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Abstract: This article revisits the stability property of a symbiotic model of commensalism with Michaelis–
Menten type harvesting in the first commensal populations. The model was proposed by Nurmaini
Puspitasari et al. By constructing some suitable Lyapunov functions, we provide a thorough analysis of
the dynamic behaviors of the subsystem composed of the second and third species. After that, by applying
the stability results of this subsystem and combining with the differential inequality theory, sufficient
conditions which ensure the global attractivity of the equilibria are obtained. The results obtained here
essentially improve and generalize some known results.
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1. Introduction

In the past decade, many scholars [1–42] investigated the dynamic behaviors of the
commensalism model. Some substantial progress has been made in the study of the com-
mensalism system. Topics such as the stability of the system [1–4,19–21,39,40], the persistent
and extinction properties of the system [3,19], the existence of a periodic solution or al-
most periodic solution [6–10,41], the influence of stage structure [10], the influence of Allee
effect [11–19], the influence of feedback control [19–21], the influence of harvesting [5,27–38],
the bifurcation phenomenon of the system [4,18–20,26,27,36,37], the influence of functional
reactions [2,3,9,16,23–25,43], the model governed by the discrete equation [5–10,36,38,41,44],
the influence of time delays [1,6,26,42–48], the influence of dispersal [46] etc., were exten-
sively investigated.

Commensalism is a long-term biological interaction (symbiosis) in which members of
one species gain benefits while those of the other species neither benefit nor are harmed.
Though this kind of relationship is often observed in nature, the mathematical model
was not developed until 2013. In ground breaking work, Sun and Sun [4] proposed the
following commensalism system:

dx
dt = r1x

(
1− x

K1
+ α

y
K1

)
,

dy
dt = r2y

(
1− y

K2

)
,

(1)

where r1, r2, K1, K2, α are all positive constants. The system admits four equilibria. The
authors showed that only positive equilibrium E4 is a stable node and all the other three
equilibria are unstable.

It is well known that the harvesting of species is an effective way for human beings to
obtain resources. Already, there are many scholars investigateing the dynamic behaviors of the
commensalism model with the influence of linear or nonlinear type harvesting [5,28–40,42,45].

Axioms 2022, 11, 337. https://doi.org/10.3390/axioms11070337 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11070337
https://doi.org/10.3390/axioms11070337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11070337
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11070337?type=check_update&version=3


Axioms 2022, 11, 337 2 of 21

Deng and Huang [30] proposed the following non-selective harvesting Lotka–Volterra
commensalism model incorporating partial closure for the populations:

dx
dt = r1x

(
1− x

K1
+ α

y
K1

)
− q1Emx,

dy
dt = r2y

(
1− y

K2

)
− q2Emy.

(2)

Their study showed that depending on the fraction of the stock available for harvesting,
the system may lead to extinction, partial survival or two species coexisting in a stable
state. The dynamic behaviors of the system become complicated compared with the non-
harvesting system. Liu, Xie and Lin [28] studied the nonautonomous case of system (2);
they investigated the partial survival, extinction and global stability of the system.

Many scholars [8,27,32,34–41] argued that the nonlinear harvesting such as Michaelis–
Menten type harvesting is more realistic from the biological and economical points of view.
Chen [27] proposed and studied the following model for the first time, in which the first
species is subject to Michaelis–Menten type harvesting:

dx
dt = r1x

(
1− x

K1
+ α

y
K1

)
− qEx

m1E + m2x
,

dy
dt = r2y

(
1− y

K2

)
,

(3)

where r1, r2, K1, K2, α, q, E, m1, m2 are all positive constants, and r1, r2, K1, K2, α have
the same meaning as that of the system (1), E is the fishing effort used to harvest and q is
the catchablity coefficient; m1 and m2 are suitable constants. The author showed that for
the limited harvesting case (i.e., q is enough small), the system admits a unique globally
stable positive equilibrium; for the over harvesting case, if the cooperation intensity of both
species (α) and the capacity of the second species (K2) are large enough, the two species
could coexist in a stable state, otherwise, the first species will be driven to extinction.

Zhu et al. [38] proposed the following Lotka–Volterra commensal symbiosis model
with non-selective Michaelis–Menten type harvesting:

dx
dt = r1x

(
1− x

K1
+ α

y
K1

)
− q1Ex

m1E + m2x
,

dy
dt = r2y

(
1− y

K2

)
− q2Ey

m3E + m4y
,

(4)

where r1, r2, K1, K2, α, q1, q2, E, m1, m2, m3 and m4 are all positive constants. By establishing
some new lemmas, the authors investigated the extinction, partial survival and global
attractivity of the positive equilibrium of the system. Their results essentially improve and
generalize the main results of Chen [27].

