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Abstract: In this article, we derive Chen’s inequalities involving Chen’s δ-invariant δM, Riemannian
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1. Introduction

In submanifold theory, obtaining the relationship between an intrinsic invariant and
an extrinsic invariant has been the primary goal of many geometers in recent decades. Chen
invariants were introduced by B.Y. Chen [1] to tackle the question raised by Chen concern-
ing the existence of minimal immersions into a Euclidean space of arbitrary dimension [2].
Chen’s δ-invariant δM of a Riemannian manifold M introduced by Chen is

δM(x) = τ(x)− inf{K(Π)|Π is a plane section ⊂ Tx M}, (1)

where τ is the scalar curvature of M.
In [1], Chen obtained an inequality for a Riemannian submanifold Mm of a real space

form M̃ with constant sectional curvature c as

δM ≤
m2(m− 2)
2(m− 1)

‖ H ‖2 +
1
2
(m + 1)(m− 2)c, (2)

where H is the mean curvature of the submanifold Mm. Equation (2) is known as the first
Chen inequality.

Then in [3], Chen gave the inequality for a Riemannian submanifold Mm of complex-
space-form M̃n(4c) as follows:

δM ≤
m2(m− 2)
2(m− 1)

‖ H ‖2 +
1
2
(m + 1)(m− 2)c +

3
2
‖ P ‖2 c− 3Θ(π)c. (3)

Afterward, many authors obtained Chen’s inequalities for different submanifolds in
various ambient spaces, such as the Kenmotsu space form [4], the Sasakian-space-form [5],
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the Cosympletic space form [6], the Riemannian manifold of quasi-constant curvature [7],
generalized space forms [8,9], Statistical manifolds [10–12], quaternionic space forms [13]
and the GRW spacetime [14].

Qu and Wang [15] introduced the notion of a special type of quarter-symmetric connec-
tion as a generalization of a semi-symmetric metric connection [16] and a semi-symmetric
non-metric connection [17]. They studied the Einstein warped product and multiple warped
products with a quarter-symmetric connection [15]. In [18], the authors obtained Chen’s
inequalities for submanifolds of real space forms endowed with a quarter-symmetric
connection. Mihai and Özgür [19] obtained the Chen inequalities for submanifolds of
complex space forms and Sasakian-space-forms with a semi-symmetric metric connec-
tion. Wang [20] obtained Chen inequalities for submanifolds of complex space forms and
Sasakian-space-forms with quarter-symmetric connections which improved the results of
Mihai and Özgür [19]. Sular [21] obtained Chen inequalities for submanifolds of general-
ized space forms with a semi-symmetric metric connection. Al-Khaldi et al. [22] obtained
the Chen–Ricci inequalities Lagrangian submanifold in generalized complex space form
and a Legendrian submanifold in a generalized Sasakian-space-form endowed with the
quarter-symmetric connection.

As a continuation of their studies, we obtained Chen inequalities for submanifolds of
generalized Sasakian-space-form admitting a quarter-symmetric connection. The signifi-
cance of this study is that it generalizes a large number of previously obtained results, some
of which are [20,21]. The paper is organized as follows. In Section 2, we recall the properties
of the quarter-symmetric connection. In Section 3, we establish the B.Y. Chen inequalities
for submanifolds of a generalized Sasakian-space-form endowed with a quarter-symmetric
connection. First, we prove the following inequality and also look at its equality case.

Theorem 1. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.

Next, we obtain bounds for the Riemannian invariant δ(m1, . . . , mk) and a Ricci curva-
ture in terms of the scalar curvature of the r-plane section L, squared mean curvature and
some special functions. Among others, we obtain the inequality involving the Riemannian
invariant Θk, 2 ≤ k ≤ m, as follows:

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2

+
λ

m
(ψ1 + ψ2) +

µ

m
ψ2(ψ1 − ψ2) + (ψ1 − ψ2)Λ(H).

