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Abstract: Although the idea of evaluating students’ mathematical knowledge with fuzzy logic is not
new in the literature, few studies have explored the possibility of assessing students’ mathematical
knowledge by combining teacher-assigned grades (i.e., school grades) with students’ achievements
on standardized tests (e.g., national assessments). Thus, the present study aims to investigate
the use of fuzzy logic to generate a novel assessment model, which combines teacher-assigned
mathematics grades with students’ results on the Italian National Assessment of Mathematical
Knowledge (INVALSI). We expanded the findings from previous works by considering a larger
sample, which included more than 90,000 students attending grades 8, 10, and 13. The results showed
that the tested model led to a lower assessment score compared to the traditional grading method
based on teacher’s evaluation. Additionally, the use of fuzzy logic across the examined school levels
yielded similar results, suggesting that the model is adequate among different educational levels.
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1. Introduction

The assessment of students’ knowledge is one of the most important components
of the pedagogical process [1], as it provides educators, students, and their parents with
important feedback information on learners’ knowledge, skills, and competencies [2].
In recent decades, several researchers [3–14] have studied the possibility of evaluating
students’ knowledge with fuzzy logic.

Fuzzy logic is based on the fuzzy set theory introduced by the Iranian mathematician
Lofti A. Zadeh in 1965 [15]. This type of logic provides a significant addition to standard
logic since its applications are wide-ranging and it offers the possibility of modeling under
conditions of imprecision [3,4], for example in engineering [16], science [17], economics [18],
medicine [19], and psychology [20]. Despite its name, which may recall an imprecise,
hazy, or even false mathematical theory, fuzzy logic operates on the basis of precise and
rigorous mathematical rules [21]. In real-life situations, fuzzy logic could be used to
construct mathematical solutions of problems, which are expressed in natural language and
characterized by a degree of vagueness and/or uncertainty [3]. Fuzzy logic refers to the
ability to calculate with words; additionally, it provides mathematical strength to emulate
several linguistic attributes associated with human cognition [4].

Precisely because fuzzy logic tackles operating with inaccurate data, some research [3–14]
has proposed its use for the purpose of assessing students’ knowledge and competencies.
In particular, teacher-given grades are usually based on verbal judgements. For instance,
in Italy, where grades range from 1 to 10, grade “10” corresponds to “excellent”, while
grade “6” means “sufficient”. In addition, teacher-given grades can include several factors
that contribute to the final grading, such as students’ academic knowledge [5], their class
attendance [8], achievements obtained in different exams [7], students’ lab work [6], etc.
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Fuzzy logic, therefore, represents a mathematical tool which educators and researchers can
use to combine multiple verbal and imprecise variables.

The present paper aims to explore how fuzzy logic can be used to evaluate students’
mathematical knowledge, specifically by combining their school grades (i.e., teacher-given
grades) with their achievements on a standardized mathematics test, namely the Italian
National Assessment of Mathematical knowledge INVALSI. The topic on how to combine
teacher-given grades with their performance on standardized tests is still developing.
Therefore, with the present paper, we want to contribute to the literature by comparing
the traditional method of assessing students’ mathematical knowledge (i.e., teacher-given
grades) with the fuzzy logic model.

In the paper, we will first present some basic definitions regarding fuzzy logic and
then a review of the literature on using fuzzy logic for student’s evaluation. A detailed
description of the adopted methodology and the obtained results will follow. Finally, the
results will be discussed and implication for practice will be presented.

2. Related Works
2.1. Basic Definitions

A basics concept of fuzzy logic is the fuzzy set [9]. A fuzzy set is a set A in a uni-
versal set X, defined as a set of pairs A = {(x, µA(x)) : x ∈ X}, where µA : X → [0, 1] is
a mapping called “membership function” of the fuzzy set A, and µA(x) is the degree of
belongingness (or degree of membership) of element x ∈ X in the fuzzy set A.

Among the most used membership functions, we focus on the triangular, trape-
zoidal, and Gaussian membership functions. Due to the simple formula and compu-
tational efficiency, the triangular and trapezoidal membership functions are among the
most popular in fuzzy logic applications [9] and have been widely used in evaluating
students’ academic achievement [22]. On the other hand, the Gaussian membership func-
tion is the most adequate to represent uncertainty in the measurements [23] and some
authors [24,25] have suggested that it is the most suitable for improving the reliability and
robustness of the evaluation of student systems. The triangular function (for a < b < c)
is defined as follows [9,22]:

Tri(x, a, b, c) =


0 x ≤ a, x ≥ c

x−a
b−a a < x < b
c−x
c−b b ≤ x < c

. (1)

The trapezoidal membership function (for a < b < c < d) is defined as follows [9,17]:

Trap(x, a, b, c, d) =


0 x ≤ a, x ≥ d
x−a
b−a a < x ≤ b
1 b < x ≤ c

d−x
d−c c < x ≤ d

. (2)

The Gaussian membership function (for two parameters µ and σ) is defined as
follows [18]:

Gauss(x, µ, σ) = e−
(x−µ)2

2σ2 . (3)

Fuzzy logic consists of three main components [3,6,21]: (i) the fuzzification process,
(ii) decision-making based on fuzzy rules and (iii) the defuzzification process (Figure 1).
Fuzzification is the process in which crisp (i.e., clear) terms and data are transformed into a
fuzzy set. This process is determined by the membership functions, which are applied to
the crisp values of the variables to determine their membership factor in the fuzzy set. The
fuzzification process allows us to express inputs and outputs in linguistic terms. Decision-
making (i.e., the inference process) consists in defying the rules, which will determine the
fuzzy output information. The inference rules are logical sequences of the IF-THEN form.
They are defined by the user based on their experience [25]. The result of the inference