In [29], Liu et al. proposed the following nonautonomous Lotka–Volterra commensal-
ism model with Michaelis–Menten type harvesting:

dN1(t)
dt = N1(t)

(
a(t)− b(t)N1(t) + c(t)N2(t)

)
,

dN2(t)
dt = N2(t)

(
d(t)− e(t)N2(t)

)
− q(t)E(t)N2(t)

m1(t)E(t)+m2(t)N2(t)
.

(5)

The authors investigated the existence and stability of the positive periodic solution of
the system.

Zhou et al. [41] argued that the discrete time models governed by difference equations
are more appropriate than the continuous ones when the populations have nonoverlapping
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generations. They proposed the following discrete commensal symbiosis model with
nonlinear harvesting:

N1(k + 1) = N1(k) exp
{

a1(k)− b1(k)N1(k) + c1(k)N2(k)
}

,

N2(k + 1) = N2(k) exp
{

a2(k)− b2(k)N2(k)− q(k)E(k)
m1(k)E(k)+m2(k)N2(k)

}
,

(6)

where N1(k) and N2(k) represent the densities of the first and second species of k-generation,
respectively. Under the assumption that the coefficients of the system (6) are all periodic
sequences with a common integer period, they obtained a set of sufficient conditions which
ensure the existence of at least one positive periodic solution of the system.

Shireen Jawad [32] proposed the following commensalism model with Michaelis–
Menten type harvesting and a Holling II functional response:

du
dt = ru

(
1− u

k

)
+ βuv

α+u −
qEu

cE+lu ,
dv
dt = sv

(
1− v

m

)
− dv,

(7)

where u(t) and v(t) denote the densities of the first and second species at time t, respectively;
The author investigated the local stability, persistence and bifurcation of the system.
The above works are all focus on the two species commensalism model with nonlinear

harvesting. Recently, Puspitasari, Kusumawinahyu and Trisilowati [31,39] began to study a
three-species case and a four-species case. In [31], stimulated by the work of Chen [27] and
also by observing the relationships among the mango tree (host), orchids (commensals) and
parasites (parasites) attached to the trunk of the mango tree, Puspitasari, Kusumawinahyu
and Trisilowati proposed the following three-species symbiotic model of commensalism
and parasitism with harvesting in commensal populations:

dx
dt = r1x

(
1− x

k1
+ a y

k1

)
− qEx

m1E+m2x ,
dy
dt = r2y

(
1− y

k2
− b z

k2

)
,

dz
dt = r3z

(
1− z

k3
+ c y

k3

)
,

(8)

where x(t), y(t) and z(t) denote the commensal population, host population and parasite
species, respectively. The model is based on the model of Chen [27], by adding a new pop-
ulation, namely the parasite population, which is denoted by z. The authors investigated
the existence and local stability of the equilibria of system (8). Recently, by establishing
three powerful Lemmas, Chen, Zhou and Lin [40] obtained sufficient conditions which
ensure the global stability of the equilibria.

In [39], Puspitasari, Kusumawinahyu and Trisilowati further proposed the follow-
ing symbiotic model of commensalism in four populations with Michaelis–Menten type
harvesting in the first commensal populations:

dx
dt = r1x

(
1− x

k1
+ a y

k1

)
− qEx

m1E+m2x ,
dy
dt = r2y

(
1− y

k2
− b z

k2

)
,

dz
dt = r3z

(
1− z

k3
+ c y

k3

)
,

dp
dt = r4 p

(
1− p

k4
+ d y

k4

)
,

(9)

where x(t), y(t), z(t) and p(t) denote the first commensal population, host population,
parasite species and the second commensal population, respectively. All parameters used
in this model are positive. ri, i = 1, 2, 3, 4 interpret the intrinsic growth of x, y, z and p.
ki, i = 1, 2, 3, 4 interpret the carrying capacities of x, y, z and p, respectively. The parameter
a is the relationship between x and y. The parameters b and c are the relationship between
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y and z. d shows the relationship between y and p. The parameter E is a fishing business
used for harvest, q is the catching power coefficient, m1 and m2 are the suitable constants.
p is the second commensal population, it does not harm other populations. The authors
showed that the system may have sixteen possible equilibria, and only four of them could
be asymptotically stable if they meet the stability conditions that have been determined.

Those four equilibria could be expressed as below:

T4(0, 0, k3, k4), T7

(
0, k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
,

T12(x∗a , 0, k3, k4), T15

(
x∗c , k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
.