Using Theorem 1 in Section 4, we derive Chen inequalities for the bi-slant submanifold
of generalized Sasakian-space-forms.
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2. Preliminaries

Suppose that M̃m+p is an (m+ p)-dimensional Riemannian manifold with Riemannian
metric g. A linear connection ∇ is known as a quarter-symmetric connection if its torsion
tensor T is presented by

T(X1, X2) = ∇X1 X2 −∇X2 X1 − [X1, X2]

satisfies
T(X1, X2) = Λ(X2)ϕX1 −Λ(X1)ϕX2,

where Λ is a 1-form, P is a vector field given by Λ(X1) = g(X1, P), and ϕ is (1, 1)-tensor.
In [15], the authors introduced a special type of quarter-symmetric connection defined as:

∇X1 X2 = ∇̂X1 X2 + ψ1Λ(X2)X1 − ψ2g(X1, X2)P, (4)

where ∇̂ denote the Levi–Civita connection. It is easy to see that the quarter-symmetric
connection ∇ includes the semi-symmetric metric connection (ψ1 = ψ2 = 1) and the
semi-symmetric non-metric connection (ψ1 = 1, ψ2 = 0). Let the curvature tensor of ∇ be

R(X1, X2)X3 = ∇X1∇X2 X3 −∇X2∇X1 X3 −∇[X1,X2]
X3.

Similarly, the curvature tensor R̂ of ∇̂ can be defined as the same.
Let Mm be an m-dimensional submanifold of an (m + p)-dimensional Riemannian

manifold M̃m+p endowed with the quarter-symmetric connection ∇ and the Levi–Civita

connection ∇̂. Let ∇ and ∇̂ denote the induced quarter-symmetric connection and the
induced Levi–Civita connection on the submanifold M. The Gauss formula with respect to
∇ and ∇̂ can be presented as

∇X1 X2 = ∇X1 X2 + h(X1, X2), X1, X2 ∈ Γ(TM)

∇̂X1 X2 = ∇̂X1 X2 + ĥ(X1, X2), X1, X2 ∈ Γ(TM)

where h and ĥ are the second fundamental forms associated with the quarter-symmetric
connection ∇ and the Levi-Civita connection ∇̂, respectively, and are related as follows:

h(X1, X2) = ĥ(X1, X2)− ψ2g(X1, X2)P⊥, (5)

where P⊥ is the normal component of the vector field P on M. If PT represents that tangent
component of the vector field P on M, then P = PT + P⊥.

The curvature tensor R with respect to the quarter-symmetric connection ∇ on M̃m+p

can be expressed as [15]:

R(X1, X2, X3, X4) = R̂(X1, X2, X3, X4) + ψ1β1(X1, X3)g(X2, X3)

−ψ1β1(X2, X3)g(X1, X4) + ψ2g(X1, X3)β1(X2, X4)− ψ2g(X2, X3)β1(X1, X4)

+ψ2(ψ1 − ψ2)g(X1, X3)β2(X2, X4)− ψ2(ψ1 − ψ2)g(X2, X3)β2(X1, X4), (6)

where β1 and β2 are symmetric (0, 2)-tensor fields defined as

β1(X1, X2) = (∇̂X1 Λ)(X2)− ψ1Λ(X1)Λ(X2) +
ψ2

2
g(X1, X2)Λ(P),

and

β2(X1, X2) =
Λ(P)

2
g(X1, X2) + Λ(X1)Λ(X2).

Moreover, we assume that tr(β1) = λ and tr(β2) = µ.
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Suppose that R and R̂ are the curvature tensors of ∇ and ∇̂, respectively. Then the
Gauss equation with respect to the quarter-symmetric connection is as follows [15]:

R(X1, X2, X3, X4) = R(X1, X2, X3, X4)− g(h(X1, X4), h(X2, X3))

+g(h(X2, X4), h(X1, X3)) + (ψ1 − ψ2)g(h(X2, X3), P)g(X1, X4)

+(ψ2 − ψ1)g(h(X1, X3), P)g(X2, X4). (7)

Let {e1, . . . , em} and {em+1, . . . , em+p} be an orthonormal frame of Tx M and T⊥x M at the
point x ∈ M. Then the mean curvature vector of M associated with∇ is H = 1

m ∑m
i=1 h(ei, ej).