Axioms 2022, 11, 359 3 of 20

phase must be then converted back into crisp data. This process is called defuzzification.
There are several ways to defuzzify the data. Among the most used ones, there are the
Mean of Maximum (MoM) and the Center of Gravity (CoG) [25]. The MoM method is
given by the following:

MoM(A) =
1
|T| × ∑

x∈T
x, (4)

where T is the set of all elements x ∈ X, for which µA(x) has the maximum degree of
membership and |T| is its cardinality. The CoG for continuous values of x is defined as:

CoG(A) =

∫
µA(x)× x dx∫

µA(x) dx
. (5)
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2.2. The Usage of Fuzzy Logic in Education

In education, teachers often face a situation of vagueness when evaluating students’
knowledge, so fuzzy logic offers many applications to partially solve this issue [3]. Several
applications of the fuzzy logic have been proposed in the past. For instance, the study by
Sripan and Suksawat [4] aimed to investigate the use of fuzzy logic to evaluate students’
knowledge by combining their scores on a test and the time to solve it. They experimented
the proposed model with 26 students and found that students’ traditional grades and their
fuzzy grades were similar, but fuzzy logic represented an effective method for classifying
student learning groups based on their performance and real-time implementation.

In the research by Gokmen and colleagues [6], the authors focused on generating
students’ grades by considering two input values, i.e., their performance in two exams.
They tested their model on 20 students and contrary to the previously mentioned study [4],
they found a difference in the grades obtained with the classical assessment method and
the fuzzy logic method. They concluded that fuzzy logic has greater flexibility, however
the evaluation criteria are difficult to explain to students. Similar conclusions are presented
by Petrudi and colleagues [7], who aimed to assess students’ knowledge by considering
the performance on three exams, one of which was practical. The findings revealed that
the fuzzy logic evaluation method lowered the grades of better performing students and
conversely, increased the grades of lower performing students.

Saliu [26] developed a student knowledge assessment model by considering various
factors that could influence students’ final performance, such as the originality of students’
work. The author tested the model on a sample of 33 students and found no significant
differences between the classic evaluation method and the fuzzy logic one.

Namli and Şenkal [9] proposed a model for assessing students’ knowledge by consid-
ering their grades and class attendance. The researchers found that student assessment
with fuzzy logic did not significantly differ from the traditional assessment method.

Very few works have explored the possibility of using fuzzy logic on a larger scale, as
for example for assessing students’ knowledge by combining academic results with the
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results obtained in standardized tests. Recently, the work ref. [27] explored the possibility of
using fuzzy logic to evaluate students’ mathematical knowledge by merging both oral and
written students’ grades, and their results on the Italian national assessment. There were
2279 students from grade 13 involved in the tested model. The results indicated that stu-
dents’ grades generated by the fuzzy logic method (i.e., a combination of teacher-assigned
math grades and students’ performance on the INVALSI test) were significantly lower
than teacher-given grades. The study explored the differences in students’ achievement
between the four types of Italian high schools (i.e., scientific high schools, technical schools,
vocational schools, and other high schools), finding significant differences in final grades
between the four types of schools.

Considering the abovementioned studies, it can be noticed that the literature is ambiva-
lent and contrasting as to whether fuzzy logic is similar to traditional evaluation methods or
whether there are substantial differences between these assessment methods. Some papers
have found that fuzzy logic produces lower or higher grades than traditional evaluation
methods [6,7,27], while others have concluded that there are no significant differences
between the two methods [4,9,26]. Furthermore, the previously cited works tested the
models on relatively small samples of students and did not consider the possibility that
fuzzy logic could have different effects at different school levels, such as secondary or
high school. The present empirical research aims to address this gap in the literature by
examining the effects that fuzzy logic-based assessment model could have on a larger
sample of students considering the different school levels.

2.3. Research Aims

The aim of the current research is to develop and test a model for assessing students’
mathematical knowledge which considers both students’ academic achievements (i.e.,
mathematics grades assigned by the teacher) and their performance on the INVALSI
national assessment, and comparing it to the traditional assessment method (i.e., teacher-
given grades). In doing this, we aimed to broaden the existing studies on the application of
fuzzy logic for the assessment of students’ mathematical knowledge (e.g., [27]) by testing
it among a larger sample of participants, as well as considering different school levels,
particularly grades 8, 10, and 13. This would allow us to understand whether fuzzy logic-
based assessment method produces similar evaluations at different educational levels and
if it is therefore adequate for measuring math knowledge of younger and older students.

Thus, the research questions of the present study are the following:
RQ1: Is there any significant difference between the fuzzy logic evaluation method

(which considers the combination of teacher-assigned grades and students’ performance
on national assessment) of students’ math knowledge and the traditional one (based on
teacher-assigned grades) in students attending the 8th, 10th, and 13th grade?

RQ2: Is there any significant difference in the evaluation of students’ math knowledge
based on fuzzy method among school levels of the 8th, 10th, and 13th grade?

3. Materials and Methods
3.1. Methodology

The present study is a quantitative non-experimental empirical study. The nature of
the research is descriptive.

The diagram of the methodology is presented in Figure 2. The data about students’
teacher-given grades and their achievements on the national assessment of mathematics
INVALSI were retrieved from official data sources [28]. The data were then filtered to
remove the missing items (see also the Research sample subsection). The remaining data
were then combined using the fuzzy logic method, explained in detail in the Procedure
subsection. After the combined grade was produced in terms of fuzzy logic, the data were
analyzed with statistical tools.
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3.2. Data Collection

The data were obtained from the official web page of the Statistical Service [28], where
the following variables were available:

• Teacher-given grades on oral evaluations in mathematics;
• Teacher-given grades on written evaluations in mathematics;
• Scores on the national assessment INVALSI;
• Students’ gender.

