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Abstract: In this paper, a mathematical model for African swine fever is modified by considering
the swine farm with the contaminated human vector that is able to infect and spread the disease
among swine farms. In the developed model, we have divided the swine farm density into three
related groups, namely the susceptible swine farm compartment, latent swine farm compartment,
and infectious swine farm compartment. On the other hand, the human vector population density
has been separated into two classes, namely the susceptible human vector compartment and the
infectious human vector compartment. After that, we use this model and a quarantine strategy to
analyze the spread of the infection. In addition, the basic reproduction number R0 is determined by
using the next-generation matrix, which can analyze the stability of the model. Finally, the numerical
simulations of the proposed model are illustrated to confirm the results from theorems. The results
showed that the transmission coefficient values per unit of time per individual between the human
vector and the swine farm resulted in the spread of African swine fever.

Keywords: African swine fever; mathematical model; stability; infectious disease; human vector;
basic reproduction number
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1. Introduction

African swine fever (ASF) is a devastating transboundary animal disease in swine
(domestic pig) that has been spreading over many regions of the world for decades [1].
The etiological agent of ASF is the only member in the genus Asfivirus, family Asfarviridae,
a double-stranded DNA virus called African swine fever virus (ASFV) [2]. Although ASF
cannot be transmitted from swine to humans [3], ASFV can transmit between swine on the
same farm by direct contact. At the same time, the spread between farms is caused not
only by ticks [4] or feeding a swine with infectious product [5] but also by a vector such as
contaminated humans [6,7]. In addition, since ASFV has an extremely high potential to
survive in an infected swine or a pork product for a long time, a few infected swine farms
can easily lead to a transboundary outbreak. Moreover, at present, there is no effective
vaccine or treatment available for this disease [2,8]. ASF can affect an infected swine with
up to 100% chance of mortality [9,10]. Since pork plays a crucial role as a human food
source in many countries, the endemic of ASF may result in severe economic loss. As a
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consequence, the measure that may be used to prevent the endemic is to exterminate all
swine on the farm that found the disease.

In order to overcome this disease, a vaccine for ASF may be the best solution that we
can have to fight the virus. However, in the situation that there is no vaccine available
yet [11,12], the understanding of the endemic behavior and situation is an essential factor in
controlling the severity of the disease. Therefore, research in the medical science field may
be the best way that leads to the invention of the vaccine. On the other hand, to understand
disease behavior, mathematical modeling is one of the powerful techniques that have been
widely carried out to provide the information and accurate prediction of a lot of disease
phenomena [13–15].

Traditionally, mathematical models of the ASF endemic have been studied by con-
sidering individual swine [15–18]. Barongo et al. [16] presented a SEICD model where
S denotes a susceptible state, E denotes the state that is infected but not yet infectious,
I denotes the infectious state, C denotes the carrier state, and D denotes the dead state.
The model emphasized the need for biosecurity and vaccines to overcome the disease.
Halasa et al. [19] studied the model for ASF transmission that separates swine into five
classes: susceptible, latent, subclinical, and recovered. The result shows the significance
of subclinical swine’s infectiousness and the dead swine’s residues in the spread of ASF.
Ma et al. [20] investigated the transmission of ASF in Vietnam using a dynamic SIR model.
The result shows that an effective vaccine (if it exists) would play a crucial role in preventing
the ASF endemic. However, biosecurity can still be an essential tool to control the spread of
the disease on a small-scale farm. However, swine are reared on a dense farm containing
more than 100 individuals. Hence, ASF infection on all swine on a farm occurs almost at
the same time. In this regard, it is a suitable choice to study disease by considering the
spread among individual farms in a study of individual swine.

The ASF model is constructed based on a system of ordinary differential equations
describing the rate of change for involving variables. By linearlizing the system, the model
can be rewritten in the form of matrix equation X′ = AX. Suppose that the solution X(t) is
in the form X = Ceλt, the behavior of the solution can be analyzed using the well-known
method known as Eigenvector-Eigenvalue problem.