Similarly, the mean curvature vector of M associated to ∇̂ is Ĥ = 1
m ∑m

i=1 ĥ(ei, ej). In addition,
the squared length of h is ‖ h ‖2= ∑m

i,j=1 g(h(ei, ej), h(ei, ej).
Now, we recall some of the Riemannian invariants introduced by Chen [23] in a

Riemannian manifold. Let L be an r-dimensional subspace of Tx M, x ∈ M, r ≥ 2 and
{e1, . . . , er} an orthonormal basis of L. The scalar curvature τ of the r-plane section L is
given by

τ(L) = ∑
1≤i<j≤r

Kij, (8)

where Kij is the sectional curvature of the plane section spanned by ei and ej at x ∈ M.
Suppose that Π ⊂ Tx M is a two-plane section and K(Π) is the sectional curvature of M for
a plane section Π in Tx M, x ∈ M. Then

K(Π) =
1
2
[R(e1, e2, e2, e1)− R(e1, e2, e1, e2)]. (9)

The scalar curvature τ(x) of M at the point x is presented by

τ(x) = ∑
i<j

Kij, (10)

where {e1, . . . , em} is an orthonormal basis for Tx M.

3. B. Y. Chen Inequalities

First, we recall the well-known lemma obtained by Chen [1], which is as follows:

Lemma 1. If a1, . . . , am, am+1 are m + 1 (m ≥ 2) real numbers such that( m

∑
i=1

ai

)2
= (m− 1)

( m

∑
i=1

a2
i + am+1

)
,

then 2a1a2 ≥ am+1, with equality holding if and only if a1 + a2 = a3 = . . . = am.

Now, let M̃ be a (2n + 1)-dimensional almost contact metric manifold with the struc-
ture (ϕ, η, g, ξ) where ϕ is a (1, 1)-tensor, η is a 1-form which is dual to the Reeb vector field
ξ, and g is a Riemannian metric on M̃ which satisfies the follows [24]:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2).

Because of these conditions, we have

ϕξ = 0, η · ϕ = 0, η(X1) = g(X1, ξ),

for any vector fields X1, X2 ∈ Γ(TM̃).
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An almost contact metric manifold (M̃, ϕ, η, ξ, g) whose curvature tensor satisfies

R̂(X1, X2)X3 = f1{g(X2, X3)X1 − g(X1, X3)X2}+ f2{g(X1, ϕX3)ϕX2

−g(X2, ϕX3)ϕX1 + 2g(X1, ϕX2)ϕX3}+ f3{η(X1)η(X3)X2

−η(X2)η(X3)X1 + g(X1, X3)η(X2)ξ − g(X2, X3)η(X1)ξ}, (11)

for any vector field X1, X2, X3 ∈ Γ(TM̃) and f1, f2, f3 being differentiable functions on M̃ is
said to be a generalized Sasakian-space-form denoted by M̃( f1, f2, f3). The notion of a general-
ized Sasakian-space-form M̃( f1, f2, f3) was introduced by Alegre et al. [25], generalizing three
important contact space forms, that is, the Sasakian-space-form ( f1 = c+3

4 , f2 = f3 = c−1
4 ),

the Kenmotsu space form ( f1 = c−3
4 , f2 = f3 = c+1

4 ) and the Cosympletic space form
( f1 = f2 = f3 = c

4 ).
From (6) and (11), we obtain

R(X1, X2, X3, X4) = f1{g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)}
+ f2{g(X1, ϕX3)g(ϕX2, X4)− g(X2, ϕX3)g(ϕX1, X4)

+2g(X1, ϕX2)g(ϕX3, X4)}+ f3{η(X1)η(X3)g(X2, X4)

−η(X2)η(X3)g(X1, X4) + g(X1, X3)η(X2)η(X4)

−g(X2, X3)η(X1)η(X4)}+ ψ1β1(X1, X3)g(X2, X3)

−ψ1β1(X2, X3)g(X1, X4) + ψ2g(X1, X3)β1(X2, X4)

−ψ2g(X2, X3)β1(X1, X4) + ψ2(ψ1 − ψ2)g(X1, X3)β2(X2, X4)

−ψ2(ψ1 − ψ2)g(X2, X3)β2(X1, X4), (12)

Let Mm be a submanifold of a generalized Sasakian-space-form M̃( f1, f2, f3) of dimen-
sion (2n + 1). For any tangent vector field X1 on M, we can write ϕX1 = T X1 + FX1,
where T X1 is the tangential component, and FX1 is the normal component of ϕX1. The
squared norm of T at x ∈ M is defined as

‖ T ‖2=
m

∑
i,j=1

g2(ϕei, ej), (13)

where {e1, . . . , em} is any orthonormal basis of the tangent space Tx M and decomposing
the structural vector field ξ = ξT + ξ⊥, where ξT and ξ⊥ denotes the tangential and normal
components of ξ. Moreover, we set Θ2(Π) = g2(T e1, e2) = g2(ϕe1, e2), where {e1, e2} is
the orthonormal basis of two-plane section Π.