We focused solely on these variables, since the aim of the research was to compare
the teacher-given grades with the fuzzy grades. The data about gender were used for
the description of the sample. Furthermore, since the data were collected directly by the
INVALSI Institute, they are considered a reliable source [29,30]. However, despite the
attention that the INVALSI institute places on collecting valid and reliable data, it must
be noted that there is still an almost negligible probability that these data contain some
small errors which could result from inattentive transcription of students’ written and
oral grades [31].

3.3. Data Filtering

From the official website of the Statistical Service [28], which includes data from
all Italian students who completed the INVALSI assessment, three samples of students
were retrieved. In particular, a sample of 29,675 students attending grade 8, a sample of
35,802 students from grade 10, and a sample of 36,589 students from grade 13. Students’
data referred to school year 2018–2019.

From the original samples, a total of 9801 students (9.6%) were deleted, since they
reported missing data on both teacher-given grades (oral and written grade). (Table 1).
In particular:

1. Grade 8: 619 students presented missing data on both teacher-given grades and were
therefore excluded from the analyses. The remaining sample consisted of students
who had at least one teacher-assigned grade (oral or written). We did not make any
distinction between oral or written grades, since in Italian middle school educational
system, students receive only one grade for mathematics, which refers to both oral
and written evaluations;

2. Grade 10: 3008 students were excluded due to missing data. The remaining sample
consisted of students who had at least one teacher-assigned grade. For the students
who had both oral and written grades, only the oral grade was considered, since it
includes a broader range of evaluations;

3. Grade 13: 6174 students presented missing data on both teacher-given grades. The
filtering procedure is the same as for grade 10.

Table 1. The three considered samples.

Grade Original Sample Final Sample % of Original Sample

8 29,675 29,056 97.9%
10 35,802 32,794 91.6%
13 36,589 30,415 83.1%

The gender distribution among the final samples is presented in Table 2. The partici-
pants’ age was not possible to retrieve.
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Table 2. The distribution of gender in the three samples.

Grade Gender Frequency (f ) Percentage Frequency (%f )

8
Male 14,983 51.6%

Female 14,073 48.4%

10
Male 15,663 47.8%

Female 17,131 52.2%

13
Male 14,785 48.6%

Female 15,630 51.4%

3.3.1. Teacher-Given Grades

In Italian secondary (i.e., middle school; grades 6–8) and high schools (grades 9–13), the
grades assigned by teachers are numerical and range from a minimum of 1 to a maximum
of 10, with 10 being the highest grade. Grades lower than 6 are “failing grades”, while
grades greater or equal to 6 are “passing grades” [32]. Several laws [32,33] establish that
the teacher of a certain subject suggests students’ final grade; however, the class councils
(i.e., all schoolteachers who teach in a given class) are in charge of accepting or modifying
the proposed grade.

For each subject, students’ knowledge can be assessed in three possible ways: (1) through
written and oral evaluations, (2) only written evaluations, or (3) only oral evaluations [33].
Written evaluations are obtained through more complex written tests, whereas oral evalua-
tions are assessments that consist of oral examinations, homework, project work, exercises,
or other shorter written tests. High school class councils determine the preferred assessing
method [32–34], which could result in students obtaining one (oral or written) or two
grades (oral and written) in each subject. In contrary, middle school students have only
one grade on their report cards (i.e., only one oral or written grade).

3.3.2. The INVALSI Test

Each school year, the INVALSI institute assesses the entire Italian student population
in the 2nd (average age 7 years), 5th (10 years old), 8th (13 years old), 10th (15 years old) and
from school year 2018–2019 also 13th (18 years old) grades. Students are thus required to
take the mandatory national standardized assessment of mathematical knowledge [32]. It
is a standardized assessment evaluating students’ knowledge of the mathematical contents
present in the National indications for the curriculum in the primary and secondary school [35]
(for secondary schools), and in the Indications for high schools [36] (for high schools). These
documents cover the themes that math teachers are required to teach in secondary and
high schools.

The national assessment INVALSI is composed of several questions, which vary each
year (normally around 30–45 items), and which can be closed or open ended. All students in
grades 8, 10, and 13 solve the computerized version of the test [32,37]. Moreover, questions
are automatically and randomly chosen from a database of questions, which decreases
the possibility of cheating. Since the chosen questions are equally difficult, the tests can
be considered equivalent and comparable [37]. The results obtained by students in the
INVALSI test are measured on a quantitative Rasch scale, where 200 is the mean and the
standard deviation is 40 [38,39]; a similar method is used by the PISA [40] and TIMSS [41]
evaluations. INVALSI tests are an objective measure of students’ knowledge [42].

3.4. Application of Fuzzy Logic

The model proposed for the evaluation of students’ mathematical knowledge is pre-
sented in Figure 3. The model considers two students’ attainments in mathematics, i.e.,
(1) teacher-given school grades (“School attainments”), and (2) their results on the national
assessment of mathematics (“INVALSI”). These crisp data are numerical values: school
attainments are ordinal data from 1 to 10, where “10” represents excellent grade, while the
INVALSI results are interval data, which are determined with the Rasch method by the
institute INVALSI. These data are then fuzzified (“Fuzzification”) using the membership
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functions we present in the following subsection. Fuzzified grades are combined by using
inference rules (“Inference rule”) which are defined in the following subsections: this per-
mits us to retrieve fuzzified combined grades. Such grades are then defuzzified following
the procedure depicted in the following subsections (“Defuzzification”) and final grades
are produced (“Final grade”).
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3.4.1. Fuzzification of Teacher-Given Grades

The fuzzification of students’ school (i.e., teacher-given) grades was performed using
input variables (on a discrete scale from a minimum of 1 to a maximum of 10) and their
membership functions of fuzzy sets. Each student had one school grade. Each input
variable has a triangle or trapezoidal membership functions (Table 3 and Figure 4).

