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Abstract: It is well known that the complexity of the decision-making environment frequently
coexists with the diversity of linguistic information in the decision-making process. In order to solve
this kind of uncertain multi-criteria decision-making problem, reasonable measures and integrals
should be established. In this paper, the discrete expression of the CT-integral on the interval-valued
Sugeno probability measure is proposed. The CT-integral is the Choquet integral when the t-norm is
T(x, y) = xy in the CT-integral and is a pre-aggregation function. Then, the CT-integral on interval-
valued Sugeno probability measure is applied to solve end-of-life (EOL) strategy in order to determine
multi-criteria decision-making problems. Compared with the general Choquet integral, the method
proposed in this paper significantly improves the calculation process, that is, the calculation is simpler
and the amount of calculation is smaller. A case study was performed in order to validate the
effectiveness of this conclusion.

Keywords: fuzzy measure; Choquet integral; CT-integral; end-of-life strategy; multi-criteria decision-
making

1. Introduction

In 1954, the French mathematician Choquet introduced capacity theory [1], which
is a set function satisfying monotonicity and continuity similar to the Sugeno measure,
along with the Choquet integral, which is based on capacity. The Choquet integral is a
non-additive measure as well as a nonlinear integral. Afterwards, generalizations of the
Choquet integral started to appear; with the work of Sugeno and Murofushi in 1987, a
generalized form of the Choquet integral appeared in the literature [2], followed by a
corresponding work by Mesiar and Grabisch in 1995. Several other important methods are
provided in the literature [3,4], and several boundary conditions have been discussed as
well. In 2013, Barrenechea et al. applied the Choquet integral as an aggregation function in
a fuzzy rule-based classification system [5]. Then, in 2016, new Choquet integral extensions
of the aggregation function appeared in the literature, especially in the research of Lucca
et al. [6]. These extensions of the Choquet integral were named, for example, the CC-
integral [7], CF-integral [8], and CT-integral [9]. For the CT-integral, the methodology used
in these generalizations is simply to replace the product in the Choquet integral, which
can be interpreted as the product’s t-norm, with other fusion functions with appropriate
properties in order to obtain a resulting aggregation-type function.

The Choquet integral is applied in many fields, such as risk evaluation [10], fuzzy
systems and control [11], decision-making, and more (see [12–15]). For the multi-attribute
decision-making problem ([12,16]), the multi-criteria decision-making problem [15], and
the group decision-making problem [13], it can be used as aggregation operators to aggre-
gate. Similarly, the CT-integral can be applied to multi-criteria decision-making problems;
see [17]. Other generalizations of the Choquet integral have seen use in problems involv-
ing multi-criteria decision-making (see [18,19]). In this paper, we focus on multi-criteria
decision-making problems. Especially in the multi-criteria decision-making problem of
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end-of-life (EOL) strategy, the Choquet integral is used as an aggregation operator to ag-
gregate data. However, with the emergence of the generalization of the Choquet integral,
generalization solves this type of problem more efficiently than the Choquet integral.

With the development of society and the progress of science and technology, more
and more people have begun to pay attention to the EOL strategy of products and how to
deal with product after use. Many definitions and classifications of EOL strategy have been
developed over the decades. EOL strategy has been continuously developed and improved
following its initial proposal by Marco et al. in 1994 [20]. The detailed development process
of EOL strategies can be followed in the literature [21]. For a product, EOL strategy analysis
is more beneficial to the development of both the environment and the economy. Moreover,
certain EOL strategies produce a large amount of energy waste, environmental pollution,
and cost over the whole product life cycle. Therefore, the theory and method of EOL
research has been a concern of many scholars. EOL decision-making depends on many
factors which arise from a wide range of stakeholder interests and components, and the
view of the results varies by industry and geographical location. As far as we know, the
EOL strategy of refrigerator components is an important research area in evaluating EOL
decision factors from a comprehensive perspective. Therefore, it is meaningful to use
our proposed CT-integral on interval-valued Sugeno probability measure to solve related
uncertain multi-criteria decision-making problems in this paper.

