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Abstract: Of interest is the dynamics of the discrete-time amensalism model with a cover on the
first species. We first obtain the existence and stability of fixed points and the conditions for the
permanent coexistence of two species. Then we demonstrate the occurrence of flip bifurcation by
using the central manifold theorem and bifurcation theory. A hybrid control strategy is used to
control the flip bifurcation and stabilize unstable periodic orbits embedded in the complex attractor.
Numerical simulation verifies the feasibility of theoretical analysis and reveals some novel and
exciting dynamic phenomena.
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1. Introduction

A symbiotic relationship in an ecosystem is a relatively close interrelationship between
individuals of different species that can generally increase the fitness of one or both parties.
It primarily includes mutualism, commensalism, and amensalism (see [1–8] and references
therein). Amensalism refers to the interaction of two species in which only one side is re-
stricted and restrained, while the other side is unaffected. For instance, Dakhama et al. [9]
pointed out that Pseudomonas aeruginosa strongly inhibits the growth of green microalgae
and cyanobacteria by releasing low molecular weight heat-resistant factors. Penicillin
produced by Penicillium can restrain the growth of Gram-positive bacteria [10].

In 2003, Sun [11] firstly established a mathematical model of two species amensal-
ism based on the Lotka–Volterra model, and then Zhu et al. [12] studied the following
amensalism model: 

dx
dt

= x
(
α− βx− cy

)
,

dy
dt

= y
(
γ− δy

)
.

(1)

where x(t) and y(t) represent the densities of the first and second species at time t, respec-
tively; α and γ stand for the intrinsic growth rates of x and y, respectively; c > 0 denotes
the impact exerted by the second species over the first species. Since then, many scholars
have conducted extensive research on the amensalism model based on the model (1). For
example, nonlinear functional response [3,13,14], Allee effect [15–19], and a cover (i.e.,
refuge) [20–22].

Everyone knows that the use of refuge can be broadly defined as including any strat-
egy to reduce the predation rate, such as spatial or temporal refuges, prey aggregation, or
reduced prey search activities. Some experimental and theoretical studies have demon-
strated that human interference and the interaction between algae and bacteria would
make it possible for some algae-killing bacteria to be used for biological control of algal
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blooms [9,23,24]. Thus, Xie, Chen, and He [22] investigated a two-species amensalism
model with a cover for the first species, as follows:

dx
dt

= αx− βx2 − c(1− k)xy,

dy
dt

= γy− δy2,
(2)

where k denotes a cover provided for the species x and 0 < k < 1. The remaining
parameters are defined as previously. The system admits four possible equilibria E0(0, 0),
E1(

α
β , 0), E2(0, γ

δ ), and E3(x∗, y∗). The authors showed that E0 and E1 are unstable, and for
the stability property of E2 and E3, the authors obtained the following results.

Theorem 1. (1) If 0 ≤ k <
αδ

γc
, then E2(0, γ

δ ) is globally stable.

(2) If 1 > k >
αδ

γc
, then E3(x∗, y∗) is globally stable.

Their research shows that the two populations can coexist stably if the cover is large
enough. In contrast, if the cover is limited, the first population may be driven to extinction.
Here, the dynamic behavior of system (2) seems simple, since from Theorem (1) one could
see that the system could not have a bifurcation phenomenon.

In general, discrete-time models described by difference equations are more appropri-
ate and realistic than the continuous-time models when populations have non-overlapping
generations. Existing research shows that the discrete-time model not only exhibits more
complex dynamic behaviors but also provides more effective numerical simulation re-
sults [25–27]. What deserves our attention is that some scholars have studied the discrete-
time system with refuge (see [28–34] and references therein). In 2014, Rana et al. [32]
considered the impact of the Allee effect and prey refuge on the stability of a discrete
predator–prey system, they found that the population remains stable at an intermediate
level of refuge parameter, whereas at relatively low and high refuge effects, prey exhibits
chaotic oscillation. Santra et al. [33] realized that refuge can stabilize the positive fixed
point of the proposed discrete-time model. Recently, a discrete Leslie–Gower model with
nonlinear prey harvesting and prey refuge was proposed by Shu and Xie [35]. They re-
searched the existence of flip bifurcation and Neimark–Sacker bifurcation at the internal
fixed point. However, up to now, no scholars have investigated the discrete amensalism
system with cover.

According to [25,26], the piecewise constant argument method is a better choice
for the discretization of continuous models. We firstly consider the following discrete
amensalism model:  xn+1 = xn exp

(
α− βxn − cyn

)
,

yn+1 = yn exp
(
γ− δyn

)
.

(3)

Motivated by the above discussions, we then propose the discrete amensalism model
with a cover for the first species as follows: xn+1 = xn exp

(
α− βxn − c(1− k)yn

)
,

yn+1 = yn exp
(
γ− δyn

)
,

(4)

Systems (3) and (4) are discrete versions of continuous systems (1) and (2), respectively.
What is the difference between the dynamic behavior of the discrete system (4) and that of
the continuous system (2)? What about the dynamics of system (3) and system (4)? The
above questions are the primary goals of our research for this paper.

The layout of the paper is as follows: In Section 2, we firstly discuss the existence
and stability of fixed points of system (3) and establish a set of sufficient conditions which
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ensure the permanence of system (3). Based on system (3), we further incorporate a cover
into the first species, that is system (4). In Section 3, we study the existence and stability
of its fixed points and give some complete analyses of bifurcation. Moreover, we adopt a
hybrid control method to control chaos under the influence of flip bifurcation. Numeric
simulations are presented in Section 4 to determine the feasibility of the main results. The
paper ends with a brief summary and comparison.

2. Dynamics and Bifurcation of System (3)

In this section, we consider the existence and local stability of all possible fixed points.

2.1. Analysis of Fixed Points

To obtain the fixed point of (3), we need to solve the following equation:{
x = x exp

(
α− βx− cy

)
,

y = y exp
(
γ− δy

)
.

(5)

Clearly, (3) always has the boundary fixed points O(0, 0), E1(
α
β , 0), and E2(0, γ

δ ). For
possible interior fixed point, we have y = γ

δ , then substituting it into the first equation
of (5), one can know that if 0 < c < αδ

γ , it has a unique positive root x∗3 = αδ−cγ
βδ . The

following results can be obtained directly.

Theorem 2. For all parameter values, the following statements are true.

