techniques in terms of performance. In addition, Catboost makes the data
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distribution free from noise and low frequencies by adding prior distribution terms, as
shown in Equation (6):

x̂i
k =

∑P−1

j=1

[
xσj ,k = xσp ,k

]
Yσj + α · p

∑P−1

j=1

[
xσj ,k = xσp ,k

]
Yσj + α

, (6)

where p is the prior term and α is the weight of the prior term.
Catboost computes the node values of existing leaves, circumventing the direct compu-

tation of multiple dataset alignments, which can handle the classification feature problem
well and can effectively reduce the overfitting problem [48]. Since the introduction of
Catboost, there has been ample research applying it to crude oil price forecasting. Jabeur
et al. predicted oil price during the COVID-19 pandemic using Catboost [21]. Hancock and
Khoshgoftaar gave a systematic review of the application of Catboost in the field of big
data [48].

4.2. Evaluation Metrics

In order to measure the prediction performance of the above six ML models, this
paper gives the comparison results of the above ML models in terms of mean error (ME),
mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE) and
mean absolute percentage error (MAPE). The reason we have provided multiple prediction
metrics is that each method has its own strengths and weaknesses. For example, ME allows
for checking whether the method has a tendency to over- or under-predict the actual values;
RMSE and MAE are scale-dependent error measures that do not allow comparison between
point predictions across different scales; and the percentage-based error measure MAPE
will always have a small error when the predictor variable is low [49]. The equations for
these metrics are as follows:

AE =
∑n

i=1 ŷi − yi

n
, (7)

MAE =
∑n

i=1|ŷi − yi|
n

, (8)

MSE =
n

∑
i=1

(ŷi − yi)
2

n
, (9)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (10)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
, (11)

where n denotes the number of samples, ŷi is the predicted value of the model, yi means
the true value of the response, and yi represents the average estimate.

4.3. Interpretation of Results

Model interpretability is a major challenge for the application of machine learning
methods, and a considerable amount of research in computer science has been devoted to
it. However, not enough attention has been paid to the use of ML methods for predicting
financial/economic data. To improve the interpretation of machine learning models,
Lundberg and Lee proposed the SHAP method in 2017, which assigns a value to each input
variable that reflects its importance to the prediction model [50].

For each subset S ⊆ F of features of the input (where F represents the set of all
features), two models are trained separately to extract the impact of feature i. The first
model fS∪{i}

(
xS∪{i}

)
is trained with feature i as an input, while the other model fS(xS)

is trained without feature i as an input, where xS∪{i} and xS are the input features. Then,
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for each possible subset S ⊆ F\{i}, fS∪{i}

(
xS∪{i}

)
− fS(xS) is computed and the Shapely

value of each feature i is obtained as follows.

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

(
fS∪{i}

(
xS∪{i}

)
− fS(xS)

)
, (12)

However, a major limitation of Equation (10) is that the computational cost will grow
exponentially as the number of features increases. To address this issue, Lundberg et al.
in 2020 proposed an easy-to-handle computational tree model (such as XGB used in this
paper) interpretation method, TreeExplainer [51]. The TreeExplainer method makes it more
efficient to compute SHAP values for local and global feature factors.

SHAP combines optimal assignment and local interpretation using classical Shapley
values. It will help the user to trust the prediction model—not only what the prediction is,
but also why and how it is made. Thus, the SHAP interaction value can be calculated as
the difference between the Shapley value with factor i and no factor j in Equation (13):

φi,j = ∑
S⊆F\{i,j}

|S|!(|F| − |S| − 2)!
|F|!

(
fS∪{i,j}

(
xS∪{i,j}

)
− fS∪{i}

(
xS∪{i}

)
− fS∪{j}

(
xS∪{j}

)
− fS(xS)

)
. (13)

Based on this advantage, we used it to interpret the decision-tree-based XGB model
with to the objective of discovering the predictive impact of different features of students
on their final destination. Thus, compared with existing methods (e.g., feature importance
in random forest methods), SHAP not only ranks feature importance, but also shows the
positivity and negativity of feature influence results, thus improving the explanatory power
of the model output.