When we solving this kind of multi-criteria decision-making problems, the decision
criteria usually interact with each other, and the evaluation values are usually fuzzy lin-
guistic evaluations by experts, often defined as “good”, “a little good” etc. These linguistic
calculations are usually converted into triangular fuzzy numbers for calculation; however,
triangular fuzzy numbers are not easy to calculate. Generally, they are converted into
interval values or exact values for operation. Therefore, it is necessary to extend the general
CT-integral to the interval value. In 2016, a new aggregation-like function generalizing the
Choquet integral was proposed in [22]. In 2020, Chen et al. proposed the Choquet integral
on the interval-valued Sugeno probability measure [23]. The discrete expression of the
CT-integral on the interval-valued Sugeno probability measure is proposed in this paper
and applied to solve multi-criteria decision-making problems in the context of determining
EOL strategy.

It is well known that in dealing with uncertain multi-criteria decision-making prob-
lems, the decision criteria usually interact with each other. The Choquet integral on fuzzy
measures based on σ-λ rules can be used to solve such problems effectively. The discrete ex-
pression of the CT-integral on the interval-valued Sugeno probability measure is proposed
in this paper. The CT-integral is the Choquet integral when the t-norm is T(x, y) = xy
in the CT-integral and is a pre-aggregation function. Then, we apply the CT-integral on
interval-valued Sugeno probability measure to determine end-of-life (EOL) strategy as a
multi-criteria decision-making problems. Compared with the general Choquet integral, the
method proposed in this paper significantly improves the calculation process, that is, the
calculation is simpler and the amount of calculation required is smaller. A case study is
performed in order to validate the effectiveness of the conclusions.

The remainder of the article is organized as follows. In Section 2, several basic concepts
are introduced. Section 3 provides the CT-integral on the interval-valued Sugeno probability
measure. In Section 4, a multi-criteria decision-making problem involving the EOL strategy
for a refrigerator component is illustrated as a case study. Our conclusions are presented in
Section 5.

2. Preliminaries

In this section, basic concepts are introduced. In the following, n > 0, Ω is a non-empty
set, and A is a σ-algebra.

Definition 1 ([24]). The fuzzy measure µ is a set function

µ : A → [0, ∞]
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with the following properties:

(i) µ(∅) = 0;
(ii) A ⊂ B implies µ(A) ≤ µ(B);

Fuzzy measure µ is said to be lower semi-continuous when it satisfies
(iii) A1 ⊂ A2 ⊂ ..., implying that µ(∪∞

n=1 An) = limn→0 µ(An);
Fuzzy measure µ is said to be upper semi-continuous when it satisfies

(iv) A1 ⊃ A2 ⊃ ..., and µ(A1) < ∞, implying that µ(∩∞
n=1 An) = limn→0 µ(An);

Fuzzy measure µ is said to be continuous if it satisfies both lower semi-continuity and upper
semi-continuity.

Definition 2 ([25]). Consider function T : [0, 1]2 → [0, 1]. Then, T is the triangular norm
(t-norm for short) if, for all x, y, z ∈ [0, 1], the following four axioms are satisfied:

(T1) Commutativity: T(x, y) = T(y, x);
(T2) Associativity: T(x, T(y, z)) = T(T(x, y), z);
(T3) Monotonicity: T(x, y) ≤ T(x, z) whenever y ≤ z;
(T4) Boundary condition: T(x, 1) = x.

The basic definitions of the interval-valued Sugeno probability measure (see [23]) are
provided below; R+ denotes [0, ∞).

Definition 3 ([23]). Suppose Ω is a nonempty set and A is σ-algebra on the Ω. The set function
µ is a fuzzy measure based on σ-λ rules if

µ
(
∪∞

i=1 A(i)

)
=


1
λ

{
Π∞

i=1

[
1 + λµ(A(i))

]
− 1
}

λ 6= 0,

∞

∑
i=1

µ
(

A(i)

)
λ = 0.