(1) It always has three boundary fixed points, which are O, E1, and E2.
(2) It has only one interior fixed point E∗3 (x∗3 , γ

δ ) if 0 < c < αδ
γ .

The Jacobian matrix of system (3) at a fixed point E(x, y) is

J(E) =
( (

1− βx
)

M∗ −cxM∗

0
(
1− δy

)
N∗

)
, (6)

where M∗ = exp
(
α− βx− cy

)
, N∗ = exp

(
γ− δy

)
. Let λ1 and λ2 be the two eigenvalues

of J(E).
To study the local stability of these fixed points, it is essential to state the follow-

ing definition, which allows classifying the dynamic behavior of fixed points, see [36]
for details.

Definition 1. A fixed point is called

(1) a sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable;
(2) a source if |λ1| > 1 and |λ2| > 1, and it is unstable;
(3) a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1);
(4) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Now we discuss the types of fixed points and obtain the following theorems.

Theorem 3. O(0, 0) is always a source.

Proof. At the boundary fixed point O(0, 0), the Jacobian matrix is

J(O) =

(
eα 0
0 eγ

)
,

with eigenvalues λ1 = eα > 1 and λ2 = eγ > 1. Thus, trivial fixed point O(0, 0) is always a
source.
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Theorem 4. The local stability of E1(
α
β , 0) is briefly described below:

(1) It is a source if and only if α > 2;
(2) It is a saddle if and only if 0 < α < 2;
(3) It is non-hyperbolic if α = 2.

Proof. The Jacobian matrix of (6) evaluated at boundary fixed points E1(
α
β , 0) would be

given by

J(E1) =

 1− α − cα

β
0 eγ

.

One can see that the two eigenvalues of J(E1) are λ1 = 1− α < 1 and λ2 = eγ > 1.
Hence, E1(

α
β , 0) is a source if α > 2, a saddle if 0 < α < 2, and non-hyperbolic if α = 2.

For the boundary equilibrium point E2(0, γ
δ ), the Jacobian matrix takes the form

J(E2) =

(
eα− cγ

δ 0
0 1− γ

)
.

The two eigenvalues of J(E2) are λ1 = eα− cγ
δ > 0 and λ2 = 1− γ < 1. Since

α− cγ

δ


> 0 if 0 < c < αδ

γ ,

= 0 if c = αδ
γ ,

< 0 if c > αδ
γ ,

and

1− γ


> −1 if 0 < γ < 2,
= −1 if γ = 2,
< −1 if γ > 2.

Consequently, there are four different topological types for E2(0, γ
δ ).

Theorem 5. The local stability of E2(0, γ
δ ) can be summarized as follows:

(1) It is a sink if and only if c > αδ
γ , 0 < γ < 2;

(2) It is a saddle if and only if 0 < c < αδ
γ , 0 < γ < 2 or c > αδ

γ , γ > 2;

(3) It is a source if and only if 0 < c < αδ
γ , γ > 2;

(4) It is non-hyperbolic if and only if γ = 2 or c = αδ
γ .

For local stability analysis of the interior fixed point, we obtain the corresponding
Jacobian matrix at E∗3 (x∗3 , γ

δ ) as follows:

J(E∗3 ) =

 1− αδ− cγ

δ

−c(αδ− cγ)

βδ
0 1− γ

.

It is easy to derive the two eigenvalues of J(E∗3 ) are λ1 = 1 − αδ−cγ
δ < 1 and

λ2 = 1− γ < 1. Note that when 0 < c < αδ
γ and α > 2, then

1− αδ− cγ

δ


∈ (−1, 1) if (α−2)δ

γ < c < αδ
γ ,

= −1 if c = (α−2)δ
γ ,

< −1 if 0 < c < (α−2)δ
γ .
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Moreover, if 0 < α < 2 and 0 < c < αδ
γ , then 1− αδ−cγ

δ ∈ (−1, 1). Therefore, the
following result can be obtained immediately.

Theorem 6. Suppose that 0 < c < αδ
γ , then the topological classifications of the unique positive

fixed point E∗3 (x∗3 , γ
δ ) is given by Table 1.

Table 1. Topological types of the fixed point E∗3 (x∗3 , γ
δ ).

Conditions Case

0 < γ < 2 sink

0 < α ≤ 2 0 < c < αδ
γ γ > 2 saddle

γ = 2 non-hyperbolic

0 < γ < 2 sink
(α−2)δ

γ < c < αδ
γ

γ > 2 saddle

γ = 2 non-hyperbolic

0 < γ < 2 saddle

α > 2 0 < c < (α−2)δ
γ

γ > 2 source

γ = 2 non-hyperbolic

0 < γ < 2 non-hyperbolic

c = (α−2)δ
γ

γ > 2 non-hyperbolic

γ = 2 non-hyperbolic

We can see from Theorem 6 that flip bifurcation may generate at E∗3 , the reason is
that the Jacobian matrix has an eigenvalue −1. Next, we will establish a set of sufficient
conditions which ensure the permanence of system (3).

2.2. Permanence

We first introduce the definition of permanence and several useful lemmas [37].

Definition 2. System (3) is said to be permanent if there exist positive constants Mi, mi, (i = 1, 2),
such that

m1 ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ M1,

m2 ≤ lim inf
n→+∞

y(n) ≤ lim sup
n→+∞

y(n) ≤ M2.

Lemma 1. Assume that sequence {u(n)} satisfies

u(n + 1) = u(n) exp
(
α− βu(n)

)
, n = 1, 2, . . .

where α and β are positive constants and u(0) > 0. Then

(1) If α < 2, then limn→∞ u(n) = α
β .

(2) If α ≤ 1, then u(n) ≤ 1
β , n = 2, 3, . . .

Lemma 2. Assume that x(n) satisfy x(n) > 0 and

x(n + 1) ≤ x(n) exp
(
a− bx(n)

)
, n ∈ N,
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where a and b are positive constants. Then

lim sup
n→+∞

x(n) ≤ exp(a− 1)
b

:= M.

Lemma 3. Assume that x(n) satisfy x(n) > 0 and

x(n + 1) ≥ x(n) exp
(
a− bx(n)

)
, n ∈ N,

where a and b are positive constants. Then

lim inf
n→+∞

x(n) ≥ a
b

exp
(
a− bM

)
,

where M is given by Lemma 2.

For the permanence of system (3), the proof process is similar to the literature [15], we
only give the following results:

Theorem 7. The second population of system (3) is always persistent.