Table 3. The used membership functions for the fuzzification of the teacher-given grades.

Level Membership Function

Very low (VL) Tri(x, 1, 1, 3)
Low (L) Tri(x, 1, 3, 5)

Medium (M) Trap(x, 3, 5, 6, 8)
High (H) Tri(x, 6, 8, 10)

Very high (VH) Tri(x, 8, 10, 10)
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3.4.2. Fuzzification of Students’ Attainments on the National Assessment INVALSI

Students’ scores on the national assessment of mathematical knowledge INVALSI are
interval data, thus the Gaussian membership function was preferred. Since the mean of
students’ attainments on the test is set to be around 200 and the standard deviation is 40,
we considered the Gaussian functions presented in Table 4 and Figure 5 [27].
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Table 4. Membership functions for the fuzzification of students’ attainments on the INVALSI test.

Level Membership Function

Very low (VL) Gauss(x, 120, 40)
Low (L) Gauss(x, 160, 40)

Medium (M) Gauss(x, 200, 40)
High (H) Gauss(x, 240, 40)

Very high (VH) Gauss(x, 280, 40)
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3.4.3. Rules and Inference

Inference rules are linguistic variables, also entitled “If-Then” rules. In Table 5 we
present the inference rules. The inference rules used are the same as in [7] with the following
differences [25]:

4. It is possible to have the “Very high” (VH) level only if both tests are very high (VH),
so the VH levels of [7] have been adapted to H;

5. High performance (H) on the INVALSI tests can only produce at least medium (M) ratings;
6. The final grade is high (H) only if both ratings are high (H) or one rating is very high

(VH) and the other is at least medium (M).

Table 5. Inference rules.

Teacher-Given Grades

VL L M H VH

INVALSI

VL VL VL L L M
L VL L L M M
M L L M M H
H M M M H H

VH M M H H VH

For instance, a student with a high teacher-given grade (H) and a low achievement (L)
on the INVALSI test gets a medium (M) final grade (M).

3.4.4. Defuzzification

The output variable, which is the overall students’ mathematical achievement, is
entitled “Final grade” and has five membership functions (Table 3 and Figure 4). After
completing the fuzzy inference, the fuzzy final grade has to be converted into a crisp value



Axioms 2022, 11, 359 9 of 20

through defuzzification. In the present study, the MoM method was applied. The surface
of the final grades is presented in Figure 6. All fuzzy grades (i.e., the output data) were
rounded to the nearest integer.
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Figure 6 presents the final grades obtained with the fuzzy logic method (“Final Grade”)
depending on the teacher-given grades (“Grade”) and students’ results on the INVALSI test
(“INVALSI”). Thus, Figure 6 represents the plot of the function FinalGrade(Grade, INVALSI).
For example, a student who has 2 in mathematics (insufficient) but did well in the IN-
VALSI test and got 300 points, has a final grade produced with the fuzzy logic of 5.50:
FinalGrade(2300) = 5.50, which is then rounded to 6.

3.5. Quantitative Analysis

Fuzzification, inference, and defuzzification were conducted with the “Fuzzy Logic
Toolbox” [43,44] (Figure 7) of the MATLAB R2020b [45]. Statistical analyses were performed
with the Jamovi [46] statistical software.
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Both descriptive and inferential statistical methods have been applied. Among the
descriptive statistical tools, frequencies, means, medians, and standard deviations were
computed. The Kolmogorov–Smirnov test was used to check for the normality of data,
which is reasonably sensitive to the characteristics of distribution, such as its dispersion,
shape, and location [47], and works best if the sample size is more than 50 [48]. Due to the
violation of the conditions of normality, non-parametric inference statistical tests were used
in order to lower the possibility of Type II error [49]. In particular, we used:

7. The Spearman’s ρ coefficient to compute the correlation between data [50,51], e.g.,
to what extent are teacher-given grades and fuzzy final grades correlated. The re-
quirement is that each variable is measured on at least ordinal scale; the usage of this
coefficient does not make any assumption regarding the distribution of the variables.

8. The Wilcoxon W signed-rank test for paired samples to check for differences between
two categories [52], e.g., the difference between the traditional and fuzzy final grades.
The assumptions of the test are that samples are random samples, which are mutually
independent, and that the measurement scale is at least ordinal.

9. The Kruskal–Wallis χ2-test to check for differences among three or more categories [53]
with the Dwass-Steel-Critchlow-Fligner (DSCF) post-hoc test, e.g., whether fuzzy final
grades differ among different teacher-given grades. The assumptions are similar to
those for the Wilcoxon test.

For the effect sizes, we used the ε2 coefficient [54] for the Kruskal–Wallis test and the
rank biserial correlation coefficient rrb [55] for the Wilcoxon test. Effect sizes lower than
0.10 are considered small, those around 0.25 are considered middle, and those greater than
0.40 are considered large [56,57].

4. Results
4.1. Differences between Classical and Fuzzy Logic Assessment
4.1.1. Grade 8

In Table 6, the descriptive statistics concerning teacher-given grades, students’ attainments
on the INVALSI test, and the fuzzy grade for students of grade 8 (n = 29,056) are presented.

Table 6. Descriptive statistics for 8th grade students.

Mathematics Grade INVALSI Fuzzy Grade

Mean 6.79 201 5.62
Standard deviation 1.42 38.5 1.78

Median 7 200 6
Minimum 3 66.5 1
Maximum 10 326 10

Skewness (SE) 0.160 (0.0144) 0.247 (0.0144) −0.0461 (0.0144)
Kurtosis (SE) −0.693 (0.0287) −0.0442 (0.0287) −0.390 (0.0287)

The Kolmogorov–Smirnov test for normality showed that teacher-given grades (KS = 0.128;
p < 0.001), INVALSI achievements (KS = 0.026; p < 0.001) and fuzzy grades (KS = 0.251; p < 0.001)
violate the assumption of normality. This justifies the use of non-parametric statistical tests.