(1)

where λ ∈
(
− 1

supµ
, ∞
)
∪ 0, A(i) ⊂ A, A(i) ∩ A(j) = ∅ for all i, j = 1, 2..., and i 6= j.

Definition 4 ([23]). Suppose Ω is a nonempty set and A a σ-algebra on the Ω, a set function
µ : A → R+, µ : A → R+, µ : A → R+, µ and µ satisfying the following conditions:

(1) µ(∅) = 0, µ(∅) = 0;
(2) if A, B ⊂ Ω, and A ⊂ B, then µ(A) ≤ µ(B), µ(A) ≤ µ(B);
(3) for every A ⊂ Ω, µ(A) ≤ µ(A);

then µ = [µ, µ] is an interval-valued fuzzy measure.

Definition 5 ([23]). If µ and µ satisfy the σ− λ rules in (Definition 3), and µ(Ω) = 1, µ(Ω) = 1,
then µ = [µ, µ] is called an interval-valued Sugeno probability measure based on σ− λ rules, or
simply an interval-valued Sugeno probability measures, and denoted gλ = [g

λ
, gλ].

L(0, 1) denotes the set of all closed subintervals of the unit interval.

Definition 6 ([23]). Suppose Ω is a finite set and 2Ω is the power set of Ω, the set function µ:
2Ω→ [µ, µ] ⊂ L(0, 1) is a regular interval fuzzy measure defined on 2Ω if the following conditions
hold:

(1) µ(∅) = 0, µ(∅) = 0, µ(Ω) = 1, µ(Ω) = 1;
(2) if D ∈ 2Ω,H ∈ 2Ω,D ⊂ H, then µ(D) ≤ µ(H), µ(D) ≤ µ(H).

Definition 7 ([23]). Suppose Ω is a finite set and 2Ω is the power set of Ω; set function µ :
2Ω→ [µ, µ] ⊂ L(0, 1), is a regular λ−interval fuzzy measure defined on 2Ω if the following
conditions hold:
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(1) µ(∅) = 0, µ(∅) = 0, µ(Ω) = 1, µ(Ω) = 1;
(2) if A ⊂ Ω, B ⊂ Ω, A ∩ B = ∅, then

µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B), (2)

and

µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B), λ ∈ (−1, ∞). (3)

Theorem 1 ([23]). If gλ = [g
λ

, gλ] is an interval-valued Sugeno probability measure, then gλ is a
regular λ−interval fuzzy measure defined on A.

Proof. Refer to the proof of Theorem 3.1.2 in [23].

Suppose X = {x1, x2, ..., xn} is a finite set. Then, gλi = gλ(xi)(i = 1, 2, ..., n) can
measure the density.

Theorem 2 ([24,26]). The parameters λ = (λ1, λ2) of the regular interval Sugeno probability
measure are determined by the following equations:

n

∏
i=1

(
1 + λ1g

λi

)
= 1 + λ1, (4)

n

∏
i=1

(
1 + λ2gλi

)
= 1 + λ2. (5)

Proof. Because Theorem 1 and λ = (λ1, λ2) take into account that X = {x1, x2, ..., xn} is a
finite set, gλi = gλ(xi)(i = 1, 2, ..., n) is said to be a measure of density. From Equation (1)
λ 6= 0, have gλi

(
∪n

i=1(xi)
)
= 1, that is,

1
λ

{
n

∏
i=1

[
1 + λ1gλi (x(i))

]
− 1

}
= 1,

n

∏
i=1

[
1 + λ1g

λi
(x(i))

]
− 1 = λ1,

n

∏
i=1

[
1 + λ1g

λi
(x(i))

]
= 1 + λ1,

i.e.,
n

∏
i=1

(
1 + λ1g

λi

)
= 1 + λ1.

Then, Equation (5) can be obtained similarly.