(10)

Noting that the conclusions of Puspitasari, Kusumawinahyu and Trisilowati [39] are
all local ones, whether we could obtain some sufficient conditions to ensure the global
stability property of above four equilibria becomes an interesting problem.

When we talk about the global stability property, we naturally think of constructing
an appropriate Lyapunov function, for example, to investigate the global stability property
of the positive equilibrium:

T15

(
x∗c ,

k2 − bk3

1 + bc
,

k3 + ck2

1 + bc
, k4 +

d(k2 − bk3)

1 + bc

) de f
=
(

x∗c , y∗, z∗, p∗
)

, (11)

we may construct the following Lyapunov function:

V(t) = l1
(

x− x∗c − x∗c ln x
x∗c

)
+ l2

(
y− y∗ − y∗ ln y

y∗

)
+l3
(

z− z∗ − z∗ ln z
z∗

)
+ l4

(
p− p∗ − p∗ ln p

p∗

)
.

(12)

Then we compute the derivative of V along the positive solution of system (9) to find
out some suitable conditions to ensure the negative definite of dV

dt . However, the essentiality
of this method is to make sure the intraspecific competition coefficient is large enough
to control the coefficient of interspecific interaction, which cannot reflect the substantial
characteristics of the system. Another troublesome thing is to estimate the term qEx

m1E+m2x in
system (9). It is well known that this kind of harvesting term is the main factor that leads to
the complex dynamic behaviors of the system (see, for example, [32,34,37]); the ecosystem
with the Michaelis–Menten type system, generally speaking, has very complex bifurcation
behaviors. In the estimation of dV

dt , this term may need some extra assumptions, which
are needed to ensure the negative definite of dV

dt ; however, this is not the essential one for
ensuring the global stability of the system.

This brings to our attention that in system (9), the second and third equations are
independent of the variables x and p; also, the second and third equations are the Lokta–
Voletera type systems; this motivated us to investigate the dynamic behaviors of this
subsystem firstly, and then to investigate the dynamic behaviors of x and p. The aim
of this paper is, by developing the analysis technique of Zhu et al. [38] and Chen, Zhou
and Lin [40] , to obtain some very simple but essential conditions to ensure the global
attractivity of the above four equilibria.

The rest of the paper is arranged as follows. We state the main conclusions in Section 2.
To finish the proof of the main results, we provide several important lemmas in Section 3.
A detailed proof of the main results is given in Section 4. Some numerical simulations are
provided in Section 5 to show the feasibility of the main results. We end this paper with a
brief discussion.
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2. Main Results

Definition 1. Let (x∗, y∗, z∗, p∗) be any equilibrium of system (9), if for any positive solution
(x(t), y(t), z(t), p(t)) of system (9), the following equalities hold.

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = y∗, lim
t→+∞

z(t) = z∗, lim
t→+∞

p(t) = p∗.

Then we say (x∗, y∗, z∗, p∗) is globally attractive.
The main results of this paper are as follows.

Theorem 1. Assume that:
r1 <

qE
m1E + m2k1

(13)

and
1 <

bk3

k2
(14)

hold, then T4(0, 0, k3, k4) is globally attractive, i.e., any positive solution (x(t), y(t), z(t), p(t)) of
system (9) satisfies

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0, lim
t→+∞

z(t) = k3, lim
t→+∞

p(t) = k4.

Theorem 2. Assume that:
q < r1m1 (15)

and
1 <

bk3

k2
(16)

hold, then T12(x∗a , 0, k3, k4) is globally attractive, i.e., any positive solution (x(t), y(t), z(t), p(t))
of system (9) satisfies

lim
t→+∞

x(t) = x∗a , lim
t→+∞

y(t) = 0, lim
t→+∞

z(t) = k3, lim
t→+∞

p(t) = k4.

Theorem 3. Assume that:

r1

(
1 +

ay∗

k1

)
<

qE
m1E + m2(k1 + ay∗)

(17)

and
1 >

bk3

k2
(18)

hold, then T7

(
0, k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
is globally attractive, i.e., any positive solution

(x(t), y(t), z(t), p(t)) of system (9) satisfies

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) =
k2 − bk3
1 + bc

, lim
t→+∞

z(t) =
k3 + ck2
1 + bc

, lim
t→+∞

p(t) = k4 +
d(k2 − bk3)

1 + bc
,

where
y∗ =

k2 − bk3

1 + bc
.

Theorem 4. Assume that:
r1

(
1 +

ay∗

k1

)
>

q
m1

(19)

and
1 >

bk3

k2
(20)
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hold, then T15

(
x∗c , k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
is globally attractive, i.e., any positive solution

(x(t), y(t), z(t), p(t)) of system (9) satisfies

lim
t→+∞

x(t) = x∗c , lim
t→+∞

y(t) =
k2 − bk3
1 + bc

, lim
t→+∞

z(t) =
k3 + ck2
1 + bc

, lim
t→+∞

p(t) = k4 +
d(k2 − bk3)

1 + bc
,

where
y∗ =

k2 − bk3

1 + bc
.