5. Results and Discussion

The programming environment used in this study was Python (version 3.8.3), with the
additional support packages scikit-learn (version 0.24.1), and Tensorflow (version 2.2.2) for
computing and running the ML algorithms. In addition, we used a 10-fold cross-validation
method to split the data into ten training samples and validation test samples that did
not overlap. The training of the model was performed on the training sample, while
the evaluation of the model’s training effect was performed on the testing sample. In
addition, based on the above evaluation metrics, we considered the in-sample error and
out-of-sample error of the models and selected the best performing model for interpretation
(averaging). Finally, we discuss the results of the obtained models.

5.1. Tuning

Model optimization is one of the important aspects of machine learning, and most
branches of machine learning theory are devoted to model optimization [52,53]. Hyperpa-
rameter optimization is the process of finding the hyperparameters of a machine learning
model when it performs best on a validation dataset. Compared with other methods,
automatic hyperparameter tuning can form knowledge between the parameters and the
models, thus reducing the number of trials and improving the efficiency of algorithms
in finding the optimal hyperparameters. The TPE algorithm is an optimization method
based on a sequential model. The method converts the hyperparametric space into a
nonparametric density distribution to model the p(x|y) process. There are three types of
conversions: the conversion of a uniform distribution to a truncated Gaussian mixture
distribution; the conversion of a logarithmic uniform distribution to an exponential phase
Gaussian mixture distribution; and the conversion of a discrete distribution to a reweighted
discrete distribution. By using different observations

(
x1, x2, . . . , xk

)
in the nonparametric
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density to conduct the replacement process, TPE can use different densities for the learning
algorithm. The densities are defined as:

p(x|y) =
{

l(x) i f y < y∗

g(x) i f y ≥ y∗
, (14)

where l(x) consists of the density of observations
{

xi} with an objective function F(x) less
than y∗ and g(x) consists of the density of observations

{
xi}with an objective function F(x)

greater than or equal to y∗. The TPE algorithm uses y∗ as the quantile γ of the observation
y. By maintaining a sorted list of observations in the observation domain H, the running
time of the TPE algorithm for each iteration can be scaled linearly between |H| and the
optimized feature dimension can also be scaled linearly, at which point the expected boost
(EI) is:

EIy∗(x) =
∫ ∞

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy. (15)

Finally, by taking γ = p(y < y∗) and (x) =
∫

p(x|y)p(y)dy = γl(x) + (1− γ)g(x), it
is easy to obtain:

EIy∗(x) =
(

r +
g(x)
l(x)

(1− γ)

)−1

. (16)

Thus, a maximum EI value of x∗ that can be obtained is returned at each iteration.
The process of model parameter optimization and model training using the TPE method in
this paper is shown in Figure 2, which is divided into the following steps: (1) first, specify
the parameter space of the model; (2) set the model parameters and train the model on
the training data; (3) determine whether the model achieves optimal performance on the
training set based on the evaluation metrics; (4) if it is not optimal, return to step (2) and
reset the model parameters; (5) evaluate the model with the optimal performance on the
test set and report the evaluation results.

Figure 2. Machine learning model optimization process.
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With the above procedure, we obtained the optimal parameters for each machine
learning model, as shown in Tables 3–6. For KNN, the optimal K value was 9.

Table 3. Optimal parameters for RF model.

Parameters Value Meaning

n_estimators 383 Number of regressors

max_features 7 Maximum number of features selected when building
the regressors

max_depth 29 Maximum depth of regressors
min_samples_split 9 Conditions limiting the continuation of subtree division

Table 4. Optimal parameters for XGB model.

Parameters Value Meaning

n_estimator 279 Number of regressors
learning_rate 0.18 Boosting learning rate
max_depth 6 Maximum depth of regressors
subsample 0.91 For each tree, the proportion of random sampling
colsample_bytree 0.80 Percentage of columns randomly sampled by each regressor

Table 5. Optimal parameters for LGBM model.