The Wilcoxon test indicated that fuzzy grades are significantly lower than students’
mathematics grades (W = 1.96 × 108; p < 0.001) with a big effect size (rrb = 0.922).

The correlation analysis indicated that fuzzy grades are highly correlated both with
students’ mathematics grades (ρ = 0.693; p < 0.001) and with their scores on the INVALSI
test (ρ = 0.880; p < 0.001).

To have a better insight into how fuzzy grades were distributed among students with
different teacher-given mathematics grades, we constructed Table 7. The results indicate
that among the 613 students with teacher-given grade 10, only 310 (50.6%) of them would
receive the same grade (“10”) even if evaluated with the fuzzy logic method. Moreover,
300 students (48.9%) would receive grade 8, while 3 students (0.0%) would get 6. On the
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other hand, among the 4668 students with teacher-given grade 5, 2860 (61.3%) would get
an even lower grade (4), while the remaining 1808 (1792 + 16) students would get a passing
grade (i.e., 6 or higher).

Table 7. The distribution of fuzzy grades among students with different school grades.

Fuzzy Grades

School Grade 1 2 3 4 5 6 7 8 9 10 Total

3 3 0 9 0 0 0 0 0 0 0 12 (0.0%)
4 0 384 2 202 420 7 0 0 0 0 1015 (3.5%)
5 0 0 2860 0 0 1792 0 16 0 0 4668 (16.1%)
6 0 0 3276 0 0 4274 0 49 0 0 7599 (26.2%)
7 0 0 18 0 2412 4064 0 26 0 0 6520 (22.4%)
8 0 0 35 0 0 2533 0 2710 0 0 5278 (18.2%)
9 0 0 0 0 11 1270 717 0 1353 0 3351 (11.5%)

10 0 0 0 0 0 3 0 300 0 310 613 (2.1%)

Total 3
(0.0%)

384
(1.3%)

6200
(21.3%)

202
(.7%)

2843
(9.8%)

12943
(48.0%)

717
(2.5%)

3101
(10.7%)

1353
(4.7%)

310
(1.1%) 29056 (100.0%)

In Table 8 presents the descriptive statistics for fuzzy grades distinguished among
teacher-given grades. The results suggest that students from each teacher-given grade cate-
gory would get a lower grade if assessed with the fuzzy logic method. For instance, students
with teacher-given grade 10 would get grade 9 on average, if assessed with fuzzy logic.

Table 8. Descriptive statistics for fuzzy grades among the levels of teacher-given grades.

Fuzzy Grade

Teacher-Given Grade Mean Standard Deviation Median Minimum Maximum

3 2.50 0.905 3 1 3
4 3.67 1.36 4 2 6
5 4.17 1.47 3 3 8
6 4.72 1.51 6 3 8
7 5.63 0.523 6 3 8
8 7.01 1.05 8 3 8
9 7.42 1.35 7 5 9

10 9.00 1.02 10 6 10

The Kruskal–Wallis test has shown that fuzzy grades statistically significantly dif-
fer among the categories of teacher-given grades (χ2(7) = 15,035; p < 0.001; ε2 = 0.517).
The DSCF pairwise comparisons between school grades are all statistically significant
(p < 0.05), except for the comparison among students with teacher-given grade 3 and 4
(W = 3.89; p = 0.108).

4.1.2. Grade 10

In Table 9, the descriptive statistics concerning teacher-given grades, students’ attain-
ments on the INVALSI test and the fuzzy grade for the students of grade 10 (n = 32,794)
are presented.
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Table 9. Descriptive statistics for 10th grade students.

Mathematics Grade INVALSI Fuzzy Grade

Mean 6.15 206 5.54
Standard deviation 1.45 39.1 1.60

Median 6 203 6
Minimum 1 72.3 1
Maximum 10 314 10

Skewness (SE) 0.004 (0.0135) 0.226 (0.0135) −0.293 (0.0135)
Kurtosis (SE) −0.233 (0.0271) −0.053(0.0271) 0.009 (0.0271)

The Kolmogorov–Smirnov test for normality showed that teacher-given grades (KS = 0.148;
p < 0.001), INVALSI achievements (KS = 0.023; p < 0.001), and fuzzy grades (KS = 0.228; p < 0.001)
violate the assumption of normality. This justifies the use of non-parametric statistical tests.

The Wilcoxon test indicated that fuzzy grades are significantly lower than students’
mathematics grades (W = 1.88 × 108; p < 0.001) with a medium effect size (rrb = 0.600).

The correlation analysis indicated that fuzzy grades are correlated both with students’
mathematics grades (ρ = 0.572; p < 0.001) and highly correlated with their scores on the
INVALSI test (ρ = 0.825; p < 0.001).

To have a better insight into how fuzzy grades were distributed among students with
different teacher-given mathematics grades, we constructed Table 10, which shows that
69 (39.9%) students with school grade 10 would get the same grade if assessed with the
method of fuzzy logic, while the remaining 104 (98 + 6) students would get a lower grade.
On the contrary, if we consider students with the teacher-given grade 5 (insufficient), we
note that 3861 (3652 + 209) students (62.9%) would get a passing grade, while 2282 (37.1%)
students would get a much lower grade.

Table 10. The distribution of fuzzy grades among students with different school grades.