3. Lemmas

To finish the proof of Theorems 1–4, we need several powerful Lemmas.
As a direct corollary of Lemma 2 of Chen [49], we have

Lemma 1. If a > 0, b > 0 and ẋ ≥ x(b− ax), when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥ b
a

.

If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b
a

.

Now let us consider the following single species system.

dy
dt

= ry
(

1− y
K

)
− qEy

m1E + m2y
. (21)

From Lemma 3 and Theorem 2 in Zhu et al. [38], we have:

Lemma 2. Assume that
r >

q
m1

(22)

holds, then system (21) admits a unique positive equilibrium y∗, which is globally stable, where

y∗ =
−A2 +

√
A2

2 − 4A1 A3

2A1
, (23)

and
A1 = m2r,

A2 = Em1r− Km2r,

A3 = EKq− EKm1r.

(24)

From Theorem 1 in Zhu et al. [38], we have:

Lemma 3. Assume that
r <

qE
m1E + m2K

(25)

holds, then in system (21), species y will finally be driven to extinction, i.e.,

lim
t→+∞

y(t) = 0. (26)



Axioms 2022, 11, 337 7 of 21

Now let us consider the system

dy
dt = r2y

(
1− y

k2
− b z

k2

)
,

dz
dt = r3z

(
1− z

k3
+ c y

k3

)
.

(27)

Lemma 4. (i) Assume that:

1 <
bk3

k2
(28)

hold, then the boundary equilibrium (0, k3) in system (27) is globally stable.
(ii) Assume that:

1 >
bk3

k2
(29)

hold, then system (27) admits a unique positive equilibrium (y∗, z∗), which is globally stable, where

y∗ =
k2 − bk3

1 + bc
, z∗ =

k3 + ck2

1 + bc
. (30)

Proof. (i) Let us consider the Lyapunov function

V1(x, y) = y +
r2bk3

r3ck2

(
z− k3 − k3 ln

z
k3

)
. (31)

By computation, we have:

dV1
dt = r2

(
1− bk3

k2

)
y− r2

k2
y2 − r2b

ck2
(z− k3)

2. (32)

Hence, under the assumption (28) holding, dV1
dt < 0 strictly for all y, z > 0 except the

boundary equilibrium (0, k3), where dV1
dt = 0. Thus, V1(x, y) satisfies Lyapunov’s asymptotic

stability theorem, and the boundary equilibrium (0, k3) of system (27) is globally stable.
(ii) We had proved this part in the draft, however, when we revising the paper, we

found the paper recently published by Chen, Zhou and Lin [40] had proved the conclusion.
So, one could refer to the proof of Lemma 4 in [40] for more detail.

The proof of Lemma 4 is finished.

4. Proof of the Main Results

Proof of Theorem 1 . For small enough ε > 0, condition (14) implies that

r1 +
ar1ε

k1
<

qE
m1E + m2(k1 + aε)

. (33)

Let (x(t), y(t), z(t), p(t))T be any positive solution of system (9), it follows from (14)
and Lemma 4 (i) that:

lim
t→+∞

y(t) = 0, lim
t→+∞

z(t) = k3. (34)

From above equation, for ε > 0 enough small, which satisfies inequality (33), there
exists a T1 > 0, such that:

y(t) < ε for all t ≥ T1. (35)
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For t ≥ T1, from (35) and the first equation of system (9), we have:

dx
dt ≤ r1x

(
1− x

k1
+ a ε

k1

)
− qEx

m1E+m2x

= r1

(
1 + a ε

k1

)
x

(
1− x

k1

(
1+a ε

k1

))− qEx
m1E+m2x .

(36)

Now let us consider the equation,

du
dt = r1

(
1 + a ε

k1

)
u

(
1− u

k1

(
1+a ε

k1

))− qEu
m1E+m2u . (37)

From (33) and Lemma 3, it follows that:

lim
t→+∞

u(t) = 0. (38)

From (36), (37) and the comparison theorem of differential equation, it immediately
follows that:

lim
t→+∞

x(t) = 0. (39)

From (35) and the forth equation of system (9), for t ≥ T1, one has:

dp
dt
≤ r4z

(
1− p

k4
+ d

ε

k4

)
. (40)

Applying Lemma 1 to (40) leads to:

lim sup
t→+∞

p(t) ≤ k4

(
1 + d

ε

k4

)
. (41)

From the forth equation of system (9), we also have:

dp
dt
≥ r4z

(
1− p

k4

)
. (42)

Applying Lemma 1 to (42) leads to:

lim inf
t→+∞

p(t) ≥ k4. (43)

(41) together with (43) leads to:

k4 ≤ lim inf
t→+∞

p(t) ≤ lim sup
t→+∞

p(t) ≤ k4

(
1 + d

ε

k4

)
. (44)

Setting ε→ 0 in the above inequality, one has:

lim
t→+∞

p(t) = k4. (45)

(34), (39) and (45) show that T4(0, 0, k3, k4) is globally attractive.
This completes the proof of Theorem 1.