3. The CT-Integral on Interval-Valued Sugeno Probability Measure

Choquet integrals are a natural generalization of the Lebesgue integral; the definition
of Lebesgue integrals considers additive measures, whereas the definition of Choquet
integrals considers fuzzy measures. In the following, the definition of the discrete Choquet
integral is introduced and the discrete expression of the CT-integral on the interval-valued
Sugeno probability measure is proposed. Consider N = {1, ..., n} as a finite set.
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Definition 8 ([1]). Suppose m : 2N → [0, 1] is a fuzzy measure; then, the discrete Choquet integral
as regards m is the function Cm : [0, 1]n → [0, 1], defined for all ~x = (x1, ..., xn) ∈ [0, 1]n by

Cm(~x) =
n

∑
i=1

(
x(i) − x(i−1)

)
·m
(

A(i)

)
, (6)

where
(

x(1), ..., x(n)
)

is an increasing permutation on the input ~x, that is, x(1) ≤ ... ≤ x(n), with
the convention that x(0) = 0 and A(i) = {(i), ..., (n)} is the subset of indices corresponding to the
n− i + 1 largest components of ~x.

Reference [9] mentions recent advances in the generalization of the standard form of
the Choquet integral. The method used for these generalizations is simple, and allows for
replacing the product operator in Equation (6) with another fusion function of a suitable
nature. The CT-integral is obtained by replacing the product operator of Equation (6) with
a t-norm, and is a pre-aggregation function.

Definition 9 ([9]). Suppose m : 2N → [0, 1] is a fuzzy measure and T : [0, 1]2 → [0, 1] is a t-
norm. Based on the Choquet integral, the CT-integral is defined as the function CT

m : [0, 1]n → [0, 1]
for all of ~x = (x1, ..., xn) ∈ [0, 1]n by

CT
m(~x) =

n

∑
i=1

T
((

x(i) − x(i−1)

)
, m(A(i))

)
, (7)

where:

(1)
(

x(1), ..., x(n)
)

is an increasing permutation on the input ~x, that is, x(1) ≤ ... ≤ x(n);

(2) x(0) = 0;
(3) A(i) = {(i), ..., (n)} is the subset of indices corresponding to the n− i + 1 largest component

of ~x.

The CT-integral has the averaging and idempotent properties after generalization, as
shown below.

Proposition 1 ([6,8]). Let T : [0, 1]2 → [0, 1] be a t-norm such that T(x, y) ≤ x for every
x, y ∈ [0, 1]. Then,

CT
m(x1, ..., xn) ≤ max(x1, ..., xn), (8)

for every (x1, ..., xn) ∈ [0, 1]n.

Proposition 2 ([6,8]). Let T : [0, 1]2 → [0, 1] be a t-norm such that T(x, 1) = x for every
x, y ∈ [0, 1]. Then,

CT
m(x1, ..., xn) ≥ min(x1, ..., xn), (9)

for every (x1, ..., xn) ∈ [0, 1]n.

Proposition 3 ([6,8]). Let T : [0, 1]2 → [0, 1] be a t-norm such that T(x, 1) = x and T(0, y) = 0
for every x, y ∈ [0, 1]. Then, CT

m is an idempotent function, that is,

CT
m(x, ..., x) = x. (10)

Next, the measurability and integrability of interval-valued functions is introduced.
R+ = [0, ∞), I(R+) =

{
r : [r, r] ⊂ R+

}
is the subset of the interval number, while

P0(R+) denotes the classes of all non-empty subsets on R+.
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Definition 10 ([27]). Suppose (Ω,A, µ) is a non-additive measure space and F : Ω→ I(R+) is
a non-negative measurable interval-valued function on Ω, A ∈ A; then, we have

(c)
∫

A
F dµ =

{
(c)

∫
A

f dµ: f ∈ SF

}
, (11)

where SF = {g|g : Ω→ R+ is a measurable selection on F}; if (c)
∫

A Fdµ ⊂ I(R+), then F
is C-integrable.