Theorem 2. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.
If in addition, P is a tangent vector field on Mm, then H = Ĥ and the equality case holds

at a point x ∈ M if and only if there exists an orthonormal basis {e1, . . . , em} of Tx M and an
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orthonormal basis {em+1, . . . , e2n+1} of T⊥x M such that the shape operators of M in M̃( f1, f2, f3)
at x have the following forms:

Aem+1 =


hm+1

11 0 0 . . . 0
0 hm+1

22 0 . . . 0
0 0 hm+1

11 + hm+1
22 . . . 0

...
...

...
. . .

...
0 0 0 . . . hm+1

11 + hm+1
22


Theorem and

Aer =


hr

11 hr
12 0 . . . 0

hr
12 −hr

11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

, m + 2 ≤ r ≤ 2n + 1

Proof. Let x ∈ M and {e1, e2, . . . , em}, {em+1, . . . , e2n+1} be an orthonormal basis of Tx M
and T⊥x M, respectively, then from (7), (10) and (12) we obtain

2τ(x) = m2 ‖ H ‖2 − ‖ h ‖2 +m(m− 1) f1 + 3 f2 ‖ T ‖2 −2(m− 1) f3 ‖ ξT ‖2

−(ψ1 + ψ2)λ(m− 1)− ψ2(ψ1 − ψ2)µ(m− 1)−m(m− 1)(ψ1 − ψ2)Λ(H). (14)

We set,

c = 2τ(x)− m2(m− 2)
m− 1

‖ H ‖2 −m(m− 1) f1 − 3 f2 ‖ T ‖2 +2(m− 1) f3 ‖ ξT ‖2

+(ψ1 + ψ2)λ(m− 1) + ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H), (15)

then (14) becomes

m2 ‖ H ‖2= (m− 1)
(
‖ h ‖2 +c

)
. (16)

For a chosen orthonormal basis, (16) can be written as:

( m

∑
i=1

hm+1
ii

)2
= (m− 1)

[ m

∑
i=1

(hm+1
ii )2 + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 + c
]
,

then using Lemma 1, we have

2hm+1
11 hm+1

22 ≥ ∑
i 6=j

(hm+1
ij )2 +

2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 + c. (17)

Now, let Π = span{e1, e2}, then from (7) and (12) we obtain

R(e1, e2, e2, e1) =
2n+1

∑
r=m+1

[hr
11hr

22 − (hr
12)

2]− (ψ1 − ψ2)g(h(e2, e2), P)

+ f1 + 3 f2g2(ϕe1, e2)− f3(η
2(e1) + η2(e2))

−ψ1β1(e2, e2)− ψ2β1(e1, e1)− ψ2(ψ1 − ψ2)β2(e1, e1). (18)
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and

R(e1, e2, e1, e2) =
2n+1

∑
r=m+1

[(hr
12)

2 − hr
11hr

22] + (ψ1 − ψ2)g(h(e1, e1), P)

− f1 − 3 f2g2(ϕe1, e2) + f3(η
2(e1) + η2(e2))

+ψ1β1(e1, e1) + ψ2β1(e2, e2) + ψ2(ψ1 − ψ2)β2(e2, e2). (19)

Making use of (18) and (19) in (9), we obtain

K(Π) =
2n+1

∑
r=m+1

[hr
11hr

22 − (hr
12)

2]− (ψ1 − ψ2)

2
Λ(tr(h |Π))

+ f1 + 3 f2Θ2(Π)− f3(‖ ξΠ ‖2)

−ψ1

2
tr(β1 | Π)− ψ2

2
tr(β1 |Π)− ψ2

2
(ψ1 − ψ2)tr(β2 |Π). (20)

Combining (14) and (20) gives

τ(x)− K(Π) = (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
+

2n+1

∑
r=m+1

[
∑

1≤i<j≤m
hr

iih
r
jj − hr

11hr
22 − ∑

1≤i<j≤m
(hr

ij)
2 + (hr

12)
2
]
. (21)

Making use of Lemma 2.4 [26], we have

2n+1

∑
r=m+1

[
∑

1≤i<j≤m
hr

iih
r
jj − hr

11hr
22 − ∑

1≤i<j≤m
(hr

ij)
2 + (hr

12)
2
]
≤ m2(m− 2)