Proof of Theorem 2. For ε > 0 enough small, condition (14) implies that

r1 +
ar1ε

k1
>

q
m1

. (46)
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Let (x(t), y(t), z(t), p(t))T be any positive solution of system (9), it follows from (16) and
Lemma 4 (i) that:

lim
t→+∞

y(t) = 0, lim
t→+∞

z(t) = k3. (47)

From above equation, for ε > 0 enough small, which satisfies inequality (47), there
exists a T1 > 0, such that:

y(t) < ε for all t ≥ T1. (48)

For t ≥ T1, from (48) and the first equation of system (9), we have:

dx
dt ≤ r1x

(
1− x

k1
+ a ε

k1

)
− qEx

m1E+m2x

= r1

(
1 + a ε

k1

)
x

(
1− x

k1

(
1+a ε

k1

))− qEx
m1E+m2x .

(49)

Now let us consider the equation:

du
dt = r1

(
1 + a ε

k1

)
u

(
1− u

k1

(
1+a ε

k1

))− qEu
m1E+m2u . (50)

From (46) and Lemma 2, it follows that system (50) admits a unique positive equilib-
rium u∗(ε), which is globally stable, i.e.,

lim
t→+∞

u(t) = u∗(ε), (51)

where

u∗(ε) =
−B2 +

√
B2

2 − 4B1B3

2B1
, (52)

and
B1 = m2r1

(
1 + a ε

k1

)
,

B2 = Em1r1

(
1 + a ε

k1

)
− k1m2r1

(
1 + a ε

k1

)2
,

B3 = Ek1q
(

1 + a ε
k1

)
− Ek1m1r1

(
1 + a ε

k1

)2
.

(53)

By comparison theorem of differential equation and (49), (51), we have:

lim sup
t→+∞

x(t) ≤ u∗(ε). (54)

For t ≥ T1, from the first equation of system (9), we also have:

dx
dt
≥ r1x

(
1− x

k1

)
− qEx

m1E + m2x
. (55)

Now let us consider the equation:

dv
dt = r1v

(
1− v

k1

)
− qEv

m1E+m2x . (56)

From (56) and Lemma 2, it follows that system (56) admits a unique positive equilib-
rium v∗ = x∗5 , which is globally stable, i.e.,

lim
t→+∞

v(t) = v∗, (57)
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where

v∗ =
−C2 +

√
C2

2 − 4C1C3

2C1
, (58)

and
C1 = m2r1,

C2 = Em1r1 − k1m2r1,

C3 = Ek1q− Ek1m1r1.

(59)

By comparison theorem of differential equation and (55), (56), we have:

lim inf
t→+∞

x(t) ≥ v∗. (60)

(54) and (60) lead to:

v∗ ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ u∗(ε). (61)

Since ε is enough small positive constant, setting ε→ 0 in (61) leads to:

lim
t→+∞

x(t) = x∗5 . (62)

Similarly to the analysis of (40)–(45), by using inequality (48), we could obtain:

lim
t→+∞

p(t) = k4. (63)

(47), (62) and (63) show that T12(x∗5 , 0, k3, k4) is globally attractive. This completes the proof
of Theorem 2.

Proof of Theorem 3. For small enough ε > 0, condition (14) implies that

r1 +
ar1(y∗ + ε)

k1
<

qE
m1E + m2(k1 + a(y ∗+ε))

. (64)

Let (x(t), y(t), z(t), p(t))T be any positive solution of system (9), it follows from (18)
and Lemma 4 (ii) that:

lim
t→+∞

y(t) = y∗ =
k2 − bk3

1 + bc
, lim

t→+∞
z(t) = z∗ =

k3 + ck2

1 + bc
. (65)

From above equation, for ε > 0 enough small, which satisfies inequality (64), with-
out loss of generality, we may assume that ε < 1

2 y∗, there exists a T1 > 0, such that:

y∗ − ε < y(t) < y∗ + ε for all t ≥ T1. (66)

For t ≥ T1, from (66) and the first equation of system (9), we have:

dx
dt ≤ r1x

(
1− x

k1
+ a (y∗+ε)

k1

)
− qEx

m1E+m2x

= r1

(
1 + a (y∗+ε)

k1

)
x

(
1− x

k1

(
1+a y∗+ε

k1

))− qEx
m1E+m2x .