According to the argument mentioned above, to study endemic ASF, we develop a
mathematical model by considering the swine population in the model as individual farms.
The SLI-SC (Susceptible-Latent-Infectious-Susceptible-Contaminated) model is presented
in Section 2. The analysis of the mathematical model is shown in Section 3. Then, Section 4
discusses the numerical examples of the proposed model. Finally, a conclusion is presented
Section 5.

2. Mathematical Modeling

In this study, an individual in the population is considered an individual swine farm.
Based on the SIR and other involving models [21–25], we divided the population into three
classes including susceptible class (S), latent class (L), and infectious class (I). Since the
transmission of ASF disease between swine farms is a consequence of the infectious vector,
the susceptible class (Sv) and contaminated class (Cv) of the vector are taken into account.
Therefore, we can describe the behavior of the ASF endemic by using the SLI-SC model
as follows:

dS
dt

= Λ− ρSCv − µS,

dL
dt

= ρSCv − ηL− µL,

dI
dt

= ηL− (µ + γ + ω)I,

dSv

dt
= Λv − αSvL− βSv I − σSv,

dCv

dt
= αSvL + βSv I − σCv,

(1)
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where Λ denotes the recruited rate, ρ denotes the transmission coefficient per unit of time
per individual in the susceptible class S contact with the contaminated class Cv, η denotes
the transition rate per unit of time from the latent class L to the infectious class I, α and β
denote the transmission coefficient per unit of time per individual in the susceptible class
Sv contact with the latent class L and the infectious class I, respectively, µ, γ, ω denote the
mortality rate of swine per farm by nature, disease, government control policies for ASF,
respectively, and Λv and σ denote the recruited and mortality rate of the vector.

A flowchart of the SLI-SC model of swine and human vector described by the sys-
tem (1) is shown in Figure 1.

SΛ

µ

L

µ

SvΛv

σ

I

µ

Cv

σ

γ

ω
ρSCv η

αSvL, βSvI

Figure 1. Flowchart of SLI-SC (Susceptible-Latent-Infectious-Susceptible-Contaminated) model for
swine and human vector.

3. Analysis of the Model

In this section, we investigate the existence of the solution of the proposed model (1),
the positivity of the solution, and the equilibria of the model. Then, the basic reproduction
number of the model is obtained. We also propose theorems representing the sufficient condi-
tions for local and global stability of both disease-free equilibrium and endemic equilibrium.

3.1. Existence of the Solution

Lemma 1 (Derrick and Groosman theorem [26]). Let Ω denote the region

|t− t0| ≤ a , ||u− u0|| ≤ 1, u = (u1, u2, . . . , un), u0 = (u10, u20, . . . , un0) ,

and suppose that f (t, u) satisfies the Lipchitz condition

|| f (t, u1)− f (t, u2)|| ≤ k||u1 − u2||

whenever the pairs (t, u1) and (t, u2) belong to Ω where k is a positive constant. Then, there is
a constant a ≥ 0 such that there exists a unique continuous vector solution of u(t) of the system in
the interval t− t0 ≤ a.

It is important to note that the condition is satisfied by the requirement that ∂ fi/∂uj for i,
j = 1, 2, 3, . . . are continuous and bounded in Ω.

Theorem 1. The solution of the model (1) with the initial conditions S(0) ≥ 0, L(0) ≥ 0, I(0) ≥ 0,
Sv(0) ≥ 0, Cv(0) ≥ 0 exists and is unique in R5

+ for all t ≥ 0.
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Proof. The right-hand sides of the system (1) can be expressed as follows:

f1 = Λ− ρSCv − µS,

f2 = ρSCv − ηL− µL,

f3 = ηL− (µ + γ + ω)I,

f4 = Λv − αSvL− βSv I − σSv,

f5 = αSvL + βSv I − σCv.

It is easy to obtain that ∂ fi/∂ui are continuous and |∂ fi/∂ui| < ∞ for i, j = 1, 2, . . . , 5,
where u1 = S, u2 = L, u3 = I, u4 = Sv, and u5 = Cv. By Lemma 1, the system (1) has
a unique solution.