Fuzzy Grades

School Grade 1 2 3 4 5 6 7 8 9 10 Total

1 3 0 0 0 0 0 0 0 0 0 3 (0.0%)
2 3 89 0 14 11 1 0 0 0 0 118 (0.4%)
3 102 0 683 0 0 51 0 0 0 0 835 (2.5%)
4 0 519 0 536 1951 227 0 0 0 0 3233 (9.9%)
5 0 0 2282 0 0 3652 0 209 0 0 6143 (18.7%)
6 0 0 2550 0 0 6560 566 0 0 9676 (29.5%)
7 0 0 17 0 2008 4654 0 180 0 0 6859 (20.9%)
8 0 0 17 0 0 1745 0 2362 0 0 4124 (12.6%)
9 0 0 0 0 8 634 202 0 785 0 1629 (5.0%)

10 0 0 0 0 0 6 0 98 0 69 173 (0.5%)

Total 108
(0.3%)

608
(1.9%)

5549
(16.9%)

550
(1.7%)

3978
(12.1%)

17539
(53%)

202
(0.6%)

3415
(10.4%)

785
(2.4%)

69
(0.2%) 32794 (100.0%)

In Table 11, the descriptive statistics for fuzzy grades distinguished among the teacher-
given grades are presented. The results showed that on average, some categories of
students, such as excellent (10) and very good (9) students would get a lower grade if
assessed with the method of fuzzy logic.
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Table 11. Descriptive statistics for fuzzy grades among the levels of teacher-given grades.

Fuzzy Grade

Teacher-Given Grade Mean Standard Deviation Median Minimum Maximum

1 1.00 .000 1 1 1
2 2.53 1.10 2 1 6
3 2.94 1.02 3 1 6
4 4.42 1.16 5 2 6
5 4.95 1.54 6 3 8
6 5.33 1.47 6 3 8
7 5.75 .599 6 3 8
8 7.13 1.02 8 3 8
9 7.56 1.42 7 5 9

10 8.73 1.10 8 6 10

The Kruskal–Wallis test has shown that fuzzy grades statistically significantly dif-
fer among the categories of teacher-given grades (χ2(9) = 13,150; p < 0.001; ε2 = 0.401).
The DSCF pairwise comparisons between school grades are all statistically significant
(p < 0.05), except for the comparison among students with teacher-given grade 6 and 7
(W = 4.43; p = 0.055).

4.1.3. Grade 13

In Table 12, the descriptive statistics concerning teacher-given grades, students’ attainments
on the INVALSI test, and the fuzzy grade for the students of grade 13 (n = 30415) are presented.

Table 12. Descriptive statistics for 13th grade students.

Mathematics Grade INVALSI Fuzzy Grade

Mean 6.33 204 5.54
Standard deviation 1.46 39.8 1.62

Median 6 201 6
Minimum 1 69.5 1
Maximum 10 341 10

Skewness (SE) −0.005 (0.014) 0.211 (0.014) −0.205 (0.014)
Kurtosis (SE) −0.215 (0.0281) −0.177(0.0281) −0.053 (0.0281)

The Kolmogorov–Smirnov test for normality showed that teacher-given grades (KS = 0.140;
p < 0.001), INVALSI achievements (KS = 0.021; p < 0.001) and fuzzy grades (KS = 0.199; p < 0.001)
violate the assumption of normality. This justifies the use of non-parametric statistical tests.

The Wilcoxon test indicated that fuzzy grades are significantly lower than students’
mathematics grades (W = 1.85 × 108; p < 0.001) with a medium effect size (rrb = 0.690).

The correlation analysis revealed that fuzzy grades are correlated with students’
mathematics grades (ρ = 0.552; p < 0.001) and highly correlated with their scores on the
INVALSI test (ρ = 0.824; p < 0.001).

To have a better insight into how fuzzy grades were distributed among students with
different teacher-given mathematics grades, we constructed Table 13. The results highlight
that among the students with an excellent school grade (10), only 141 (48.6%) would get the
same grade if assessed with the method of fuzzy logic; the remaining 149 (51.4%) students
would get a lower grade. On the contrary, among the 5109 students with the teacher-given
grade 5, 3085 (2907 + 178; 60.4%) would still get a passing grade, while the remaining 2024
(39.6%) would get an even lower grade.
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Table 13. The distribution of fuzzy grades among students with different school grades.

Fuzzy Grades

School Grade 1 2 3 4 5 6 7 8 9 10 Total

1 4 0 1 0 0 0 0 0 0 0 5 (0.0%)
2 1 50 0 13 12 2 0 0 0 0 78 (0.3%)
3 59 0 534 0 0 68 0 0 0 0 661 (2.4%)
4 0 449 0 320 1458 228 0 0 0 0 2455 (10.5%)
5 0 0 2024 0 0 2907 0 178 0 0 5109 (16.8%)
6 0 0 2889 0 0 5500 0 506 0 0 8895 (29.2%)
7 0 0 22 0 2379 4141 0 416 0 0 6688 (22.0%)
8 0 0 42 0 0 2062 0 2141 0 0 4245 (14.0%)
9 0 0 0 0 18 877 298 13 783 0 1989 (6.5%

10 0 0 0 0 0 5 0 134 10 141 290 (1.0%)

Total 64
(.2%)

499
(1.6%)

5512
(18.1%)

333
(1.1%)

3867
(12.7%)

15790
(51.9%)

298
(1.0%)

3118
(10.3%)

793
(2.6%)

141
(0.5%) 30415 (100.0%)

In Table 14, the descriptive statistics for fuzzy grades distinguished among the teacher-
given grades are presented.

Table 14. Descriptive statistics for fuzzy grades among the levels of teacher-given grades.