Theorem 8. If α > cM2 holds, where M2 =
exp(γ− 1)

δ
, system (3) is always persistent.

Now we discuss the global stability of E∗3 (x∗3 , γ
δ ) by developing the analysis technique

of Chen [38] and Li and Chen [39].

2.3. Global Stability of Interior Fixed Point

From Lemma 1, the following theorems can be easily obtained.

Theorem 9. Assume that 0 < γ < 2 holds, (x(n), y(n)) is any positive solution of system (3), then

lim
n→∞

y(n) =
γ

δ
.

Now we consider the following system

x1(n + 1) = x1(n) exp
(

α− cγ

δ
− βx1(n)

)
, (7)

whose any positive solution is x1(n) =
αδ−cγ

βδ . We obtain the following theorem.

Theorem 10. Suppose that

0 < γ < 2, 0 < α− cγ

δ
< ln 2 + 1 (8)

holds, E∗3 (x∗3 , γ
δ ) is globally attractive, that is,

lim
n→+∞

[x(n)− x1(n)] = 0,

where x1(n) is any positive solution of system (7).

Proof. From Theorem 9, for any sufficiently small ε > 0, if there exists an integer n > N1, then

yn >
γ

δ
− ε. (9)
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In order to prove limn→+∞[x(n)− x1(n)] = 0, we assume that

x(n) = x1(n) exp[k1(n)].

Then the first equation of (3) is equivalent to

k1(n + 1) = ln x(n) + α− βx(n)− cy(n)− ln x1(n + 1)
= k1(n)

(
1− βx1(n) exp[θ1(n)k1(n)]

)
−c(yn − γ

δ ),
(10)

where θ1(n) ∈ [0, 1]. Thus, x1(n + 1) exp
[
θ1(n)k(n)

]
is between x1(n) and x(n). Now, our

main goal is to prove
lim

n→+∞
k1(n) = 0.

Since x(n) exp
[
α− c( γ

δ + ε)− βx1(n)
]
≤ x(n+ 1) ≤ x(n) exp

[
α− cγ

δ − βx1(n)
]
, from

Lemmas 2 and 3, we obtain

lim sup
n→+∞

x(n) ≤
exp

(
α− cγ

δ − 1
)

β
:= U1,

lim inf
n→+∞

x(n) ≥
α− c( γ

δ + ε)

β
exp

[
α− c(

γ

δ
+ ε)− βU1

]
:= V1.

Moreover, according to (7) and Lemmas 2 and 3, we have

lim sup
n→+∞

x1(n) ≤
exp

(
α− cγ

δ − 1
)

β
= U1,

lim inf
n→+∞

x1(n) ≥
α− cγ

δ

β
exp

[
α− cγ

δ
− βU1

]
≥ V1.

Hence, for any sufficiently small ε > 0, there exists an integer N2 > N1 such that if
n ≥ N2, then

V1 − ε ≤ x(n), x1(n) ≤ U1 + ε, n ≥ N2. (11)

Assume
λ1 = max

{
|1− βV1|, |1− βU1|

}
.

Then, for any sufficiently small ε > 0, we assume

λε1 = max
{
|1− β(V1 − ε)|, |1− β(U1 + ε)|

}
. (12)

From (9)–(12), we have

|k1(n + 1)| ≤ max
{
|1− β(V1 − ε)|, |1− β(U1 + ε)|

}
|k1(n)|+ cε

= λε1 + cε, n ≥ N2.

Then we can get the following equation:

|k1(n)| ≤ λn−N2
ε1 |k1(N2)|+

1− λn−N2
ε1

1− λε1
cε, n ≥ N2. (13)

Since λε1 < 1 and ε is sufficiently small, we can get limn→+∞ k1(n) = 0, i.e.,
limn→+∞

[
x(n)− x1(n)

]
= 0 set up when λ1 < 1. Notice that

1− βU1 < 1− βV1 < 1,

then λ1 < 1 is equivalent to
1− βU1 > −1,
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i.e.,
0 < α− cγ

δ
< 1 + ln 2.

limn→+∞
[
x(n)− x1(n)

]
= 0 has been proved. Hence, this ends the proof of Theorem 10.

2.4. Bifurcation Analysis

In this subsection, we analyze the existence of flip bifurcation at fixed point E1(
α
β , 0),

E2(0, γ
δ ) and E∗3 (x∗3 , γ

δ ) by using the central manifold and bifurcation theory [40,41].

2.4.1. Flip Bifurcation at E1(
α
β , 0) and E2(0, γ

δ )

Firstly, conclusion (3) of Theorem 4 tells us that if α = 2 holds, one of the eigenvalues of
fixed point E1(

α
β , 0) is −1, and the other eigenvalues are neither 1 nor −1. These conditions

imply that all parameters belong to the following collection:

FA =
{
(α, β) : α = 2, β > 0

}
.

Since the central manifold of system (3) at E1(
α
β , 0) is y = 0, and it restricted to this

central manifold is as follows:

xn+1 = f (xn) = xn exp
(
α− βxn

)
.

f ′( α
β ) = −1 can be calculated quickly. Hence, E1(

α
β , 0) can experience flip bifurcation when

the parameters are varied in a small range of FA. The image is shown in Figure 1a.
In the same way, suppose that all of the parameters are in the following set, based on

conclusion (4) of Theorem 5:

FB =
{
(γ, δ) : γ = 2, δ > 0

}
.

We may conclude that when the parameters change in the small neighborhood of FB,
flip bifurcation occurs at the fixed point E2(0, γ

δ ). The reason seems to be that at E2(0, γ
δ ),

the central manifold of system (3) is x = 0 and the mode of system (3) constrained to this
center manifold is as follows:

yn+1 = g(yn) = yn exp
(
γ− δyn

)
,

then we have g′( γ
δ ) = −1. The image is presented in Figure 1b.

(a) (b)

Figure 1. We perceive the parameter values as α ∈ [1, 4], γ ∈ [1, 4], β = 0.4, δ = 2 with initial
value (x0, y0) = (0.15, 0.2). (a) Flip bifurcation diagrams of E1(

α
β , 0); (b) flip bifurcation diagrams

of E2(0, γ
δ ).
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2.4.2. Flip Bifurcation at E∗3 (x∗3 , γ
δ )

From Theorem 6, system (3) at the positive fixed point E∗3 (x∗3 , γ
δ ) undergoes flip bifur-

cation if the condition of (α, β, c0, γ, δ) ∈ ΩFB1 is satisfied and

ΩFB1 :=
{(

α, β, c0, γ, δ
)

: c0 =
(α− 2)δ

γ
, γ 6= 2, α > 2, β, γ, δ > 0

}
.