3.2. Positivity of the Solution

Theorem 2. The solution of the system (1) with the initial conditions S(0) ≥ 0, L(0) ≥ 0,
I(0) ≥ 0, Sv(0) ≥ 0, Cv(0) ≥ 0 is positive in R5 for all t ≥ 0.

Proof. Positivity of S(t): Suppose there exists t0 such that dS(t0)/dt < 0 and S(t0) = 0.
Considering the first equation of system (1), we have dS/dt = Λ− ρSCv− µS. When t = t0,
it follows that S(t0) = 0 by assumption. Then, dS(t0)/dt = Λ > 0. This contradicts the
assumption that dS(t0)/dt < 0. By contradiction, S(t) ≥ 0 for all t ≥ 0.

Positivity of Sv(t): Suppose there exists t0 such that dSv(t0)/dt < 0 and Sv(t0) = 0.
Considering the fourth equation of system (1), we have dSv/dt = Λv − αSvL− βSv I − σSv.
When t = t0, it follows that Sv(t0) = 0 by assumption. Then, dSv(t0)/dt = Λv > 0. This
contradicts the assumption that dSv(t0)/dt < 0. By contradiction, Sv(t) ≥ 0 for all t ≥ 0.

Positivity of Cv(t): Suppose there exists t0 = min{τ} such that dCv(τ)/dt < 0 and
Cv(τ) = 0. Thus, Cv(t) > 0 for all 0 < t < t0. Considering the second term of system (1),
dL/dt ≥ −ηL− µL for t ∈ (0, t0). After applying integration, the solution can be written
as L(t) ≥ L(0)exp(−(η + µ)t) > 0 for t ∈ (0, t0). By continuity, L(t0) > 0. Similarly,
I(t) ≥ I(0)exp(−(µ + γ + ω)t) > 0 for t ∈ (0, t0) and I(t0) > 0. The slope of Cv at t0 are
defined by dCv(t0)/dt = αSv(t0)L(t0) + βSv(t0)I(t0)− σCv(t0) ≥ 0. This contradicts the
assumption that dCv(t0)/dt < 0. By contradiction, Cv(t) ≥ 0 for all t ≥ 0.

Positivity of L(t): Suppose there exists t0 such that dL(t0)/dt < 0 and L(t0) = 0.
Considering the second equation of system (1), we have dL/dt = ρSCv − ηL− µL. When
t = t0, it follows that L(t0) = 0 by assumption. Then dL(t0)/dt = ρS(t0)Cv(t0) ≥ 0. This
contradicts the assumption that dL(t0)/dt < 0. By contradiction, L(t) ≥ 0 for all t ≥ 0.

Positivity of I(t): Suppose there exists t0 such that dI(t0)/dt < 0 and I(t0) = 0.
Considering the third equation of system (1), we have dI/dt = ηL− (µ + γ + ω)I. When
t = t0, it follows that I(t0) = 0 by assumption. Then dI(t0)/dt = ηL(t0) ≥ 0. This
contradicts the assumption that dI(t0)/dt < 0. By contradiction, I(t) ≥ 0 for all t ≥ 0.

Therefore, the solution of system (1) is a positive quantity in R5 for all t ≥ 0.

3.3. Invariant Region

Let N(t) and Nv(t) are the total number of swine farm and the total human vector
population at time t, respectively. It follows that

dN
dt

=
dS
dt

+
dL
dt

+
dI
dt

= Λ− µN − (γ + ω)I.

Then,

lim
sup t→∞

N ≤ Λ
µ

.
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Similarly,

dNv

dt
=

dSv

dt
+

dCv

dt
= Λv − σNv.

Then, we get

lim
sup t→∞

Nv ≤
Λv

σ
.

Therefore, the possible region for the system (1) is

Ω =

{
(S, L, I, Sv, Cv) ∈ R5 : S ≥ 0, L ≥ 0, I ≥ 0, Sv ≥ 0, Cv ≥ 0, N + Nv ≤

Λ
µ
+

Λv

σ

}
.