Fuzzy Grade

Teacher-Given Grade Mean Standard Deviation Median Minimum Maximum

1 1.40 0.894 1 1 3
2 2.88 1.31 2 1 6
3 3.13 1.13 3 1 6
4 4.41 1.24 5 2 6
5 4.88 1.57 6 3 8
6 5.14 1.55 6 3 8
7 5.68 0.608 6 3 8
8 6.98 1.07 8 3 8
9 7.33 1.40 7 5 9

10 8.97 1.05 9 6 10

The Kruskal–Wallis test has shown that fuzzy grades statistically significantly differ
among the categories of teacher-given grades (χ2(9) = 11,351; p < 0.001; ε2 = 0.373). The DSCF
pairwise comparisons between school grades are all statistically significant (p < 0.05), except
for the comparison among students with teacher-given grade 1 and 2 (W = 4.37; p = 0.063).

4.2. Differences in Fuzzy Logic Assessment among Students of Grade 8, 10, and 13

Students’ fuzzy achievements statistically significantly differ among grades (χ2(2) = 51.2;
p < 0.001), although the effect size is extremely low (ε2 = 5.55 × 10−4). The DSCF test has
shown that there are statistically significant differences in fuzzy grades between the 8th
and 10th grade students (W = −8.572; p < 0.001), as well as between the 8th and 13th grade
students (W = −8.983; p < 0.001). However, there are no statistically significant differences
between the 10th and 13th grade students (W = −0.824; p = 0.830). Due to the low effect
size, results indicate that students’ fuzzy achievements are hardly dependent on students’
classes. Moreover, high school students have similar fuzzy achievements, thus fuzzy grades
are almost uniformly distributed in all grades.

5. Discussion

The idea of evaluating students’ knowledge with fuzzy logic is not entirely new, as it
has been studied by several researchers [3–14,22,26,27], mainly because the grades awarded
by teachers are based on verbal descriptions of students’ knowledge. Moreover, students’
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assessment is an imprecise construct and fuzzy logic seems to be suitable for such vari-
ables [3,4]. The international literature has proposed different models for assessing students’
knowledge, i.e., combining test scores and the time taken to solve them [4], combining two
or more test/exam outcomes [6,7], combining student achievement and class attendance [9],
etc. Among those studies which investigated the difference between traditional assessing
method and fuzzy logic based one, the findings are relatively inconsistent: some researchers
found no difference between fuzzy grades and traditional grades [4,9,26], while others
found that fuzzy grades were lower or higher than those of the teachers [6,7,27].

Therefore, the main aim of the present work was to clarify these inconsistencies by
comparing the traditional (based on teacher-given grades) math knowledge assessing
method to the fuzzy logic one, which combines teacher-assigned grades with students’
performance on a standardized math test (i.e., the INVALSI). Moreover, extending previous
literature, we were interested in exploring whether there are differences in the fuzzy logic
evaluation method among different school levels (grades 8, 10, and 13).

To answer the first research question, we compared traditional grades to the fuzzy ones
in students attending the 8th, 10th, and 13th grade in Italy. In all school levels, students’
traditional grades were statistically higher than their fuzzy grades; the effect sizes were
medium to large, suggesting that the fuzzy logic evaluation method yields lower overall
ratings. Therefore, combining teacher-given grades with students’ results obtained from
the national assessment using fuzzy logic reduces their final grades. This result is consistent
with previous research [27]; we have shown that the affirmation is valid for all considered
school levels.

A deeper look at the distribution of fuzzy grades across categories of teacher-assigned
grades reveals that fuzzy grades within the same teacher-assigned grades are sparse. This
consequently means that students with the same grade assigned by the teacher could get
a different grade when assessed with the proposed fuzzy model. This finding also raises
questions regarding the validity and reliability of teachers’ grades [2]: students who have
excellent academic results could get lower grades if the INVALSI standardized test is also
considered. This could have important consequences, especially considering the labor
market [58] and the possibility of being accepted to higher education institutions, such as
universities. For example, the present study showed that 5 students who had an excellent
grade on their report cards (i.e., a 10), would obtain a lower grade (i.e., a 6), if evaluated by
the fuzzy logic method proposed. On the other hand, there have been some students who
received an insufficient grade by the teacher (e.g., 5), but would have obtained a sufficient
grade (e.g., 6 or more) if evaluated with the system of logic fuzzy. Therefore, although the
academic results of some excellent students may indeed be excellent, their results on the
INVALSI test could demonstrate that these students do not master all the mathematics
topics assessed by the national standardized test. In the document ref. [37] it is stated that
the INVALSI test cannot evaluate the non-cognitive and metacognitive factors involved
in math learning, such as the students’ attitude toward the subject, therefore, considering
merely the students’ performance on the INVALSI test might not give a complete picture
of students’ math competencies. Thus, the proposed fuzzy logic method for assessing
students’ mathematical knowledge and skills could provide educators, students, and their
parents with a clearer picture of students’ mathematical skills [2].

The importance of predicting students’ grades and developing a sustainable learning
environment was recently studied by Kanetaki and colleagues [59]. They identified and
quantified the factors affecting mechanical engineering students’ outcomes (e.g., classroom
fatigue, understanding of the concept of planes, insecurity, computer skills, etc.,) when
classes were held online or in a hybrid learning environment due to the COVID-19 outbreak.
The proposed model is a valid model that can be used to predict students’ failure of
promotion in a hybrid or online learning environment. Although the model predicted
the promotion of some students who then failed (and therefore, the model overestimated
their achievements), the model still has a non-negligible importance from an educational
point of view, as it could help educators and especially learners to have a clearer picture of
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students’ knowledge and competencies. Our work can be placed within the effort made by
Kanetaki et al. [59] and could be used by educators to implement sustainable assessment,
i.e., giving students skills to become lifelong learners [60]. In particular, students would gain
self-awareness and would be able to self-assess [60], since they might constantly monitor
their performances by receiving additional feedback information from the standardized
INVALSI tests. Future research could seek to develop a model for predicting the grades that
students would receive if the INVALSI test results were also considered, so that students
could self-assess their mathematics knowledge, improving and possibly changing their
way of learning mathematics. The model could be tested as suggested by [59] and used by
students to obtain real-time feedback on their knowledge and competencies in mathematics.