2(m− 1)
‖ H ‖2 . (22)

In view of the last expression in (21), we obtain

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
. (23)

Now, if P is a tangent vector field on M, then (5) implies h = ĥ and H = Ĥ. If the
equality case (23) holds at a point x ∈ M, then the equality cases of (17) and (22) hold,
which gives
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hm+1
11 = hm+1

22 = hm+1
33 = · · · = hm+1

mm

hm+1
1j = hm+1

2j = 0, j > 2

hr
11 + hr

22 = 0, r = m + 2, . . . , 2n + 1

hr
ij = 0, i 6= j, r = m + 1, . . . , 2n + 1

hm+1
ij = 0, i 6= j, i, j > 2

Therefore, choosing a suitable orthonormal basis, the shape operators take the de-
sired forms.

Corollary 1. Under the same arguments as in Theorem 2,

1. If the structure vector field ξ is tangent to M, we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1)

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

2. If the structure vector field ξ is normal to M, we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
++

(ψ1 + ψ2)

2

(
tr(β1 |Π)

−λ(m− 1)
)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

Remark 1. It should be noted that Theorem 2 generalizes the Theorem 6 obtained in [20]. Moreover,
taking different values of fi, i = 1, 2, 3, we can obtain similar inequalities as Theorem 1 for the
Kenmotsu space form and the Cosympletic space form endowed with certain types of connections by
restricting the values of ψi, i = 1, 2.

Remark 2. If in Theorem 2, we take ψ1 = ψ2 = 1 then we obtain Theorem 5.1 [21].

Corollary 2. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric non-metric connection, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
1
2

(
tr(β1 |Π)− λ(m− 1)

)
+

1
2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.

For an integer k ≥ 0, we denote by S(m, k) the set of k-tuples (m1, . . . , mk) of integers
≥ 2 satisfying m1 < m and m1, . . . , mk ≤ m. In addition, let S(m) be the set of unordered
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k-tuples with k ≥ 0 for a fixed m. Then, for each k-tuple (m1, . . . , mk) ∈ S(m), Chen
introduced a Riemannian invariant δ(m1, . . . , mk) as follows [23]

δ(m1, . . . , mk)(x) = τ(x)− in f {τ(L1) + · · ·+ τ(Lk)}, (24)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of Tx M such that dimLj =
mj, j ∈ {1, . . . , k}. For simplicity, we set

Ψ1(Lj) = ∑
1≤i<j≤r

g2(T ei, ej), Ψ2(Lj) = ∑
1≤i<j≤r

[g(ξT , ei)
2 + g(ξT , ej)

2]

Ψ3(Lj) = ∑
1≤i<j≤r

[β1(ei, ei) + β1(ej, ej)], Ψ4(Lj) = ∑
1≤i<j≤r

[β2(ei, ei) + β2(ej, ej)]

Ψ5(Lj) = ∑
1≤i<j≤r

Λ(h(ei, ei) + h(ej, ej))

As the generalization of Theorem 2, we state and prove the following results using the
methods used in [26].

Theorem 3. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

δ(m1, . . . , mk) ≤ b(m1, . . . , mk) ‖ H ‖2 +a(m1, . . . , mk) f1

+3 f2

(‖ T ‖2

2
−

k

∑
j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ‖ ξT ‖2 −

k

∑
j=1

Ψ2(Lj)
)

− (ψ1 + ψ2)

2

(
(m− 1)λ−

k

∑
j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k

∑
j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k

∑
j=1

Ψ5(Lj)
)

,

for any k-tuples (m1, . . . , mk) ∈ S(m). If P is a tangent vector field on M, the equality case holds at
x ∈ Mm if and only if there exists an orthonormal basis {e1, . . . , em} of Tx M and an orthonormal
basis {em+1, . . . , e2n+1} of T⊥x M such that the shape operators of M in M̃( f1, f2, f3) at x have the
following forms:

Aem+1 =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . am

, Aer =


Ar

1 . . . 0 0
...

. . .
...