Definition 11 ([27]). F is C-integrally bounded if there exists a C-integral function g : Ω →
P0(R+) such that for any measurable selection f ∈ SF, A ∈ A has

(c)
∫

A
f dµ ≤ (c)

∫
A

g dµ. (12)

Theorem 3 ([23]). Let (Ω,A, µ) be a non-additive measure space, µ be a fuzzy measure, A ∈ A,
F be non-negative measurable, and C—be integrally bounded; then, F is C—integrable on A and

(c)
∫

A
F dµ =

[
(c)

∫
A

F dµ, (c)
∫

A
F dµ

]
. (13)

Proof. See [23] in Theorem 3.2.1.

We know from the previous that the interval-valued function f is C-integrable on A if
(c)
∫

A f dµ and (c)
∫

A f dµ exists and is bounded.

Suppose X = {x1, x2, ...xn} is a discrete set; we can then obtain the following Theorem.

Theorem 4. Suppose f is an interval-valued function on X = {x1, x2, ...xn} and T is a t-norm.
Then, the CT-integral of f as regards the interval-valued Sugeno probability measure gλ on X is
provided by

(c)
∫

X
f dgλ =

n

∑
i=1

T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

, (14)

where x′1, x′2, ..., x′n is a permutation of x1, x2, ..., xn such that f (x′0) ≤ f (x′1) ≤ ... ≤ f (x′n),
f (x′0) = [0, 0], X′i = {x′i , x′i+1, ..., x′n}, i = 1, 2, ..., n, and X′n+1 = ∅.

Proof. Due to f being an interval-valued function on X, per Theorem 3, we have

(c)
∫

X
f dgλ =

[
(c)

∫
X

f dgλ, (c)
∫

X
f dgλ

]
.

Note that f and f are real-valued functions on X, respectively, on account of the continuity
and monotonicity of the CT-integral. Meanwhile, considering the nonnegativity and the
monotonicity of the fuzzy measure, we can obtain

(c)
∫

X f dgλ =

[
n
∑

i=1
T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

,
n
∑

i=1
T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))]

=
n
∑

i=1

[
T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

, T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))]

=
n
∑

i=1
T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
,
[

f
(
X′i
)
, f
(
X′i
)])

=
n
∑

i=1
T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

.

where x′1, x′2, ..., x′n is a permutation of x1, x2, ..., xn such that f (x′0) ≤ f (x′1) ≤ ... ≤ f (x′n),
f (x′0) = [0, 0], X′i = {x′i , x′i+1, ..., x′n}, i = 1, 2, ..., n, and X′n+1 = ∅.
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Then, the discrete representation of the CT-integral on interval-valued Sugeno proba-
bility measure is as follows:

(c)
∫

X
f dgλ =

[
n

∑
i=1

T
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

,
n

∑
i=1

T
(

gλ

(
X′i
)
− gλ

(
X′i+1

))
, f
(
X′i
)]

. (15)

where T can be TM, TP, TŁ, TDP, TNM, and THP. When T is TM, TM(x, y) = min{x, y}, we
have an expression of the CTM -integral on interval-valued Sugeno probability measure:

(c)
∫

X f dgλ =
n
∑

i=1
min

(
gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

=
n
∑

i=1
min

(
gλ

(
X′i
)
− gλ

(
X′i+1

)
,
[

f
(
X′i
)
, f
(
X′i
)])

=
n
∑

i=1

[
min

(
gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

, min
(

gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))]

=

[
n
∑

i=1
min

(
gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))

,
n
∑

i=1
min

(
gλ

(
X′i
)
− gλ

(
X′i+1

)
, f
(
X′i
))]

.

4. Application in Multi-Criteria Decision-Making Problems
4.1. Case Study

In this case, the multi-criteria decision-making problem of EOL strategy determination
for a refrigerator component was studied. We used the extended form of the Choquet
integral, which is the CT-integral. This multi-criteria decision-making problem considers
four primary criteria and fourteen sub-criteria, as shown in Figure 1. Each component of
the refrigerator interacts with other components, and includes only the main part and a
few small connectors. The case data sets are taken from [21,28]. The decision alternatives
include reuse, restructuring, primary recycling, secondary recycling, refuse incineration,
and landfill.