Assuming that η be a small bifurcation parameter such that ‖η‖ � 1, then (3) can be
expressed by the following two-dimensional map: x

y

→
 x exp

(
α− βx− (c0 + η)y

)
y exp

(
γ− δy

)
. (14)

One can see that the mapping (14) has a unique positive fixed point (x∗, y∗) =(
αδ−(c0+η)γ

βδ , γ
δ

)
. By choosing u = x− x∗, v = y− y∗, (14) is transferred to

 u

v

→
 −1

2δ(2− α)

βγ

0 1− γ

 u

v

+

 f1(u, v, η)

g1(u, v, η)

, (15)

here

f1(u, v, η) = z110uv + z101uη + z020v2 + z011vη + z300u3 + z201u2η + z120uv2

+ z111uvη + z030v3 + z021v2η + z012vη2 + O
(
(|u|+ |v|+ |η|)4),

g1(u, v, η) = (
δγ

2
− δ)v2 + (−γδ2

6
+

δ2

2
)v3 + O

(
(|u|+ |v|+ |η|)4),

and

z110 =
(α− 2)δ

γ
, z101 =

γ

δ
, z020 =

(α− 2)2δ2

βγ2 , z011 =
α− 4

β
,

z300 =
β2

6
, z201 = − βγ

2δ
, z120 = − (α− 2)2δ2

2γ2 , z111 = 3− α,

z030 = − (α− 2)3δ3

3βγ3 , z021 =
(2− α)(α− 6)δ

2βγ
, z012 =

γ

βδ
.

Next, we utilize the following transformation: u

v

 =

 2δ(α− 2)
βγ

2δ(α− 2)
βγ

0 1− γ

 u1

v1

.

Equation (15) can be written as u1

v1

→
 −1 0

0 1− γ

 u1

v1

+

 f2(u1, v1, η)

g2(u1, v1, η)

, (16)
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where

f2(u1, v1, η) = s110uv + s101uη + s020v2 + s011vη + s300u3 + s201u2η + s120uv2

+ s111uvη + s030v3 + s021v2η + s012vη2 + O
(
(|u|+ |v|+ |η|)4),

g2(u1, v1, η) = − δ

2
v2 +

(γ− 3)δ2

6(γ− 2)
v3 + O

(
(|u|+ |v|+ |η|)4),

and

s110 = − β

2
, s101 =

βγ2

2(2− α)δ2 , s020 =
(2− α + γ)δ

2γ
, s011 =

(4− α)γ

2(α− 2)δ
,

s300 =
β3γ

12(2− α)δ
, s201 =

β2γ2

4(α− 2)δ2 , s120 =
(α− 2)βδ

4γ
, s111 =

(α− 3)βγ

2(α− 2)δ
,

s030 =
δ2(−α2γ + γ3 + 2α2 + 4αγ− 3γ2 − 8α− 4γ + 8)

6(2− γ)γ2 , s012 =
γ2

2(2− α)δ2 ,

s021 =
α− 6

4
, u =

2(α− 2)δ
βγ

(u1 + v1), v = (2− γ)v1.

According to the central manifold theorem, suppose that an approximate representa-
tion of the central manifold Wc

1(0, 0, 0) is as follows.

Wc
1(0, 0, 0) =

{(
u1, v1, η

)
: v1 = ψ(u1, η), ψ(0, 0) = 0, Dψ(0, 0) = 0

}
,

where
ψ(u1, η) = h1u2

1 + h2u1η + h3η2 + O
(
(|u1|+ |η|)3). (17)

Applying (16) to both sides of v1 = ψ(u1, η) synchronously, we have

(1− γ)v1 + g2
(
u1, ψ(u1, η), η

)
= h1

[
−u1 + f2

(
u1, ψ(u1, η), η

)]2
+h3η2

+ h2
[
−u1 + f2

(
u1, ψ(u1, η), η

)]
η + O

(
(|u1|+ |η|)3).

By comparing the coefficients in the formula above, we obtain h1 = h2 = h3 = 0.
Therefore, the following expression can be easily computed:

F∗ : u1 → −u1 +
γ

δ
u1η +

2δ2(α− 2)2

3γ2 u3
1 + u2

1η + O
(
(|u1|+ |η|)3).

To ensure that the two discriminatory quantities τ1 and τ2 are non-zero, where

τ1 =
(

F∗u1η +
1
2

F∗η F∗u1u1

)
|(u1,η)=(0,0) = 1 +

γ

δ
,

τ2 =
(1

6
F∗u1u1u1

+ (
1
2

F∗u1u1
)2)|(u1,η)=(0,0) =

2δ2(α− 2)2

3γ2 .

Therefore, the result below is correct.

Theorem 11. If (α, β, c0, γ, δ) ∈ ΩFB1, then the model (3) undergoes flip bifurcation at
E∗3 (x∗3 , γ

δ ) when the parameter η varies in the small neighborhood of origin. Moreover, the period-2
point is attracting due to τ2 > 0.
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3. Dynamics and Bifurcation of System (4)

In this section, we consider the stability of all possible fixed points and bifurcations
of system (4). Moreover, we implement a hybrid control strategy of state feedback and
parameter perturbation to control the flip bifurcation.

3.1. Analysis of Fixed Points

Now, we need to solve the following equation: x = x exp
(
α− βx− c(1− k)y

)
,

y = y exp
(
γ− δy

)
.

(18)

By a simple analysis, we obtain the following theorem.

Theorem 12. For any positive parameters,

(1) system (4) has three boundary fixed points O, E1, and E2, where O, E1, and E2 are defined as
Theorem 2.

(2) if 0 < c < αδ
(1−k)γ , system (4) has only one positive fixed point E∗(x∗∗, γ

δ ), where x∗∗ =
αδ−c(1−k)γ

βδ .

Next, we analyze the local stability of fixed points. The Jacobian matrix of system (4)
at the fixed point Q(x, y) is expressed as:

J(Q) =

( (
1− βx

)
M∗ −c(1− k)xM∗

0
(
1− δy

)
N∗

)
, (19)

where M∗ = exp
(
α− βx− c(1− k)y

)
, N∗ = exp

(
γ− δy

)
.