3.4. Equilibria

In this section, we derive equilibrium of the system (1) by equating all equations in
the system (1) to zero. We obtain two equilibrium points as follows:

(i) The disease-free equilibrium (DFE)

E0 = (S0, L0, I0, S0
v, C0

v) =

(
Λ
µ

, 0, 0,
Λv

σ
, 0
)

,

(ii) The endemic equilibrium
E∗ = (S∗, L∗, I∗, S∗v , C∗v )

where

S∗ =
(ΛC + σAB)σ

CD
,

L∗ =
ΛΛvC− µσ2 AB

BCD
,

I∗ =
ηL∗

A
,

S∗v =
ABσ

ρCS∗
,

C∗v =
ΛΛvρC− µσ2 AB
ρσ(ΛC + σAB)

,

with A = γ + µ + ω, B = η + µ, C = αA + βη, D = Λvρ + µσ.

3.5. The Basic Reproduction Number (R0)

With the regard to Driessche’s work [27], we determine the basic reproduction number
R0, the number of the infectious case produced by one infectious case where all populations
are in the susceptible class, using the next-generation matrix method [28]. The matrices are
defined as

f =

 0
0

αSvL + βSv I

, v =

BL− ρSCv
AI − ηL

σCv

. (2)

Then, the Jacobian matrices of f and v can be obtained in the form of

F =

 0 0 0
0 0 0

αSv βSv 0

, V =

 B 0 −ρS
−η A 0
0 0 σ

, (3)
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respectively. Additionally, we can write

FV−1 =

 0 0 0
0 0 0

αSv
B + βηSv

AB
βSv
A

αρSvS
σB + βηρSvS

σAB

. (4)

Setting the determinant of FV−1 − λI to be zero yields the Eigenvalues

λ1 = λ2 = 0, (5)

and
λ3 =

ΛΛvρC
µσ2 AB

. (6)

Hence, the spectral radius is

R0 =
ΛΛvρC
µσ2 AB

, (7)

which is the basic reproduction number.

3.6. The Local Stability of Disease-Free Equilibrium

Theorem 3. The disease-free equilibrium E0 = (S0, L0, I0, S0
v, C0

v) =
(

Λ
µ , 0, 0, Λv

σ , 0
)

is locally
asymptotically stable if R0 < 1.

Proof. Consider the model expressed in the system (1), we can derive the Jacobian matrix
at DFE as

J(E0) =


−µ 0 0 0 − ρΛ

µ

0 −B 0 0 ρΛ
µ

0 η −A 0 0
0 − αΛv

σ − βΛv
σ −σ 0

0 αΛv
σ

βΛv
σ 0 −σ

.

Calculating det(J(E0)− λI) = 0, we have the Eigenvalues

λ1 = −µ, λ2 = −σ,

and the roots of the following equation

c3λ3 + c2λ2 + c1λ + c0 = 0. (8)

Notice that the coefficients of above polynomial equation of λ are as follows:

c3 ≡ µσ > 0,

c2 ≡ µσ(A + B + σ) > 0,

c1 ≡ ABµσ + Aµσ2 + Bµσ2 −ΛΛvαρ,

c0 ≡ ABµσ2 − AΛΛvαρ−ΛΛvβηρ.

Let us consider

ΛΛvαρ = µσ2B(
ΛΛvρ

µσ2 AB
(αA + βη − βη))

= µσ2B(R0 −
ΛΛvρβη

µσ2 AB
)

= µσ2BR0 −
ΛΛvρβη

A
.
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We can write the coefficient c1 as

c1 = ABµσ + Aµσ2 + Bµσ2 − µσ2BR0 +
ΛΛvρβη

A

= Aµσ(B + σ) +
ΛΛvρβη

A
+ Bµσ2(1− R0).