Figure 1. Structure of the decision attributes.
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In [12], the language assessment and every attribute are represented by triangular
fuzzy numbers. We can evaluate this in natural language and turn it into a triangular
fuzzy number. Such an evaluation process requires the participation of participating
decision-makers. The language assessment and corresponding triangular fuzzy numbers
are provided in Table 1. As an example of the cabinet frame, Table 2 shows the language
evaluation of the main criteria and subcriteria, while Table 3 shows the corresponding
triangular fuzzy numbers.

Table 1. Linguistic terms and corresponding fuzzy numbers (from [12,23]).

Evaluation/Weighting Terms Label Triangular Fuzzy Numbers

Extra poor/Extra unimportant EP/EU (0,0,0.1)

Very poor/Very unimportant VP/VU (0,0.1,0.2)

poor/unimportant P/U (0.1,0.2,0.3)

A little poor/A little
unimportant AP/AU (0.2,0.3,0.4)

Slightly poor/Slightly
unimportant SP/SU (0.3,0.4,0.5)

Fair/Middle F/M (0.4,0.5,0.6)

Slightly good/Slightly
important SG/SI (0.5,0.6,0.7)

A little good/A little
important AH/AI (0.6,0.7,0.8)

good/important G/I (0.7,0.8,0.9)

Very good/Very important VG/VI (0.8,0.9,1)

Extra good/Extra important EG/EI (0.9,1,1)

Table 2. Criteria importance and EOL options for linguistic evaluation with respect to cabinet frame.

Criteria Weights
Linguistic Evaluation of EOL Options f j

it

A1 A2 A3 A4 A5 A6

x1 VG
x1

1 VG G G F VG VG VP
x2 G
x1

2 G G G F F VP VP
x2

2 F VG G G G G P
x3

2 G F VG VG F VG G
x4

2 VG F G G G F F
x5

2 F G VG F G P VP
x3 VG
x1

3 VG G P VG F VG VG
x2

3 F P VP VG G P G
x3

3 G VG F G G VP G
x4

3 P F F G F F G
x4 F
x1

4 F G G F P F F
x2

4 F VG G VG P VG F
x3

4 F VG VG VG VP VG VG
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Table 3. Triangular fuzzy number evaluation with respect to cabinet frame.

Criteria Weights A1 A2 A3 A4 A5 A6

x1 (0.8, 0.9, 1)
x1

1 (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.8, 0.9, 1) (0, 0.1, 0.2)
x2

1 (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0, 0.1, 0.2)
x2 (0.7, 0.8, 0.9)
x1

2 (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0, 0.1, 0.2) (0, 0.1, 0.2)
x2

2 (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.1, 0.2, 0.3)
x3

2 (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.7, 0.8, 0.9)
x4

2 (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)
x5

2 (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.1, 0.2, 0.3) (0, 0.1, 0.2)
x3 (0.8, 0.9, 1)
x1

3 (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.1, 0.2, 0.3) (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.8, 0.9, 1)
x2

3 (0.4, 0.5, 0.6) (0.1, 0.2, 0.3) (0, 0.1, 0.2) (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.1, 0.2, 0.3) (0.7, 0.8, 0.9)
x3

3 (0.7, 0.8, 0.9) (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0, 0.1, 0.2) (0.7, 0.8, 0.9)
x4

3 (0.1, 0.2, 0.3) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.7, 0.8, 0.9)
x4 (0.4, 0.5, 0.6)
x1

4 (0.4, 0.5, 0.6) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.1, 0.2, 0.3) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)
x2

4 (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.7, 0.8, 0.9) (0.8, 0.9, 1) (0.1, 0.2, 0.3) (0.8, 0.9, 1) (0.4, 0.5, 0.6)
x3