The local stability analysis of O and E1 are consistent with Theorems 3 and 4. Noting
that Jacobian matrix of (19) evaluated at E1 is

J(E1) =

 1− α − c(1− k)α
β

0 eγ

,

which is different from the previous one.
At the boundary fixed point E2, the Jacobian matrix takes the form of

J(E2) =

(
eα− cγ(1−k)

δ 0
0 1− γ

)
,

with eigenvalues λ1 = eα− cγ(1−k)
δ > 0 and λ2 = 1− γ < 1. Since

α− cγ(1− k)
δ


> 0 if 0 < c < αδ

(1−k)γ ,

= 0 if c = αδ
(1−k)γ ,

< 0 if c > αδ
(1−k)γ .

One can get the following conclusion.

Theorem 13. The local stability property of E2(0, γ
δ ) is discussed as follows:

(1) It is a sink if and only if c > αδ
(1−k)γ , 0 < γ < 2;

(2) It is a source if and only if 0 < c < αδ
(1−k)γ , γ > 2;

(3) It is non-hyperbolic if and only if γ = 2 or c = αδ
(1−k)γ ;

(4) It is a saddle for the other values of parameters except for those values in (1)–(3).



Axioms 2022, 11, 365 12 of 22

The Jacobian matrix of (19) computed at the positive fixed point E∗(x∗∗, γ
δ ) is

J(E∗) =

 1− αδ− c(1− k)γ
δ

− c(1− k)
(

αδ− c(1− k)γ
βδ

)
0 1− γ

.

The two eigenvalues of J(E∗) are λ1 = 1− αδ−c(1−k)γ
δ < 1 and λ2 = 1− γ < 1. Note

that if 0 < c < αδ
(1−k)γ and α > 2, then

1− αδ− c(1− k)γ
δ


∈ (−1, 1) if (α−2)δ

(1−k)γ < c < αδ
(1−k)γ ,

= −1 if c = (α−2)δ
(1−k)γ ,

< −1 if 0 < c < (α−2)δ
(1−k)γ .

If 0 < α < 2 and 0 < c < αδ
(1−k)γ hold, then 1− αδ−c(1−k)γ

δ ∈ (−1, 1). Therefore, we
state directly the following theorem.

Theorem 14. Assuming 0 < c < αδ
(1−k)γ , the topological classifications of the unique positive fixed

point E∗(x∗∗, γ
δ ) is given by Table 2.

Table 2. Topological types of the fixed point E∗(x∗∗, γ
δ ).

Conditions Case

0 < γ < 2 sink

0 < α ≤ 2 0 < c < αδ
(1−k)γ γ > 2 saddle

γ = 2 non-hyperbolic

0 < γ < 2 sink
(α−2)δ
(1−k)γ < c < αδ

(1−k)γ
γ > 2 saddle

γ = 2 non-hyperbolic

0 < γ < 2 saddle

α > 2 0 < c < (α−2)δ
(1−k)γ

γ > 2 source

γ = 2 non-hyperbolic

0 < γ < 2 non-hyperbolic

c = (α−2)δ
(1−k)γ

γ > 2 non-hyperbolic

γ = 2 is non-hyperbolic

It can be observed from Table 2 that when the Jacobian matrix has an eigenvalue
of −1, system (4) may experience flip bifurcation at E∗(x∗∗, γ

δ ). Next, we will study the
permanence of system (4).

3.2. Permanence

According to Lemmas 2 and 3, the second equation of (4) satisfies

m2 ≤ lim inf
n→+∞

y(n) ≤ lim sup
n→+∞

y(n) ≤ M2,

where

m2 =
γ exp(γ− δM2)

δ
, M2 =

exp(γ− 1
)

δ
. (20)

Thus, we establish the following permanence results for system (4).
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Theorem 15. The second population of system (4) is always persistent.

Theorem 16. If α > c(1− k)M2 holds, where M2 is defined by Equation (20), then system (4) is
always persistent.

Proof. From the condition of Theorem 16, for a sufficiently small positive number ε > 0
with α > c(1− k)(M2 + ε). According to Theorem 15, for the above ε > 0, there exists an
integer N3 > 0 such that if n > N3, then

m2 − ε < y(n) < M2 + ε. (21)

By combining Equation (21) with the first equation of (4), if n > N3, we have

x(n + 1) ≤ x(n) exp
{

α− c(1− k)(m2 − ε)− βx(n)
}

. (22)

Applying Lemma 2 to (22) leads to

lim sup
n→+∞

x(n) ≤ 1
β

exp
{

α− c(1− k)(m2 − ε)− 1
}

. (23)

Let ε→ 0, (23) becomes

lim sup
n→+∞

x(n) ≤ 1
β

exp
{

α− c(1− k)m2 − 1
}

:= M1. (24)

Similarly, by combining Equation (21) with the first equation of (4), if n > N3, we have

x(n + 1) ≥ x(n) exp{α− c(1− k)(M2 + ε)− βx(n)}. (25)

Applying Lemma 3 to (25) leads to

lim inf
n→+∞

x(n) ≥ α− c(1− k)(M2 + ε)

β
exp

{
α− c(1− k)(M2 + ε)− βM1

}
. (26)

Let ε→ 0, (26) becomes

lim inf
n→+∞

x(n) ≥ α− c(1− k)M2

β
exp

{
α− c(1− k)M2 − βM1

}
:= m1. (27)

To sum up, (24), (27), and Theorem 15 show that system (4) is permanent.

3.3. Global Stability of Interior Fixed Point

In this subsection, using the method of iteration scheme, we consider the global
stability of interior fixed point E∗(x∗∗, γ

δ ). The following theorems can be directly obtained.

Theorem 17. Assume that 0 < γ < 2, (x(n), y(n)) is any positive solution of system (4), then

lim
n→∞

y(n) =
γ

δ
.

Next, we regard the following system

x2(n + 1) = x2(n) exp
(

α− c(1− k)γ
δ

− βx2(n)
)

, (28)

whose any positive solution is x2(n) =
αδ−c(1−k)γ

βδ . We obtain the following theorem.
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Theorem 18. Suppose that

0 < γ < 2, 0 < α− c(1− k)γ
δ

< ln 2 + 1, (29)

E∗(x∗∗, γ
δ ) is globally attractive, that is,

lim
n→+∞

[x(n)− x2(n)] = 0,

where x2(n) is any positive solution of system (28).