Therefore, c1 > 0 if

R0 < 1 +
A2µσ(B + σ) + ΛΛvρβη

A
ABµσ2 . (9)

Now, we rearrange the expression

AΛΛvαρ + ΛΛvβηρ =
ΛΛvρ(αA + βη)

σ2µAB
σ2µ AB

= R0σ2µAB.

Then, the coefficient c0 can be rewritten as

c0 = ABµσ2 − R0σ2µ AB

= ABµσ2(1− R0).

If R0 < 1, we have c0 > 0.
Applying the Descart’s rule, we can guarantee that all roots of Equation (8) have

negative real part by when R0 < 1. Therefore, E0 is locally asymptotically stable when
R0 < 1, as desired.

3.7. The Local Stability of Endemic Equilibrium

Theorem 4. The endemic equilibrium point E∗ = (S∗, L∗, I∗, S∗v , C∗v ) exists and is locally asymp-
totically stable if R0 > 1.

Proof. The endemic equilibrium point E∗ = (S∗, L∗, I∗, S∗v , C∗v ) can be expressed by

S∗ =
(ΛC + σAB)σ

CD
,

L∗ =
ΛΛvC− µσ2 AB

BCD
=

ΛΛvρ(R0 − 1)
BDR0

,

I∗ =
ηL∗

A
,

S∗v =
ABσ

ρCS∗
,

C∗v =
ΛΛvρC− µσ2 AB
ρσ(ΛC + σAB)

=
ΛΛvC(R0 − 1)

R0S∗
.

It is easy to obtain that E∗ exists if R0 > 1. Next, we consider the model expressed by
the system (1). The jacobian matrix at the endemic equilibrium can be written as

J(E∗) =


−ρC∗v − µ 0 0 0 −ρS∗

ρC∗v −B 0 0 ρS∗

0 η −A 0 0
0 −αS∗v −βS∗v −αL∗ − βI∗ − σ 0
0 αS∗v βS∗v αL∗ + βI∗ −σ

.
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Calculating det(J(E∗)− λI) = 0, the Eigenvalues are the roots of the following equation

k5λ5 + k4λ4 + k3λ3 + k2λ2 + k1λ + k0 = 0. (10)

Notice that the coefficients of Equation (10) can be expressed as below

k5 ≡ACR0S∗ > 0,

k4 ≡AC2ΛΛvρ(R0 − 1) + C2L∗S∗R0 + ACS∗R0(A + B + µ + 2σ),

k3 ≡C3ΛΛvρL∗(R0 − 1) + AC2ΛΛvρ(R0 − 1)(A + B + 2σ)

+ ABβησS∗R0 + C2L∗S∗R0(A + B + µ + σ)

+ ACS∗R0(AB + Aµ + 2Aσ + Bµ + 3Bσ + 2µσ + σ2),

k2 ≡AC2ΛΛvρ(R0 − 1)(AB + 2Aσ + 2Bσ + σ2) + A2Bασ2S∗(R0 − 1)

+ C3ΛΛvρL∗(R0 − 1)(A + B + σ) + A2BσS∗(2R0 − 1)(C + αµ)

+ ABβησS∗R0(2µ + σ) + ACS∗R0(ABµ + 2Aµσ + Aσ2 + µσ2)

+ C2L∗S∗R0(AB + Aµ + Aσ + Bµ + Bσ + µσ),

k1 ≡C3ΛΛvρL∗(R0 − 1)(AB + Aσ + Bσ) + AC2ΛΛvρσ(R0 − 1)(2B + Bσ + σ)

+ C2L∗S∗R0(µσ(A + B) + AB(µ + σ)) + AµσS∗R0(AC(B + σ) + Bβησ),

k0 ≡ABC3ΛΛvρσL∗(R0 − 1) + A2BC2ΛΛvρσ2(R0 − 1) + ABC2µσL∗S∗R0.

Applying the Descart’s rule, we can guarantee that all roots of Equation (10) have
negative real part by

k4 > 0, k3 > 0, k2 > 0, k1 > 0, and k0 > 0.

As a consequence, R0 > 1. Therefore, E∗ is locally asymptotically stable if R0 > 1,
as desired.