Parameters Value Meaning

boosting_type ‘gbdt’ Boosting algorithm type
n_estimator 322 Number of regressors
learning_rate 0.18 Boosting learning rate
max_depth 12 Maximum depth of regressors
subsample 0.70 For each tree, the proportion of random sampling
colsample_bytree 0.80 Percentage of columns randomly sampled by each regressor

Table 6. Optimal parameters for CATB model.

Parameters Value Meaning

n_estimator 265 Number of regressors
learning_rate 0.22 Boosting learning rate
max_depth 14 Maximum depth of regressors
subsample 0.74 For each tree, the proportion of random sampling

5.2. Predictive Performance Comparison

We reflect on the prediction performance of each model in Table 7. Though the deep
learning method was not applicable for our interpretable method, we still added it into
the prediction for comparation. As shown in Table 7, the XGB model achieved the best
in-sample error, i.e., it performed best in the training set. However, the XGB model did
not perform as well as the LGBM model outside the training sample (i.e., the test set). The
LGBM model achieved the best prediction performance in the test sample, although its
in-sample performance was worse than that of the XGB model. This indicates that the
LGBM model had a better generalization performance and the XGB model exhibited some
risk of overfitting compared to the LGBM model in the present data. To better evaluate the
prediction performance of our study, the specific prediction performance of the model is
shown in Figure 3. The results show that the prediction results of the LGBM fit well with
the dataset.
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Table 7. Machine learning model evaluation.

In-Sample Error (Training Set) Out-Sample Error (Testing Set)

Model AE MAE MSE RMSE MAPE AE MAE MSE RMSE MAPE

MLR 0.00 1.72 2.81 1.67 5.12 0.97 1.72 2.81 1.67 1.54
KNN 1.00 1.66 2.50 1.58 1.97 0.85 1.66 2.50 1.58 1.42

RF −0.35 1.14 1.58 1.25 1.07 1.00 1.24 1.62 1.27 1.38
XGB 0.00 1.00 1.00 1.00 1.00 0.83 1.14 1.19 1.09 1.02

LGBM 0.00 1.16 1.19 1.09 1.08 0.76 1.00 1.00 1.00 1.00
CATB 0.00 1.24 1.62 1.27 1.27 0.88 1.16 1.58 1.26 1.22
DNN 0.00 1.33 1.79 1.33 1.43 0.87 1.34 1.77 1.33 1.32

Figure 3. Comparison of forecast results of ML models with real crude oil price.

5.3. Feature Analysis

In this section, we interpret the prediction results obtained from the LGBM model using
the SHAP interpretation method mentioned above. We first used SHAP summary plots
for the global interpretation of the characteristics. The global interpretation helped us to
discover the importance and the positive and negative impacts of the relevant explanatory
variables on predicting crude oil price. Secondly, we performed a feature dependence
analysis on different variables with to the objective of obtaining more fine-grained insights.

5.3.1. Overall Analysis

Figure 4 shows the SHAP summary plot, which ranks the selected variables according
to their degree of influence on crude oil price forecasts, i.e., the higher the ranking, the more
important the variable was for crude oil price forecasts. As can be seen from the graph, the
S&P 500 was the most important input variable in the model. This finding supports the
findings of Kyrtsou et al. [54], who concluded that the long-term relationship between the
S&P 500 and crude oil price is strongly dependent through partial transfer entropy and
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causality tests. Moreover, it is not difficult to find that the higher the S&P 500 index, the
higher the SHAP value associated with the increase in crude oil price. The same findings
can be found in the article by Bouoiyour et al. [55], who argue that crude oil can be an
effective hedge against volatility risk in the U.S. stock market and a safe haven against
political risk for stock market participants.

Figure 4. Overall analysis. (a): SHAP overall analysis. (b): Feature importance.

When sorting by variables, the bitcoin price was the second most important feature,
and the points of high crude oil price were basically distributed in the interval of the SHAP
values greater than 0. This indicates that an increase in bitcoin price leads to an increase in
crude oil price. This is consistent with the findings of Selmi et al. [56], which concluded
that bitcoin has a non-negligible role in dispersing crude oil price volatility.