The proof process is similar to Theorem 10, so we omit it.
System (4) experiences the flip bifurcation at fixed points E1 and E2. See Section 2.4.1

for details. Next, we analyze the flip bifurcation at positive fixed point E∗(x∗∗, γ
δ ) of

system (4) by using central manifold theorem and bifurcation theory [40,41].

3.4. Bifurcation Analysis

The two eigenvalues of J(E∗) are λ1 = −1, |λ2| 6= 1, which leads to α > 2, c∗ = (α−2)δ
(1−k)γ

and γ 6= 2. It can be converted into the following set:

ΩFB2 :=
{(

α, β, c∗, γ, δ
)
: c∗ =

(α− 2)δ
(1− k)γ

, γ 6= 2, α > 2, 0 < k < 1, β, γ, δ > 0
}

.

We regard ξ as a new dependent variable parameter, where ξ = c− c∗, then (4) can be
written as: (

x
y

)
→
(

x exp
(

α− βx− (c∗ + ξ)(1− k)y
)

y exp
(
γ− δy

) )
. (30)

Next, choosing u2 = x− αδ−(c∗+ξ)(1−k)γ
βγ , v2 = y− γ

δ and expanding the Taylor series
around (u2, v2, ξ) = (0, 0, 0) to the third order, then (30) becomes

(
u2
v2

)
→

 −1
2δ(2− α)

βγ
0 1− γ

( u2
v2

)
+

(
f3(u2, v2, ξ)
g3(u2, v2, ξ)

)
, (31)

where

f3(u2, v2, ξ) = z110u2v2 + a101u2ξ + z020v2
2 + a011v2ξ + z300u3

2 + a201u2
2ξ + z120u2v2

2

+ a111u2v2ξ + z030v3
2 + a021v2

2ξ + a012v2ξ2 + O
(
(|u2|+ |v2|+ |ξ|)4),

g3(u2, v2, ξ) = (
δγ

2
− δ)v2

2 + (−γδ2

6
+

δ2

2
)v3

2 + O
(
(|u2|+ |v2|+ |ξ|)4),

and

a101 = (1− k)z101, a011 = (1− k)z011, a201 = (1− k)z201,

a111 = (1− k)z111, a021 = (1− k)z021, a012 = (1− k)2z012.

By using the transformation of (u2, v2) = T(u3, v3), where

T =

 2δ(α− 2)
βγ

2δ(α− 2)
βγ

0 1− γ

.
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Equation (31) can be represented as u3

v3

→
 −1 0

0 1− γ

 u3

v3

+

 f4(u3, v3, ξ)

g4(u3, v3, ξ)

,

where

f4(u3, v3, ξ) = s110u2v2 + b101u2ξ + s020v2
2 + b011v2ξ + s300u3

2 + b201u2
2ξ + s120u2v2

2

+ b111u2v2ξ + s030v3
2 + b021v2

2ξ + b012v2ξ2 + O
(
(|u2|+ |v2|+ |ξ|)4),

g4(u3, v3, ξ) = − δ

2
v2

2 +
(γ− 3)δ2

6(γ− 2)
v3

2 + O
(
(|u2|+ |v2|+ |ξ|)4),

and

b101 = (1− k)s101, b011 = (1− k)s011, b201 = (1− k)s201,

b111 = (1− k)s111, b021 = (1− k)s021, b012 = (1− k)2s012.

In addition, we have u2 = 2(α−2)δ
βγ (u3 + v3), v2 = (2 − γ)v3. Utilizing the center

manifold theorem, there exists a center manifold Wc
2(0, 0, 0), which can be approximately

expressed as

Wc
2(0, 0, 0) =

{(
u3, v3, ξ

)
: v3 = k1u2

3 + k2u3ξ + k3ξ2 + O
(
(|u3|+ |ξ|)3)},

for u3 and ξ sufficiently small. By a simple coefficient comparison, k1 = k2 = k3 = 0 can be
obtained quickly. Therefore, the following expression can be easily evaluated:

G∗ : u3 → −u3 +
γ

δ
u3ξ +

2δ2(α− 2)2

3γ2 u3
3 + (1− k)u2

3ξ + O
(
(|u3|+ |ξ|)4).

Consequently, the map G∗ undergoes a flip bifurcation if two discriminatory quantities
are satisfied v1 and v2 are non-zero, where

v1 =
(
G∗u3η +

1
2

G∗η G∗u3u3

)
|(u3,ξ)=(0,0) = 1 +

γ

δ
− k,

v2 =
(1

6
G∗u3u3u3

+ (
1
2

G∗u3u3
)2)|(u3,ξ)=(0,0) =

2δ2(α− 2)2

3γ2 .

Note that (α, β, c∗, γ, δ) ∈ ΩFB2, it can be testified that v1 > 0 and v2 > 0. Therefore,
we have the following theorem.

Theorem 19. If (α, β, c∗, γ, δ) ∈ ΩFB2, then system (4) experiences flip bifurcation at
E∗(x∗∗, γ

δ ) when the parameter ξ varies in the small neighborhood of origin. Since v2 > 0,
the period-2 points that bifurcate from E∗(x∗∗, γ

δ ) are stable.

3.5. Chaos Control

The hybrid control method [42] is a common strategy to control the bifurcation and
chaotic behavior of the discrete-time model. The main contribution of this subsection is to
control the flip bifurcation by using a hybrid control method.

For the application of the hybrid control method, system (4) can be written in the
following form: {

xn+1 = ρxn exp
(
α− βxn − c(1− k)yn

)
+(1− ρ)xn,

yn+1 = ρyn exp
(
γ− δyn

)
+(1− ρ)yn,

(32)
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where 0 < ρ < 1. The Jacobian matrix of (32) is evaluated at the positive fixed point
E∗(x∗∗, γ

δ ) as follows:

J(E∗) =

 1−
ρ
(
αδ− c(1− k)γ

)
δ

−
ρc(1− k)

(
αδ− c(1− k)γ

)
βδ

0 1− ργ

. (33)

One can see that the eigenvalues of J(E∗) are λ1 = 1− ρ
(

αδ−c(1−k)γ
)

δ < 1 and λ2 =
1− ργ < 1. Hence we obtain the following theorem:

Theorem 20. The positive fixed point (x∗∗, γ
δ ) of the controlled system (33) is locally asymptotically

stable if and only if

0 < ρ < min
{

2
γ

,
2δ

αδ− c(1− k)γ
, 1
}

.