3.8. The Global Stability of Disease-Free Equilibrium

Theorem 5. The disease-free equilibrium E0 = (S0, L0, I0, S0
v, C0

v) =
(

Λ
µ , 0, 0, Λv

σ , 0
)

is globally
asymptotically stable if R0 < 1.

Proof. To prove the global asymptotic stability of the disease-free equilibrium, we use the
method of Lyapunov function. Systematically, we define a Lyapunov function V such that:

V =
Λv(αA + βη)

σ2 AB
L +

Λvβ

σ2 A
I +

1
σ

Cv.

Then,

dV
dt

=
Λv(αA + βη)

σ2 AB
dL
dt

+
Λvβ

σ2 A
dI
dt

+
1
σ

dCv

dt

=
Λv(αA + βη)

σ2 AB
[ρSCv − BL] +

Λvβ

σ2 A
[ηL + AI] +

1
σ
[αSvL + βSv I − σCv]

= (R0 − 1)Cv.

So dV/dt ≤ 0, if R0 < 1. Furthermore, dV/dt = 0 if Cv = 0 or R0 = 1. From this we
see that, E0 = (S0, L0, I0, S0

v, C0
v) =

(
Λ
µ , 0, 0, Λv

σ , 0
)

is the only singleton in {(S0, L0, I0, S0
v, C0

v)

∈ Ω : dV/dt = 0}. Therefore by the principle of (LaSalle, 1976), E0 is globally asymptoti-
cally stable if R0 < 1.
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3.9. The Global Stability of Endemic Equilibrium

Theorem 6. The endemic equilibrium point E∗ = (S∗, L∗, I∗, S∗v , C∗v ) exists and is globally asymp-
totically stable if R0 > 1 and P < Q.

Proof. To prove the global asymptotic stability of the endemic equilibrium, we use the
method of Lyapunov function. Systematically, we define a Lyapunov function as:

V(S∗, L∗, I∗, S∗v , C∗v ) =
(

S− S∗ ln
S
S∗

)
+

(
L− L∗ ln

L
L∗

)
+

(
I − I∗ ln

I
i∗

)
+

(
Sv − S∗v ln

Sv

S∗v

)
+

(
Cv − C∗v ln

Cv

C∗v

)
.

Note that E∗ exists if R0 > 1.
By direct calculating the derivative of V along the system (1) we have,

dV
dt

=

(
1− S∗

S

)
dS
dt

+

(
1− L∗

L

)
dL
dt

+

(
1− I∗

I

)
dI
dt

+

(
1− S∗v

Sv

)
dSv

dt
+

(
1− C∗v

Cv

)
dCv

dt

=

(
1− S∗

S

)
[Λ− ρSCv − µS] +

(
1− L∗

L

)
[ρSCv − BL] +

(
1− I∗

I

)
[ηL− AI]

+

(
1− S∗v

Sv

)
[Λv − αSvL− βSv I − σSv] +

(
1− C∗v

Cv

)
[αSvL + βSv I − σCv]

= [Λ + ρCvS∗ + µS∗ + BL∗ + AI∗ + αLS∗v + βIS∗v + σS∗v + σC∗v + Λv]

−
[

Λ
S∗

S
+ ρSCv

L∗

L
+ µS + ηL

I∗

I
+ µL + AI + αSvL

C∗v
Cv

+ βSv I
C∗v
Cv

+ σSv + σC∗v + Λv
S∗v
Sv

]
.

Thus collecting positive and negative terms together we obtain

dV
dt

= P−Q.

Here,

P ≡ Λ + ρCvS∗ + µS∗ + BL∗ + AI∗ + αLS∗v + βIS∗v + σS∗v + σC∗v + Λv,

Q ≡ Λ
S∗

S
+ ρSCv

L∗

L
+ µS + ηL

I∗

I
+ µL + AI + αSvL

C∗v
Cv

+ βSv I
C∗v
Cv

+ σSv + σC∗v + Λv
S∗v
Sv

.