(67)

Now let us consider the equation:

du
dt = r1

(
1 + a (y∗+ε)

k1

)
u

(
1− u

k1

(
1+a y∗+ε

k1

))− qEu
m1E+m2u . (68)
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From (64) and Lemma 3, it follows that:

lim
t→+∞

u(t) = 0. (69)

From (67) and (68) and the comparison theorem of differential equation, it immediately
follows that:

lim
t→+∞

x(t) = 0. (70)

From (66) and the fourth equation of system (9), for t ≥ T1, one has:

dp
dt
≤ r4z

(
1− p

k4
+ d

y∗ + ε

k4

)
. (71)

Applying Lemma 1 to (71) leads to:

lim sup
t→+∞

p(t) ≤ k4

(
1 + d

y∗ + ε

k4

)
. (72)

From (66) and the forth equation of system (9), for t ≥ T1, we also have:

dp
dt
≥ k4z

(
1− p

k4
+ d

y∗ − ε

k4

)
. (73)

Applying Lemma 1 to (73) leads to:

lim inf
t→+∞

p(t) ≥ k4

(
1 + d

y∗ − ε

k4

)
. (74)

(72) together with (74) leads to:

k4

(
1 + d

y∗ − ε

k4

)
≤ lim inf

t→+∞
p(t) ≤ lim sup

t→+∞
p(t) ≤ k4

(
1 + d

y∗ + ε

k4

)
. (75)

Setting ε→ 0 in the above inequality, it follows that:

lim
t→+∞

p(t) = k4

(
1 + d

y∗

k4

)
= k4 + dy∗ = k4 +

d(k2 − bk3)

1 + bc
. (76)

(65), (70) and (76) show that T7

(
0, k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
is globally attractive.

This completes the proof of Theorem 3.

Proof of Theorem 4. For ε > 0 enough small, condition (19) implies that

r1 +
ar1(y∗ − ε)

k1
>

q
m1

. (77)

Let (x(t), y(t), z(t), p(t))T be any positive solution of system (9), it follows from (20)
and Lemma 4 (ii) that:

lim
t→+∞

y(t) = y∗ =
k2 − bk3

1 + bc
, lim

t→+∞
z(t) = z∗ =

k3 + ck2

1 + bc
. (78)

From above equation, for ε > 0 enough small, which satisfies inequality (77), with-
out loss of generality, we may assume that ε < 1

2 y∗, there exists a T1 > 0, such that:

y∗ − ε < y(t) < y∗ + ε for all t ≥ T1. (79)
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For t ≥ T1, from (79) and the first equation of system (9), we have:

dx
dt ≤ r1x

(
1− x

k1
+ a (y∗+ε)

k1

)
− qEx

m1E+m2x

= r1

(
1 + a (y∗+ε)

k1

)
x

1− x

k1

(
1+a y∗+ε

k1

)
− qEx

m1E+m2x .

(80)

Now let us consider the equation:

du1
dt = r1

(
1 + a (y∗+ε)

k1

)
u1

1− u

k1

(
1+a y∗+ε

k1

)
− qEu1

m1E+m2u1
. (81)

From (77) and Lemma 2, it follows that:

lim
t→+∞

u(t) = u∗1(ε), (82)

where

u∗1(ε) =
−D2 +

√
D2

2 − 4D1D3

2D1
, (83)

and
D1 = m2r1

(
1 + a (y∗+ε)

k1

)
,

D2 = Em1r1

(
1 + a (y∗+ε)

k1

)
− k1m2r1

(
1 + a ε

k1

)2
,

D3 = Ek1q
(

1 + a (y∗+ε)
k1

)
− Ek1m1r1

(
1 + a (y∗+ε)

k1

)2
.