4. Numerical Examples and Discussions

In this section, our purpose is to demonstrate the viability of the above main results.
We run numerical simulations of systems (3) and (4), including bifurcation diagrams, phase
diagrams, maximum Lyapunov exponents, etc.

Example 1. The change in the dynamical behavior of system (3) is illustrated by varying the
parameters α (the intrinsic growth rate of x) and γ (the intrinsic growth rate of y). The parameter
values of system (3) are as follows:

(a) Varying c in range 0 < c < 3, and fixing α = 1.5, β = 0.4, γ = 1.5, δ = 2;
(b) Varying c in range 0 < c < 2, and fixing α = 1.5, β = 0.4, γ = 2.5, δ = 2;
(c) Varying c in range 0 < c < 6, and fixing α = 4, β = 0.4, γ = 1.5, δ = 2;
(d) Varying c in range 0 < c < 4, and fixing α = 4, β = 0.4, γ = 2.5, δ = 2.

From Figure 2a, one can see that system (3) has only one positive fixed point E∗3 (−1.875c +
3.75, 0.75) when 0 < c < 2, and this point is stable. If c > 2, there has no positive fixed point.
We see from Figure 2b that there has a unique positive fixed point E∗3 (−3.125c + 3.75, 0.75) when
0 < c < 1.2, but it is unstable. If c > 1.2 holds, system (3) does not have positive fixed point. The
above results support Theorems 2 and 6. We also know that flip bifurcation occurs at E∗3 (5, 0.75) for
c0 = 2.667 (see Figure 2c for the bifurcation diagram). Moreover, τ1 = 1.75, τ2 = 4.741 can be
easily calculated, and the period-2 point is attracting due to τ2 > 0. Note that if c > 5.333, there
has no positive fixed point. From Figure 2d, if c > 3.2, system (3) has no positive fixed point, and
E∗3 (−3.125c+ 10, 1.25) is unstable when c ∈ (0, 3.2). According to the numerical simulation above,
we believe that the internal growth rate of the second population plays a decisive role in the stability
of system (3). Furthermore, setting the parameter values as α = 4, β = 0.4, c = 4, γ = 1.5, δ = 2
with the same initial value (x0, y0) = (0.15, 0.2). From the conditions of Theorems 10 and 18, the
only one interior fixed point E∗3 (2.5, 0.75) and E∗∗(4.75, 0.75) are globally stable. The image is
shown in Figure 3.



Axioms 2022, 11, 365 17 of 22

(a) (b)

(c) (d)

Figure 2. Bifurcation diagrams of system (3). (a) α = 1.5, β = 0.4, γ = 1.5, δ = 2, 0 < c < 3;
(b) α = 1.5, β = 0.4, γ = 2.5, δ = 2, 0 < c < 2; (c) α = 4, β = 0.4, γ = 1.5, δ = 2, 0 < c < 6;
(d) α = 4, β = 0.4, γ = 2.5, δ = 2, 0 < c < 4.

(a) (b)

Figure 3. The stability of interior fixed point of systems (3) and (4), respectively. (a) k = 0; (b) k = 0.3.

Example 2. Next, taking k = 0.5 with initial value (x0, y0) = (0.15, 0.2) and other parameter
values of system (4) are as follows:

(e) Varying c in range −4 < c < 4, and fixing α = 1.5, β = 0.4, γ = 1.5, δ = 2;
(f) Varying c in range −4 < c < 4, and fixing α = 1.5, β = 0.4, γ = 2.5, δ = 2;
(g) Varying c in range 0 < c < 8, and fixing α = 4, β = 0.4, γ = 1.5, δ = 2;
(h) Varying c in range 0 < c < 8, and fixing α = 4, β = 0.4, γ = 2.5, δ = 2.

For case (e), from Theorem 12, one can see that system (4) has no positive fixed point if
c > 4, conversely, if 0 < c < 4 is true, E∗∗(3.75 − 0.9375c, 0.75) is a sink. The image is
depicted in Figure 4a. For case (f), when 0 < c < 2.4, system (4) has a unique positive fixed
point E∗∗(3.75− 1.5625c, 1.25), but it is unstable. When c > 1.2, there is no positive fixed point.
Refer to Figure 4b for details. For case (g), there exists flip bifurcation at E∗∗(5, 0.75) around
c∗ = 5.333. Furthermore, v1 = 1.25, v2 = 4.4741 > 0 can be easily calculated, then we can
infer that the period-2 point is attracting by Theorem 19. The flip bifurcation diagram is shown in
Figure 4c. For case (h), when c > 6.4, system (4) has no positive fixed point. If 0 < c < 6.4 exists,
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(x∗∗, γ
δ ) = (10− 1.5625c, 1.25) can be easily calculated while it is unstable. The image is shown

in Figure 4d.
Consistent with the results of Example 1, this example again verifies the effect of the internal

growth rate of population y on the stability of system (4). Moreover, a significant finding can be
observed: cover can increase the densities of the first species x, and thus reduce the chance of the
extinction of the first species x. Note that in Figure 4a,b, the dynamic behavior is also very complex,
which is worthy of further exploration in the future (c < 0 means that y has a favorable effect on x).

(a) (b)

(c) (d)

Figure 4. Bifurcation diagrams of system (4). (a) (α, β, γ, δ) = (1.5, 0.4, 1.5, 2),−4 < c < 4;
(b) (α, β, γ, δ) = (1.5, 0.4, 2.5, 2),−4 < c < 4; (c) (α, β, γ, δ) = (4, 0.4, 1.5, 2), 0 < c < 8;
(d) (α, β, γ, δ) = (4, 0.4, 2.5, 2), 0 < c < 8.

Example 3. To better illustrate the role of cover on the first species, we chose k as the bifurcation
parameter with initial value x0 = 0.15, y0 = 0.2. We consider the following two cases.

(i) Fixing the parameters (α, β, c, γ, δ) = (4, 0.4, 4, 1.5, 2);
(j) Fixing the parameters (α, β, c, γ, δ) = (4, 0.4, 4, 2.5, 2).

This example again validates the findings of the previous two examples. It is worth mentioning
that when other conditions remain unchanged, the refuge is too large, which is not conducive to
the stability of the population from Figure 5a,b. Furthermore, system (4) at the positive fixed point
E∗∗(x∗∗, γ

δ ) experiences flip bifurcation. Figure 5 also shows periodic-2, 4, 8 orbits. The maximum
Lyapunov exponent is shown in Figure 5c.