Thus, if P < Q, then dV/dt ≤ 0. Furthermore, dV/dt = 0 if and only if S = S∗, L = L∗,
I = I∗, Sv = S∗v , Cv = C∗v . Therefore, the largest compact invariant set in {(S∗, L∗, I∗, S∗v , C∗v )
∈ Ω : dV/dt = 0} is the singleton E∗ is the endemic equilibrium of the system (1).
By LaSalle’s invariant principle (LaSalle’s, 1976), it implies that E∗ exists and is globally
asymptotically stable in Ω if R0 > 1 and P < Q.

4. Numerical Examples and Discussion

The numerical results of the system (1) are computed by using MATLAB with the
given initial values: S(0) = 500, L(0) = 10, I(0) = 1, Sv(0) = 50, Cv(0) = 1. The numerical
results of the system (1) with the parameter values as shown in Table 1.

The solution trajectories satisfying Theorem 3 with the remaining parameter values
ρ = 0.05, α = 0.01, and β = 0.01 tend to the disease-free equilibrium (E0) as shown in
Figure 2. The calculated reproduction number of this case is R0 = 0.3571 < 1.

As a result, the densities of the susceptible swine farm (S) and the susceptible human
vector (Sv) dramatically decrease at the beginning of the outbreak. After that, they slightly
increase and tend to positive equilibrium numbers S0 and S0

v due to the optimal disease
control. On the other hand, the densities of the latent swine farm (L), the infectious swine
farm (I), and the contaminated human vector (Cv) increase when the spread of the disease
occurs. Then, they approach zero since the disease dies out, as shown in Figure 2a,b.
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Table 1. Parameter values of the system (1).

Parameter Value

Λ 10
µ 0.2
η 0.6
γ 0.8
ω 0.4
Λv 2
σ 0.5
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Figure 2. Simulation results of the system (1): (a) the time series of the susceptible swine farm
density (S), the latent swine farm density (L), and the infectious swine farm density (I); (b) the time
series of the susceptible human vector population density (Sv), and the contaminated human vector
population density (Cv). The solution trajectory tends toward the disease free equilibrium (E0) when
R0 < 1.

The solution trajectories tend to the endemic equilibrium (E∗) which satisfy Theorem 4
with the remaining parameter values ρ = 0.2, α = 0.1, and β = 0.2 as shown in Figure 3.
The calculated reproduction number of this case is R0 = 18.5714 > 1.
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Figure 3. Simulation results of system (1): (a) the time series of susceptible swine farm density (S),
latent swine farm density (L), and infectious swine farm density (I); (b) the time series of susceptible
human vector population density (Sv), and contaminated human vector population density (Cv).
The solution trajectory tends toward the endemic equilibrium (E∗) when R0 > 1.

The densities of the susceptible swine farm (S) and the susceptible human vector
(Sv) dramatically decrease at the beginning of the outbreak. Then, these densities gently
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increase and approach positive equilibrium numbers S0 and S0
v similar to the previous case.

However, the densities of the latent swine farm (L), the infectious swine farm (I), and the
contaminated human vector density Cv are high and steep when the disease cannot be
controlled. Finally, the solution trajectories approach positive values since the disease still
appears in both swine farms and human vectors, as shown in Figure 3a,b.

4.1. The Effect of the Contacting Human Vector Rate ρ

The dynamic of ASF is studied in five different contact rates ρ = 0.1, 0.3, 0.5, 0.7, and
0.9 with α = 0.01 and β = 0.02. Figure 4a shows that the density of the latent swine
farm sharply rises at the beginning time, and then dramatically drops for all contact rates
ρ. With the constant rate ρ = 0.9, the latent swine farm density is around 15 as time t
approaches infinity. This means the ASF endemic still exists. The density of the latent swine
farm decreases at a higher rate as the contact rate ρ decreases. Additionally, if the value
of the contact rate ρ is low enough (ρ < 0.1077) resulting in R0 < 1, the latent swine farm
density continuously falls off as t approaches infinity. Since the latent swine farm density
drops to zero, the endemic is over. The similar result for the density of infectious swine
farms can be observed in Figure 4b. As a result, the contact rate ρ significantly affects both
latent and infectious swine farm densities. Moreover, this result confirms that the basic
reproduction number R0 obtained in Section 3 varies directly as ρ. Therefore, when R0 < 1,
the contact rate ρ between susceptible swine farm and contaminated human should be as
low as possible for the disease to die out.
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Figure 4. Changes in (a) the latent swine farm density L(t) and (b) the infectious swine farm density
I(t) with time at various value of ρ.