...
0 . . . Ar

k 0
0 . . . 0 ςr I

, r = m + 2, . . . , 2n + 1,

where a1, . . . , am satisfy

a1 + · · ·+ am1 = · · · = am1+···+mk−1+1 + · · ·+ am1+···+mk+1 = · · · = am

and each Ar
j is a symmetric mj ×mj submatrix satisfying tr(Ar

1) = · · · = tr(Ar
k) = ςr, I is an

identity matrix.
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Proof. Chooseanorthonormalbasis{e1, . . . , em}of Tx M andanorthonormalbasis{em+1, . . . , e2n+1}
of T⊥x M such that mean curvature vector H is in the direction of the normal vector to em+1.
We set

ai = hm+1
ii , i = 1, . . . , m

b1 = a1, b2 = a2 + · · ·+ am1 , b3 = am1+1 + · · ·+ am1+m2 , . . . ,

bk+1 = am1+···+mk−1+1 + · · ·+ am1+···+mk−1+mk , . . . , bγ+1 = am,

and consider the following sets

D1 = {1, . . . , m1}, D2 = {m1 + 1, . . . , m1 + m2}, . . . ,

Dk = {(m1 + · · ·+ mk−1) + 1, . . . , (m1 + · · ·+ mk−1) + mk}.

Let L1, . . . , Lk be a mutually orthogonal subspace of Tx M with dimLj = mj, defined by

Lj = Span{em1+···+mj−1+1, . . . , em1+···+mj}, j = 1, . . . , k.

From (7), (8) and (12), we obtain

τ(Lj) =
mj(mj − 1)

2
f1 + 3 f2Ψ1(Lj)− f3Ψ2(Lj)

− (ψ1 + ψ2)

2
Ψ3(Lj)−

ψ2

2
(ψ1 − ψ2)Ψ4(Lj)−

(ψ1 − ψ2)

2
Ψ5(Lj)

+
2n+1

∑
r=m+1

∑
αj<β j

[
hr

αjαj
hr

β j β j
− (hαj β j)

2]. (25)

We set

ε = 2τ − 2b(m1, . . . , mk) ‖ H ‖2 −m(m− 1) f1 − 3 f2 ‖ T ‖2

+2(m− 1) f3 ‖ ξT ‖2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H), (26)

where

b(m1, . . . , mk) =

m2
(

m + k− 1−
k

∑
j=1

mj

)
2
(

m + k−
k

∑
j=1

mj

) ,

for each (m1, . . . , mk) ∈ S(m).

In addition, let γ = m + k −
k

∑
j=1

mj. Then in view of this and (26), Equation (14)

becomes

m2 ‖ H ‖2= (‖ h ‖2 +ε)γ,

which can be written as( γ+1

∑
i=1

bi

)2
= γ

[
ε +

γ+1

∑
i=1

b2
i + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2

−2 ∑
α1<β1

aα1 aβ1 − · · · − 2 ∑
αk<βk

aαk aβk

]
, (27)

where αj, β j ∈ Dj for all j = 1, . . . , k.
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Now applying Lemma 2.3 [26] in (27), we obtain

∑
α1<β1

aα1 aβ1 + · · ·+ ∑
αk<βk

aαk aβk ≥

1
2

[
ε + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2
]
,

which further implies

k

∑
j=1

2n+1

∑
r=m+1

∑
αj<β j

[
hr

αjαj
hr

β j β j
− (hr

αj β j
)2
]
≥ ε

2

+
1
2

2n+1

∑
r=m+1

∑
(α,β)/∈D2

(hr
αβ)

2 +
2n+1

∑
r=m+2

∑
αj∈Dj

(hr
αjαj

)2 ≤ ε

2
, (28)

where D2 = (D1 × D1) ∪ · · · ∪ (Dk × Dk). Combining (14), (25) and (28) gives

τ −
k

∑
j=1

τ(Lj) ≤ b(m1, . . . , mk) ‖ H ‖2 +a(m1, . . . , mk) f1

+3 f2

(‖ T ‖2

2
−

k

∑
j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ‖ ξT ‖2 −

k

∑
j=1

Ψ2(Lj)
)

− (ψ1 + ψ2)

2

(
(m− 1)λ−

k

∑
j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k

∑
j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k

∑
j=1

Ψ5(Lj)
)

, (29)

where, a(m1, . . . , mk) =
1
2

[
m(m− 1)−

k

∑
j=1

mj(mj − 1)
]
.

The equality case (29) at a point x ∈ M holds if and only if all the previous inequalities
hold; thus, the shape operators take the desired forms.

Remark 3. Restricting the values of fi, i = 1, 2, 3 and ψi for i = 1, 2, we can obtain similar bounds
as Theorem 3 for certain contact space forms endowed with certain connections.