Example 4. For the parametric values (α, β, γ, c, δ, k) = (4, 0.4, 4, 1.5, 2, 0.8) with initial value
x0 = 0.15, y0 = 0.2, the controlled system (32) can be written asxn+1 = ρxn exp

(
4− 0.4xn − 4(1− 0.8)yn

)
+ (1− ρ)xn,

yn+1 = ρyn exp
(
1.5− 2yn

)
+ (1− ρ)yn,

(34)

then controlled system (34) has unique positive steady-state (x∗∗, y∗) = (8.5, 0.75). Based on
Theorem 20, E∗∗ is locally asymptotically stable if 0 < ρ ≤ 0.58. Moreover, E∗∗ is unstable when
ρ ∈ [0.59, 1). Figure 6 agrees with this, where ρ = 0.58 in Figure 6a and ρ = 0.59 in Figure 6b.
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(a) (α, β, c, γ, δ) = (4, 0.4, 4, 1.5, 2) (b) (α, β, c, γ, δ) = (4, 0.4, 4, 2.5, 2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

-2

-1.5
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0

0.5

1

ML
E

(c) (α, β, c, γ, δ) = (4, 0.4, 4, 1.5, 2)

Figure 5. (a,b) Bifurcation diagrams of system (4); (c) the maximum Lyapunov exponent of the
positive fixed point of system (4).
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Figure 6. Time series of the first species for the controlled system (32) with different ρ. (a) ρ = 0.58;
(b) ρ = 0.59.

5. Summary and Discussion

During the past two decades, amensalism systems have been investigated by several
mathematicians, ecologists, and biologists due to their applications to biomathematics.
However, discrete amensalism systems have not yet received sufficient attention from
researchers. In this paper, we proposed a discrete amensalism system with a cover for the
first species.

Firstly, we obtained the discrete model by using the method of piecewise constant
argument. The dynamic behavior of discrete-time amensalism systems (3) and (4) are
analyzed in detail. It is proved that the two discrete models considered have the same
fixed points as their corresponding continuous models. However, the dynamic behaviors
of systems (2) and (4) are quite different.

(1) In system (2), Theorem 1 (2) in the Section 1 shows that if the positive equilibrium
exists, it is globally stable. This means for any positive initial condition, the solution
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will eventually approach this equilibrium. However, for the discrete system (4), noting
that exp{x− 1} > x for x > 0 always holds, hence

α > c(1− k)M = c(1− k)
exp{γ− 1}

δ
> c(1− k)

γ

δ
. (35)

That is, under more restricted conditions than that of Theorem 1 (2), we could only
obtain the permanence result (see Theorem 16).

(2) Since system (4) allows only one positive equilibrium, and under more restricted
conditions we could only obtain the permanence result, it is natural and important to
find out the conditions which guarantee the global attractivity of positive equilibrium.
By developing the analysis technique of Chen [38] and Li and Chen [39], we finally
obtained a set of sufficient conditions for the global attractivity of the positive equilib-
rium (see Theorem 18). The condition seems to be the best one, since for single species
discrete model

yn+1 = yn exp{γ− δyn}. (36)

0 < γ < 2 is the best condition to ensure the global attractivity of the positive
equilibrium, and with the increasing of γ, the system may have a 2, 4, 8, . . . period
solution, and finally leads to chaos.

(3) Systems (3) and (4) have three boundary fixed points and at most one interior fixed
point. The topological types of their fixed points are completely classified. It seems that
the local stability property of the equilibria becomes complicated. There are three cases
about the stability of E2 and E∗∗. Here, the topological types of E1, E2, and E∗∗(x∗∗, γ

δ )
can be found in Theorems 4, 13, and 14, respectively. Moreover, compared with the
system (2), we confirm that system (4) experiences flip bifurcation at two boundary
fixed point E1(

α
β , 0), E2(0, γ

δ ) and the positive fixed point E∗∗(x∗∗, γ
δ ) separately.

The above results show that we have good reasons to believe that the dynamic behavior
of the discrete-time model is richer than that of the continuous-time model. In the end,
a hybrid control strategy is implemented to control the flip bifurcation. The theoretical
results of this paper are supported by numerical simulation, which also indicates some
exciting outcomes:

(I) We conclude that, for some fixed parameter values, the intrinsic growth rate of the
second population plays a major role in the stable coexistence of two species, which
is supported by numerical simulations in Examples 1 and 2. This is a novel finding
compared with the previous research results [22].

(II) Based on Theorem 14 of this paper, one can deduce that 0 < α ≤ 2, 1− αδ
cγ < k <

1, 0 < γ < 2 or α > 2, 1− αδ
cγ < k < 1− (α−2)δ

cγ , 0 < γ < 2 holds, two species reach
stable coexistence in the system (4). This conclusion is different from the results of
Xie, Chen, and He [22].

(III) With the change of cover intensity of the first population, system (4) experienced
interesting and complex dynamic characteristics, including population stable coexis-
tence, multiple invariant closed orbits in different chaotic regions, and the onset of
chaos suddenly. According to Figure 5, one can observe that the k value is small, it is
conducive to the stability of the first population. However, it may destabilize the first
population causing more complex dynamical behaviors when the k value exceeds a
certain threshold.

At the end of the paper, we would like to mention that one of the reviewers argued
that “I am not sure that it has been observed in that kind of systems, in nature”. Though
the phenomenon of amensalism is very common in nature, it seems that biologists have
done little work in this direction, and it is really a difficult thing for us to find out suitable
examples in nature. However, we found from Baidu Baike that “Although Brazil nut tree
is tall, it also has the object of being defeated—strangled banyan. The seeds of banyan
tree first settled on the branches of Brazil nut tree, and then grew up day by day. Vines
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that strangled banyan slowly wrapped around Brazil nut tree while absorbing nutrients.
After several years, the nut tree was only an empty shell.” (https://baike.baidu.com/item/
%E5%B7%B4%E8%A5%BF%E6%A0%97/6802281?qq-pf-to=pcqq.c2c, accessed on 22 July
2022). In other words, banyan trees are harmful to Brazil nut trees. We believe that the
relationship between these two trees is amensalism, since the Brazil nut tree is extremely
useful to human beings, and humans will naturally deal with banyan trees, which can
limit the impact of banyan trees to a controllable range. We consider this may be a possible
suitable example, however, we need some more detailed data to support our conjecture. At
present, we fail to do so.
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