4.2. The Effect of the Contacting Human Vector Rate α

Figure 5 presents the effect of the contact rate α between the susceptible human vector
and the latent swine farm on ASF endemic. The study has been carried out with five given
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values of α = 0.005, 0.010, 0.015, 0.020, and 0.025 with ρ = 0.1 and β = 0.01. It can be
observed that after the peak, the densities of the latent swine farm and infectious swine
farm drastically decrease as time increases. Moreover, the latent and infectious swine farm
densities as t goes to infinity approach a lower value when α decreases. Indeed, the latent
and infectious swine farm densities approach a positive number when α > 0.0157 (R0 > 1),
but approach zero when α < 0.0157 (R0 < 1). Consequently, it can be interpreted that the
endemic of ASF is more controllable when the contact between susceptible human vector
and latent swine farm is restricted. This result is also consistent with the analytical basic
reproduction number R0 in Section 3, i.e., R0 increases with an increase in α.
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Figure 5. Changes in (a) the latent swine farm density L(t) and (b) the infectious swine farm density
I(t) with time at various value of α.

4.3. The Effect of the Contacting Human Vector Rate β

The variation of swine farm density against time is demonstrated in Figure 6 using the
following values of contact rates between susceptible human vector and infectious swine
farm β = 0.01, 0.03, 0.05, 0.07, and 0.09 with ρ = 0.1 and α = 0.01. The result illustrates
the changes in the latent and infectious swine farm densities analogous to the pattern of
densities showing the effect of ρ (Figure 4) and α (Figure 5). Hence, the contact rate β plays a
significant role in the ASF endemic. The less the contact between susceptible human vector
and infectious swine farm, the better the ASF endemic situation. This consequence agrees
with the analytical basic reproduction number R0 that is, R0 increases with an increase in β.
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Figure 6. Changes in (a) the latent swine farm density L(t) and (b) the infectious swine farm density
I(t) with time at various value of β.

5. Conclusions

We propose the novel mathematical model of ASF endemic by considering the swine
population as an individual farm instead. This consideration should yield a more realistic
situation in the ASF endemic since a swine farm is usually located separately from others,
and ASF spreads very rapidly inside a swine farm. In this study, the ASF transmission is
caused by a contaminated human. The results show that the contact between humans and
swine farms when one is infected or contaminated plays a crucial role in controlling the ASF
endemic. Indeed, the lower the contact rates, the more controllable the endemic. Moreover,
if the contact between humans and swine farms is restricted properly, the endemic will be
under control and, eventually, end.
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Nomenclature

S density of susceptible swine farm farm per area unit
L density of latent swine farm farm per area unit
I density of infectious swine farm farm per area unit
Sv density of susceptible human vector vector unit per area unit
Cv density of contaminated human vector vector unit per area unit
Λ recruited rate of swine farm farm per area unit per unit of time
Λv recruited rate of human vector vector unit per area unit per unit of time
µ mortality rate of swine farm by nature per unit of time
γ mortality rate of swine farm by ASF per unit of time
ω mortality rate of swine farm per unit of time

by government control policy for ASF
σ mortality rate of human vector by nature per unit of time
η transmission rate from L to I per unit of time
ρ transmission rate from S to L through Cv area unit per vector unit per unit of time
α transmission rate from Sv to Cv through L area unit per farm per unit of time
β transmission rate from Sv to Cv through I area unit per farm per unit of time
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