Theorem 4. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

(i) For each unit vector X1 in Tx M, we have

Ric(X1) ≤ (m− 1) f1 + 3 f2

m

∑
j=2

g2(ϕX1, ej) + f3
(
(2−m)η2(X1)− ‖ ξT ‖2 )

+[ψ1 + (1−m)ψ2]β1(X1, X1)− ψ1λ + ψ2(ψ1 − ψ2)(1−m)β2(X1, X1)

−(ψ1 − ψ2)[mΛ(H)−Λ(h(X1, X1))] +
m2

4
‖ H ‖2 . (30)

(ii) If H(x) = 0, then a unit tangent vector X1 at x satisfies the equality case of (30) if and only if
X1 ∈ M(x) = {X1 ∈ Tx M | h(X1, X2) = 0, ∀X2 ∈ Tx M}.

(iii) The equality of (30) holds for all unit tangent vectors at x if and only if either
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1. m 6= 2, hr
ij = 0, i, j = 1, 2 . . . , m.r = m + 1, . . . , 2n + 1, or

2. m = 2, hr
11 = hr

22, hr
12 = 0, r = 3, . . . , 2n + 1.

Proof. Choosing the orthonormal basis {e1, . . . , em} such that e1 = X1, where X1 ∈ Tx M is
a unit tangent vector at the point x on M. In view of (7) and (12), then proceeding similarly
as the proof of Theorem 4 in [20], one can easily obtain the desire results.

By choosing an orthonormal frame {e1, . . . , ek} of L such that e1 = X1, a unit tangent
vector, Chen [23] defined the k-Ricci curvature of L at X1 by

RicL(X1) = K12 + K13 + · · ·+ K1k. (31)

For an integer k, 2 ≤ k ≤ m, the Riemannian invariant Θk on M is defined by

Θk(x) =
1

k− 1
in f {RicL(X1) | L, X1}, x ∈ M

where L runs over all k-plane sections in Tx M and X1 runs over all unit vectors in L.
From [26], we have

τ(x) ≥ m(m− 1)
2

Θk(x). (32)

Let us choose {e1, . . . , em} and {em+1, . . . , e2n+1} as an orthonormal basis of Tx M and
T⊥x M, x ∈ M, respectively, where em+1 is parallel to the mean curvature vector H. In
addition, let {e1, . . . , em} diagonalize the shape operator Aem+1 . Then,

Aem+1 =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . am


and

Aer = hr
ij, i, j = 1, . . . , m, r = m + 2, . . . , 2n + 1, trAer = 0.

(33)

In consequence of the above assumptions, Equation (14) can be written as follows:

m2 ‖ H ‖2= 2τ +
m

∑
i=1

a2
i +

2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 −m(m− 1) f1

−3 f2 ‖ T ‖2 +2(m− 1) f3 ‖ ξT ‖2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H). (34)

Using the Cauchy–Schwartz inequality, we have

m

∑
i=1

a2
i ≥ m ‖ H ‖2 . (35)

Combining (32) and (34), we can state the following:
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Theorem 5. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇. Then for
any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2

+
λ

m
(ψ1 + ψ2) +

µ

m
ψ2(ψ1 − ψ2) + (ψ1 − ψ2)Λ(H).

As a particular case of Theorem 5, we obtained Theorem 6.2 [21] which is as follows:

Corollary 3 ([21]). Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional
generalized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric metric connection.
Then for any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2 +

2λ

m
.

Corollary 4. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional gener-
alized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric non-metric connection.
Then for any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2 +

λ

m
+ Λ(H).

Remark 4. Restricting function fi, i = 1, 2, 3, we can easily obtain similar inequality in the case of
the Sasakian, Kenmotsu and Cosympletic space forms.