The second aim of the research was to explore possible differences in fuzzy scores
between 8th, 10th, and 13th grade students. We found that among high school students
(i.e., grades 10 and 13), there are no significant differences in fuzzy scores, while there are
some significant differences between secondary (i.e., grade 8) and high school students.
However, the differences found have an almost negligible effect size, meaning that the
proposed method produces similar results at all levels of education. This fact therefore
underlines that the evaluation method with fuzzy logic is solid and produces very similar
outcomes, even when used at different educational levels. Further research could extend
the proposed model to primary schools and verify whether the fuzzy logic assessment
model produces comparable grades to those found in this study. In particular, the fact that
the obtained results do not significantly differ among school levels contributes to a further
validation of the model proposed in the present study.

The present study has some relevant implications for educators. For instance, the
assessment method based on teacher-assigned grades and performance on standardized
tests (such as national assessment) has been suggested by some authors as a possible
solution to grade inflation [61], i.e., the phenomenon of assigning students higher grades
than they deserve or that they would obtain if they were evaluated with a sort of stan-
dardized evaluation [62]. The proposed fuzzy logic method could serve the purpose of
lowering excessively high mathematics grades while also offering a clearer picture of stu-
dents’ mathematical knowledge. Furthermore, as already mentioned, the model could
help students develop self-assessment skills and therefore, sustainable learning and assess-
ment [59,60]. In addition, the existence of different evaluation methodologies can influence
the improvement of teaching policies. In particular, teachers who consider other methods
of assessing students’ knowledge and competencies can verify how much their grades
differ from students’ achievements in other forms of assessment, such as standardized
tests [63]. Additionally, educators need to know about different data sources [64] and use
multiple assessment strategies, including criterion-referenced methods and standardized
tests [65]. Recent research on the impacts the INVALSI test has on teachers’ practices [66]
has shown that some teachers (1) enhanced activities aimed at improving students’ skills
in problem-solving and critical thinking; (2) changed the teaching method by using more
examples of the applications of mathematics to reality; and (3) implemented the curriculum
by anticipating the order of the topics covered. Another aspect that was highlighted in the
same research is the fact that a critical analysis of the INVALSI tests has led teachers to
reflect on their teaching methodologies and try developing argumentative skills in students.
Moreover, some argued that standardized tests are promising tools for the evaluation of
the effectiveness of different instructional practices [67], therefore, by using the fuzzy logic
model teachers would be able to monitor the effectiveness of their teaching practices and
implement them.

The present empirical research should be considered in light of some limitations. First,
the results obtained through fuzzy logic depend on the techniques used, on fuzzification,
on the definition and the granularity of fuzzy rules, and on defuzzification. Membership
functions and inferential rules were chosen by the researchers based on previous studies [7]
and based on their experiences as educators [25]. Changing the functions and inference rules
would lead to potentially very different results. Future research should address the question
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of how fuzzy grades would change if different membership functions or defuzzification
methods were used. Second, in the present work, we assumed the proposed model to be
better than considering solely teacher-given grades. In particular, teacher-given grades
and standardized assessment scores measure slightly different aspects of achievement and
achievement-related behavior [68]. Considering both measures of students’ knowledge
and competencies is important to improve student achievement [69] and give educators,
students, and parents more complete information regarding students’ achievements [2].
However, we did not compare the proposed model with other assessing models. Future
studies could therefore evaluate the validity of the proposed model by comparing it with
other methods. Lastly, in this study, we did not consider some factors which could affect
students’ achievement, such as their gender, socio-economic status, and geographic origin.
Future studies could therefore explore the role these factors play in the fuzzy logic model
proposed in this paper. There are also practical limitations in applying the methodology
described in this work. Indeed, teachers may not be familiar with fuzzy logic, so the
transition from traditional to fuzzy assessing model may not be smooth. Teachers should
thus receive specific training and knowledge on the fuzzy logic itself before the model
could be used in everyday teaching practice.

6. Conclusions

Although teacher-given grades are often reported numerically, the grades awarded by
teachers are based on verbal descriptions of students’ knowledge and competencies. To
work with variables that are based on descriptions and verbal judgments and characterized
by a degree of vagueness, it is recommended to use the fuzzy logic [3]. Moreover, the
teachers’ approach to evaluation in classrooms may not coincide with the approach taken
in INVALSI tests. Indeed, in classrooms, the tests have a concentrated focus on the subject
content which is studied (e.g., tests assess solely students’ knowledge of equations), while
in the INVALSI tests, the focus is usually more multidisciplinary (i.e., several mathematics
topics are assessed). The aim of the present work was to investigate how to combine teacher-
given grades with students’ results in the standardized INVALSI test in order to create
a novel assessing method, based on fuzzy logic, and how it differs from the traditional
assessment method.

From the obtained results we can deduce that in the considered samples, the fuzzy
assessment method reduces students’ grades. Therefore, the evaluation method with fuzzy
logic is stricter than the traditional one. Furthermore, we have shown that the level of
schooling has an almost negligible effect on students’ fuzzy grades.

Although this research has considered solely secondary and high school students,
future research is needed to test the possibility of evaluating students’ mathematical knowl-
edge also in lower schools, namely elementary schools. Therefore, more research is needed
to explore the possibility of extending the proposed model of assessing students’ mathemat-
ical knowledge across grades. In the present research, we used students’ achievement on
the Italian national assessment of mathematics knowledge INVALSI, while future research
could investigate the combination of student grades with their results in other standardized
tests, such as the PISA or TIMSS. Additionally, the proposed model, although it has been
tested only for mathematics, can also be extended to other subjects, for which there are
standardized national or international tests (e.g., the INVALSI institute also assesses the
knowledge of Italian and English language).
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