This was followed by crude oil inventories, where it can be seen that higher crude
oil inventories lead to relatively low crude oil price. This is not difficult to understand,
as classical economic theory tells us that supply and price are often inversely related, i.e.,
when crude oil inventories increase, the market develops expectations of a lower crude oil
price, which has been well-studied in the previous literature [57,58].

5.3.2. Dependence Analysis

We utilized SHAP dependency plots to show how the values of the variables affected
the predicted outcome of each observation in the dataset to further examine the relationship
between the input variables and the predicted outcome (i.e., crude oil price). Dependency
plots can depict the main effects of individual predictor variables and the interactions
between them. With global interpretability, we can observe the positive or negative con-
tribution of each feature to the prediction scores over the entire sample. We explored the
model output in depth from four perspectives: precious metals (silver, gold), exchange rates
(USD_EUR, USD_CNY), user search data (Google_Oilcon, Google_Oilpri) and new crown
epidemic (Covid_Con, Covid_Death).

Firstly, we explored the impact of precious metal price fluctuations on crude oil price
forecasts, as shown in Figure 5. In Figure 5, the red points indicate higher crude oil price
and the blue points indicate lower crude oil price. From Figure 5a, we can find that when
the silver price was low (within the 0–0.3 interval), the SHAP value of the low crude oil
price was lower than 0, which indicates that when the silver price is low, an increase in
the silver price will inhibit an increase in the crude oil price; while when the silver price
gradually increased (within the 0.3–1 interval), the SHAP value of the high crude oil price
was also greater than 0, indicating that when the silver price picks up, an increase in the
silver price also leads to a gradual recovery of the crude oil price. As shown in Figure 5b,
as the gold price rises from 0 to 1, most of the red points fall in the region where the SHAP
value is less than 0, indicating that an increase in the gold price suppresses an increase in



Axioms 2022, 11, 374 14 of 19

the crude oil price. The above finding is in line with the findings of Bouoiyour et al. [55]
and Selmi et al. [56], which concluded that gold is an effective hedge against crude oil price
volatility as a financial asset.

Figure 5. Precious metals–crude oil price dependence analysis. (a) Analysis of the dependence of
silver price and crude oil price; (b) Analysis of the dependence of gold price and crude oil price.

Second, we discuss the impact of exchange rates on crude oil price forecasts, as shown
in Figure 6. Figure 6a shows the effect of a change in the U.S. dollar against the RMB on
the volatility of the crude oil price, and it was found that when the RMB point was low
(less than 0.2), the SHAP value at this time was always positive, indicating that when
the RMB point is low, an increase in the RMB exchange rate has a positive contribution
to increasing crude oil price. Figure 6b shows the effects of the change in the USD–EUR
exchange rate on the volatility of the national crude oil price. Similarly, it can be observed
that the SHAP value was always positive when the USD–EUR exchange rate was low (less
than 0.2), indicating that an increase in this exchange rate has a positive impact on the
improvement of crude oil price when the USD–EUR exchange rate is at a low level.

Figure 6. Exchange rate–crude oil price dependence analysis. (a) Analysis of the dependence of
USD_CNY and crude oil price; (b) Analysis of the dependence of USD_EUR and crude oil price.
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Then comes the effect of user Web search data on crude oil price forecasts, as shown in
Figure 7. It can be found that both data show the same trend, i.e., the crude oil price tends
to be at high levels when searches tend to be closer to 1 (i.e., when user search volume
increases), and the SHAP value is less than 0 at this time, with significant outliers in the
data points. This indicates that market participants tend to be more concerned about crude
oil price when they are higher, and that search volumes exceeding the general level tend to
promote a decline in crude oil price.

Figure 7. User search data–crude oil price dependence analysis. (a) Analysis of the dependence
of Google_Oilcon and crude oil price; (b) Analysis of the dependence of Google_Oilpri and crude
oil price.