4. Some Applications

The notion of slant submanifolds in almost contact geometry was introduced by
Lotta [27]. A submanifold M of an almost contact metric manifold (M̃, ϕ, ξ, η, g) tangent to
the structure vector field ξ is said to be a contact slant submanifold if, for any point x ∈ M
and any vector X1 ∈ Tx M linearly independent on ξx, the angle between the vector ϕX1
and the tangent space Tx M is constant. This angle is known as the slant angle of M. The
concept of slant submanifold is further generalized as follows:

Definition 1 ([28]). A submanifold M of an almost contact metric manifold M is called a bi-slant
submanifold, whenever we have

1. TM = Dθ1 ⊕Dθ2 ⊕ ξ
2. ϕDθ1 ⊥ Dθ2 and ϕDθ2 ⊥ Dθ1 .
3. For i = 1, 2, the distribution Di is slant with slant angle θi.

Now, as a consequence of Theorem 2, we can state the following:

Theorem 6. Let M be a (m = 2d1 + 2d2 + 1)-dimensional bi-slant submanifold of a (2n + 1)-
dimensional generalized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric
connection ∇, then we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+3
(
(d1 − 1)cos2θ1 + d2cos2θ2

) f2

2
− (m− 1) f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,
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for any plane Π invariant by T and tangent to slant distribution Dθ1 and

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)
+3
(

d1cos2θ1 + (d2 − 1)cos2θ2

) f2

2
− (m− 1) f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

for any plane Π invariant by T and tangent to slant distribution Dθ2 . Moreover, the ideal case is
the same as Theorem 2.

Proof. Let M be a bi-slant submanifold of a generalized Sasakian-space-form M̃( f1, f2, f3)
of dimension (m = 2d1 + 2d2 + 1) and let {e1, . . . , em = ξ} be an orthonormal frame of
tangent space Tx M at a point x ∈ M, such that

e1, e2 = secθ1T e1, . . . , e2d1−1, e2d1 = secθ1T e2d1−1, e2d1+1, e2d1+2

= secθ2T e2d1+1, . . . , e2d1+2d2−1, e2d1+2d2 = secθ2T e2d1+2d2−1, e2d1+2d2+1 = ξ,

which gives

g2(ϕei+1, ei) =

{
cos2θ1, for i = 1, 2, . . . , 2d1 − 1
cos2θ2, for i = 2d1 + 1, . . . , 2d1 + 2d2 − 1.

Thus we have
‖ T ‖2= 2{d1cos2θ1 + d2cos2θ2}

Making use of the above facts in Theorem 2, the proof is straightforward.

In a similar manner, Theorems 3, 4 and 5 can be stated for a bi-slant submanifold of
a generalized Sasakian-space-form. Moreover, restricting the values of θi, i = 1, 2, similar
results can be obtained for a large class of submanifolds such as slant, semi-slant, hemi-slant,
semi-invariant submanifolds. Moreover, by taking different values of fi, i = 1, 2, 3, we can
derive similar inequalities for the Sasakian, Kenmotsu and Cosympletic space forms.

5. Conclusions and Future Work

In this article, we established the general form of Chen’s inequalities are obtained for
generalized Sasakian-space-forms endowed with a special type of quarter-symmetric connec-
tion. This work is in continuation of the previous works by Wang [20], Mihai and Özgür [19],
Sular [21] and Wang and Zhang [18]. By using the obtained inequality, we derived the Chen
inequality for the bi-slant submanifold of generalized Sasakian-space-forms. Recently, Chen
inequality for lightlike hypersurfaces of GRW spacetime was obtained by Poyraz [14]. For
future research, we would try to combine the methods and results in [29–52] to obtain the
Chen inequalities for submanifolds of indefinite space forms such as spacelike and lightlike.
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52. Manojlović, V. On conformally invariant extremal problems. Appl. Anal. Discret. Math. 2009, 3, 97–119. [CrossRef]

http://dx.doi.org/10.1002/mana.201700121
http://dx.doi.org/10.1155/2021/5777554
http://dx.doi.org/10.3390/math9243156
http://dx.doi.org/10.3934/math.2022671
http://dx.doi.org/10.3934/math.2022300
http://dx.doi.org/10.1142/S0219887821500080
http://dx.doi.org/10.1155/2021/8554738
http://dx.doi.org/10.3934/math.2021541
http://dx.doi.org/10.1515/math-2022-0443
http://dx.doi.org/10.1016/j.geomphys.2022.104513
http://dx.doi.org/10.1007/s13324-019-00308-8
http://dx.doi.org/10.2298/FIL0702243K
http://dx.doi.org/10.1016/j.jmaa.2007.12.003
http://dx.doi.org/10.1090/S0002-9947-2010-04994-3
http://dx.doi.org/10.30755/NSJOM.dans14.04
http://dx.doi.org/10.2298/AADM0901097M

	Introduction
	Preliminaries
	B. Y. Chen Inequalities
	Some Applications
	Conclusions and Future Work
	References