4 (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.8, 0.9, 1) (0.8, 0.9, 1) (0, 0.1, 0.2) (0.8, 0.9, 1) (0.8, 0.9, 1)

4.2. Case Studies and Solutions

The calculation process for the refrigerator component EOL strategy determination
multi-criteria decision-making problem is as follows, in the six steps shown in Figure 2.
Figure 1 describes the parameter set and variables. In this example, four primary criteria
are considered, denoted as xi(i = 1, 2, 3, 4), and fourteen sub-criteria, denoted as xj

i . If
i = 1, then j = 1, 2, if i = 2, then j = 1, 2, 3, 4, 5, if i = 3, then j = 1, 2, 3, 4, and if i = 4
then j = 1, 2, 3. The six EOL choices (Reuse, Remanufacture, Primary Recycling, Secondary
Recycling, Incineration, and Landfill) are A1, A2, A3, A4, A5, and A6, respectively.

• The language evaluation in Table 2 is transformed through the triangular fuzzy number 
given in Table 1 to obtain Table 3

The first step

• A set of interval numbers table 4 and a set of exact numbers are obtained after performing 
the A-level cut set operation of α= 0 and α = 1 on the triangular fuzzy numbers in Table 3. 
Taking the operation of α= 0 as an example, the calculation process of α = 1 is similar and 
will not be described too much.

The second step

• Combining the data in Table 4, apply a single attribute to calculate the value of joint 

attribute 𝐸𝑗
𝑖 and λ through Theorme2 and σ-λ rules. The calculation results are shown in 

Table 5.
The third step

• The 𝐶𝑇 −integral on the interval-value Sugeno probability measure is used to calculate 
the evaluation value  x of the sub-criteria for EOL to option 𝐴𝑡(t=1,2,3,4,5,6). Through 
table 3, table 4, table 5 and Definition 4, the final calculation results are shown in Table 6.

The fourth step

• The 𝐶𝑇 −integral on the interval-value Sugeno probability measure is used to calculate the 
EOL options 𝐴𝑡(t=1,2,3,4,5,6) of values of the main criteria 𝑥𝑖(i=1,2,3,4 ), and the results 
are shown in table 10.

The fifth step

• For the obtained data, the accurate value is obtained by taking the average value and 
defuzzification processing. Finally, the maximum value is selected for each EOL to get the 
final result.

The sixth step

Figure 2. Calculation process.

Taking α = 0 as an example, α = 1 analogies can be obtained.
The evaluated language information is transformed into triangular fuzzy numbers;

Table 2 shows the criteria weights and the linguistic assessment of each EOL strategy.
According to Table 1 these can be obtained from the experiment, and Table 3 indicates the
corresponding linguistic assessment of the triangular fuzzy numbers.
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Second Step: an α-level cut set operation performed on the triangular fuzzy numbers
in Tables 3 and 4 are the operation results of α = 0; α = 1 can be obtained similarly.

Third Step: Combining the data in Table 4, we apply a single attribute to calculate the
value of the joint attributes Ej

i and λ through Theorem 2 and σ− λ rules. The calculation

results are shown in Table 5; Ej
i = {x

j
i , xj+1

i , ..., xn
i }. If i = 1, then n = 2, if i = 2, then n = 5,

if i = 3, then n = 4, and if i = 4, then n = 3, 1 ≤ j ≤ n. Furthermore, g
λ
(j) = g

λ
(Ej

i ),

gλ(j) = gλ(Ej
i ).

Table 4. The value of α-level cut set for α = 0 of Table 3.