(84)

By the comparison theorem of the differential equation, (80) and (81), we have:

lim sup
t→+∞

x(t) ≤ u∗1(ε). (85)

For t ≥ T1, from the first equation of system (9), we also have:

dx
dt
≥ r1x

(
1− x

k1
+ a

(y∗ − ε)

k1

)
− qEx

m1E + m2x
. (86)

Now let us consider the equation

dv1
dt = r1v1

(
1− v1

k1
+ a (y∗−ε)

k1

)
− qEv1

m1E+m2v1
. (87)

From (77) and Lemma 2, it follows that system (87) admits a unique positive equilib-
rium v∗1(ε), which is globally stable, i.e.,

lim
t→+∞

v(t) = v∗1(ε), (88)

where

v∗1(ε) =
−E2 +

√
E2

2 − 4E1E3

2E1
, (89)
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and
E1 = m2r1

(
1 + a (y∗−ε)

k1

)
,

E2 = Em1r1

(
1 + a (y∗−ε)

k1

)
− k1m2r1

(
1 + a y∗−ε

k1

)2
,

E3 = Ek1q− Ek1m1r1

(
1 + a (y∗−ε)

k1

)2
.

(90)

By comparison theorem of differential equation, (86) and (87), we have:

lim inf
t→+∞

x(t) ≥ v∗1(ε). (91)

(85) and (91) lead to:

v∗1(ε) ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ u∗1(ε). (92)

Since ε is enough small positive constant, setting ε→ 0 in (92) leads to:

lim
t→+∞

x(t) = x∗c , (93)

where

x∗c (ε) =
−F2 +

√
F2

2 − 4F1F3

2F1
, (94)

and
F1 = m2r1

(
1 + a y∗

k1

)
,

F2 = Em1r1

(
1 + a y∗

k1

)
− k1m2r1

(
1 + a y∗

k1

)2
,

F3 = Ek1q
(

1 + a y∗
k1

)
− Ek1m1r1

(
1 + a y∗

k1

)2
.

(95)

Similarly to the analysis of (71)–(76), by using inequality (79), we could obtain:

lim
t→+∞

p(t) = k4

(
1 + d

y∗

k4

)
= k4 + dy∗ = k4 +

d(k2 − bk3)

1 + bc
. (96)

(78), (93) and (96) show that T15

(
x∗c , k2−bk3

1+bc , k3+ck2
1+bc , k4 +

d(k2−bk3)
1+bc

)
is globally attractive.

This completes the proof of Theorem 4.

5. Numeric Simulations

Now let us consider the following examples.

Example 1. Consider the following system

dx
dt = r1x(1− x + y)− x

2+x ,
dy
dt = y(1− y− 2z),
dz
dt = z(1− z + y),
dp
dt = p(1− p + y).

(97)

Here, corresponding to system (9), we choose r2 = r3 = r4 = k1 = k2 = k3 = k4 = c = a =
d = E = m2 = 1, q = 1, b = m1 = 2, then by simple computation, we have:
(1) For r1 = 1,

q = 1 < 2 = r1m1 (98)
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and
1 < 2 =

bk3

k2
(99)

hold, then it follows from Theorem 2 that T12

(√
5

2 −
1
2 , 0, 1, 1

)
is globally attractive. Figures 1–3

support this assertion;
(2) For r1 = 1

4 ,

r1 =
1
4
<

1
3
=

qE
m1E + m2k1

(100)

and
1 < 2 =

bk3

k2
(101)

hold, then it follows from Theorem 2 that T4(0, 0, 1, 1) is globally attractive. In this case, we will
only be concerned with the dynamic behaviors of species x, Figure 4 supports this assertion;
(3) For r1 = 9

24 , one has:

qE
m1E + m2k1

=
1
3
< r1 =

9
24

<
1
2
=

q
m1

(102)

and
1 < 2 =

bk3

k2
; (103)

in this case, conditions of Theorems 1 and 2 are not satisfied, and we have no idea about the global
dynamic behaviors of the system (97); however, the numeric simulation (Figure 5) shows that, in
this case, the first species is still extinct.

Figure 1. Dynamic behaviors of the first and second components x and y) in system (97) with the
initial condition (x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2),
respectively. One could see that x(t)→

√
5

2 −
1
2 , y(t)→ 0.
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Figure 2. Dynamic behaviors of the third component z in system (97) with the initial condition
(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that z(t)→ 1.

Figure 3. Dynamic behaviors of the forth component p in system (97) with the initial condition
(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that p(t)→ 1.
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Figure 4. Dynamic behaviors of the first species x in system (97) with r1 = 1
4 and the initial condition

(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that x(t)→ 0.

Figure 5. Dynamic behaviors of the first species x in system (97) with r1 = 9
24 and the initial condition

(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that x(t)→ 0.

Example 2. Consider the following system:

dx
dt = r1x(1− x + y)− x

2+x ,
dy
dt = y(1− y

2 −
z
2 ),

dz
dt = z(1− z + y),
dp
dt = z(1− p + y).