Finally, our discussion on the impact of the development of the new crown epidemic
on crude oil price is shown in Figure 8. As shown in Figure 8, it can be observed that when
the daily number of new confirmations of the new crown epidemic was at a high level (i.e.,
greater than 0.1), the SHAP value was always negative, indicating that when the epidemic
worsened, it tended to give a downward impetus to the crude oil price.

Figure 8. COVID-19–crude oil price dependence analysis. (a) Analysis of the dependence of
Covid_Con and crude oil price; (b) Analysis of the dependence of Covid_Death and crude oil.
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5.4. Future Research

Future research may extend our work by considering a richer set of market variables,
such as political or commercial factors and phases of economic instability, which are often
determinants of crude oil price. Moreover, another direction for future research is the
application of the proposed model to forecast the price of other commodities. Moreover, it
is a worthwhile direction to explore the consideration of one or more computational cost
factors when comparing different forecasting models. Therefore, calculations based on
operational research methods might be a good direction.

6. Conclusions

As machine learning approaches become increasingly capable and more use cases are
developed in time series forecasting, machine learning systems become more complex and
less interpretable. In a fast-changing financial environment, trusting a model that is not
well-understood can lead to inaccurate and potentially dangerous decisions. Consequently,
this could pose a substantial risk to financial market participants. Therefore, it is of immense
practical importance to use some visual interpretation tools to understand the prediction
results of complex machine learning models. The work in this paper makes some attempts
to address the above issues.

In this paper, specifically, we compared the forecasting performance of sixdifferent
machine learning models to determine which model was more suitable for forecasting
crude oil price. The results show that LGBM provided the best out-of-sample prediction
error among all alternative techniques and outperformed the selected benchmark model.
In addition, we provided significant correlations between crude oil price and all predictor
variables, i.e., precious metals, S&P 500, exchange rates, Web search big data, and new
crown epidemic data. This result suggests that these variables have a high potential to
predict future crude oil price fluctuations.

Moreover, this study proposed an interpretable machine learning framework based
on the SHAP method to obtain more research insights. In fact, our proposed research
framework provides a rich visualization of independent feature attributes to improve the
interpretability of crude oil price fluctuations. In addition, the SHAP approach based on
tree models further contributes to our understanding of traditional decision tree models. It
provides an in-depth approach for interpreting the prediction results of complex machine
learning frameworks (e.g., LGBM) and allows researchers to discuss the nonlinear feature
relationships that are output by the models. In this paper, we showed how this research
framework can be used to explain the output of LGBM models for predicting crude oil price.

As an empirical study, the findings we drew provide some insightful theoretical
implications for investors and policy makers. First, a more accurate forecasting technique
would be an effective forecasting tool for central banks and investors. This is because
central banks need to know the trends of crude oil price in order to ensure strategic
national reserves or to perform some financial operations to stabilize the country’s financial
development. For investors, crude oil, as a commodity, helps to diversify their investment
portfolios. If they can successfully predict the upward and downward direction of the
crude oil market, investors may be better guided and receive safer investment returns.
Second, our findings also suggest that actual investors may benefit from certain approaches
in their decision making from the methodology and research framework used in this paper.
Successful forecasts and understandable market fluctuations inform investors’ decisions
on future behavior and planning to bring about more favorable scenarios. Finally, our
study will also benefit policymakers by listing a range of market factors, including bitcoin,
and more novel data sources as variables for predicting crude oil price in the context
of a new crown epidemic pandemic. The SHAP methodology provides a robust and
insightful measure of the importance of each input variable for predicting future crude oil
price volatility.

Despite the above implications, our study still has limitations common to all similar
studies. For example, although the proposed model can achieve a high degree of accuracy
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for forecasting purposes, it should also be acknowledged that the crude oil market is
dependent on many variables, such as unobservable geopolitical influences. Moreover,
the heterogeneity of the dataset and its quantities, such as the lack of data from a higher
frequency of sampling (e.g., hours, minutes), could be considered a limitation. The interpre-
tation method we employed is only valid for tree-based machine learning models and does
not employ advanced deep learning models, which is one of the limitations of this paper.
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