(104)

Here, corresponding to system (9), we choose r2 = r3 = r4 = k1 = k3 = k4 = b = c = a =
d = E = m2 = 1, q = 1, k2 = m1 = 2, by simple computation, we have:
(1) For r1 = 1,

r1

(
1 +

ay∗

k1

)
=

3
2
>

1
2
=

q
m1

(105)
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and
1 >

bk3

k2
(106)

hold, then T15

(
1.186, 0.5, 1.5, 1.5

)
is globally attractive. Figures 6–8 support this assertion;

(2) For r1 = 3
21 ,

r1

(
1 +

ay∗

k1

)
=

9
42

<
2
7
=

qE
m1E + m2(k1 + ay∗)

(107)

and
1 >

bk3

k2
(108)

hold, then it follows from Theorem 3 that T7(0, 0.5, 1, 1) is globally attractive. In this case, we will
only be concerned with the dynamic behaviors of species x, Figure 9 supports this assertion;
(3) For r1 = 6

21 , one has

qE
m1E + m2(k1 + ay∗)

=
4

21
< r1

(
1 +

ay∗

k1

)
=

18
42

<
1
2
=

q
m1

(109)

and
1 >

bk3

k2
; (110)

in this case, the conditions of Theorems 3 and 4 are not satisfied, and we have no idea about the
global dynamic behaviors of the system (104); however, the numeric simulation (Figure 10) shows
that, in this case, the first species is still extinct.

Figure 6. Dynamic behaviors of the first and second components (x and y) in system (104) with the
initial condition (x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2),
respectively. One could see that x(t)→ 1.186, y(t)→ 0.5.

Figure 7. Dynamic behaviors of the third component z in system (104) with the initial condition
(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that z(t)→ 1.5.
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Figure 8. Dynamic behaviors of the forth component p in system (104) with the initial condition
(x(0), y(0), z(0), p(0)) = (0.5, 0.5, 0.5, 0.5), (1, 1, 1, 1), (1.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2), respectively.
One could see that p(t)→ 1.5.

Figure 9. Dynamic behaviors of the first component x in system (104) with r1 = 3
21 and the ini-

tial condition (x(0), y(0), z(0), p(0)) = (0.1, 0.5, 0.5, 0.5), (1, 1, 1, 1), (0.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2),
respectively. One could see that x(t)→ 0.

Figure 10. Dynamic behaviors of the first component x in system (104) with r1 = 6
21 and the

initial condition (x(0), y(0), z(0), p(0)) = (0.1, 0.5, 0.5, 0.5), (1, 1, 1, 1), (0.5, 1.5, 1.5, 1.5) and (2, 2, 2, 2),
respectively. One could see that x(t)→ 0.

6. Conclusions

Puspitasari, Kusumawinahyu and Trisilowati [39] proposed system (9). The system has
sixteen equilibria. By computation, they showed that only four of them—T4, T7, T12, T15—
could be locally asymptotically stable under some suitable assumptions. This brings to our
attention that the second and third equations in system (9) are independent of the variables
x and p; therefore, we could study this subsystem previously. With the help of two Lemmas
recently proved by Zhu et al. [38], and the stability results for the subsystem (see Lemma 4),
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we finally obtained the sufficient conditions which ensure the global attractivity of those
four equilibria. Noting that the results of [39] are locally one, while ours are globally one,
it is in this sense that the results obtained here essentially improve and generalize the
main results.

It should be pointed out that all of our results are sufficient, that is, under the assump-
tion of the Theorem, globally attractive results followed. However, one could see from The-
orems 1 and 2 that for the parameter r1, which satisfies the inequality qE

m1E+m2k1
< r1 < q

m1
,

we have no idea about the dynamic behaviors of the system. One of the reviewers pointed
out that we should add some numeric simulations to show the dynamic behaviors of the
system if the conditions of Theorem are not satisfied. Our numeric simulation (Figure 5)
shows that, in this case, the first species could still be driven to extinction, which means
that Theorem 1 still has room to improve. Similarly, Theorem 3 also has room to improve.
However, at present, due to the restriction of our method, we could only give numeric
simulations. It is necessary for us to provide a thorough analysis of the dynamic behaviors
of the system (9), and we will try this later.

One could see that, for the two species commensalism model with Michaelis–Menten
type harvesting, the equilibria is increasing and the dynamic behaviors become compli-
cated. For example, Jawad [32] showed that the system may have saddle-node bifurcation.
However, for the higher dimensional system, whether the system could have saddle-node
bifurcation is unknown. From our numeric simulation, it seems that the dynamic behaviors
are not complex—is this the real case? At present we have no answer on this matter.

It is well known that a more plausible system should be a non-autonomous one,
since the coefficients of the system are variable with time, therefore, it is also necessary
to investigate the dynamic behaviors of the non-autonomous system; we leave this for
future study.
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