Criteria Weights A1 A2 A3 A4 A5 A6

x1 [0.8, 1]
x1

1 [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0, 0.2]
x2

1 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.8, 1] [0.7, 0.9] [0.4, 0.6] [0, 0.2]
x2 [0.7, 0.9]
x1

2 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0, 0.2] [0, 0.2]
x2

2 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.1, 0.3]
x3

2 [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.7, 0.9]
x4

2 [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6]
x5

2 [0.4, 0.6] [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.1, 0.3] [0, 0.2]
x3 [0.8, 1]
x1

3 [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.8, 1]
x2

3 [0.4, 0.6] [0.1, 0.3] [0, 0.2] [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.7, 0.9]
x3

3 [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0, 0.2] [0.7, 0.9]
x4

3 [0.1, 0.3] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9]
x4 [0.4, 0.6]
x1

4 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.1, 0.3] [0.4, 0.6] [0.4, 0.6]
x2

4 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.8, 1] [0.1, 0.3] [0.8, 1] [0.4, 0.6]
x3

4 [0.4, 0.6] [0.8, 1] [0.8, 1] [0.8, 1] [0, 0.2] [0.8, 1] [0.8, 1]

Fourth Step: calculate the evaluation value of the sub-criteria xi
j regarding the EOL

options At(t = 1, 2, 3, 4, 5, 6). According to the third step, we know that ( f j
i,t)α stands for

the function f j
i,t α-level cut set, while ( f j

i,t)0 stands for the 0-level cut set of function f j
i,t .

For EOL options A1 about criteria x2, α = 0.

(1) From Table 4, we can obtain ( f 1
2,1)0 = [0.7, 0.9], ( f 2

2,1)0 = [0.8, 1], ( f 3
2,1)0 = [0.4, 0.6],

( f 4
2,1)0 = [0.4, 0.6], ( f 5

2,1)0 = [0.7, 0.9].
(2) From Table 4, we can obtain (gλ)

1
2 = [0.7, 0.9], (gλ)

2
2 = [0.4, 0.6], (gλ)

3
2 = [0.7, 0.9],

(gλ)
4
2 = [0.8, 1], (gλ)

5
2 = [0.4, 0.6].

(3) From Definition 4, f j
i,t

and f
j
i,t stand for the left and right endpoints of the α-level cut

set of the function f j
i,t respectively. In order of magnitude f j

i,t
, we have f 3

2,1
≤ f 4

2,1
≤

f 1
2,1
≤ f 5

2,1
≤ f 2

2,1
. Then, we have x1′

2 , x2′
2 , x3′

2 , x4′
2 , x5′

2 , which is a permutation of x1
2, x2

2,

x3
2, x4

2, x5
2; then, x1′

2 = x3
2, x2′

2 = x4
2, x3′

2 = x1
2, x4′

2 = x5
2, x5′

2 = x2
2.

The value of parameter λ1 is calculated using Theorem 2, that is λ1 = −0.993. Further-
more, we can calculate the weight of the joint attribute according to σ-λ rules and obtain

their values as g
λ
(j) = g

λ
(Ej

i ) = g
λ
{xj′

i , x(j+1)′

i , ..., xn′
i },

g
λ
(5) = 0.4, g

λ
(4) = 0.641, g

λ
(3) = 0.896, g

λ
(2) = 0.984, g

λ
(1) = 1.

Table 5 lists all measured values and the values of the required parameters λ.
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Table 5. The values of fuzzy measure sub-criteria for α = 0.

A1 A2 A3
g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej)

λ1 = −0.625λ2 = −1 λ1 = −0.625λ2 = −1 λ1 = −0.625λ2 = −1
g

λ
(2) = 0.4gλ(2) = 0.6 g

λ
(2) = 0.4gλ(2) = 0.6 g

λ
(2) = 0.4gλ(2) = 0.6

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1
g

λ
(5) = 0.4gλ(5) = 0.6 g

λ
(5) = 0.4gλ(5) = 0.6 g

λ
(5) = 0.7gλ(5) = 0.9

g
λ
(4) = 0.641gλ(4) = 0.84 g

λ
(4) = 0.822gλ(4) = 0.96 g

λ
(4) = 0.944gλ(4) = 1

g
λ
(3) = 0.896gλ(3) = 0.984 g

λ
(3) = 0.967gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1

g
λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.975λ2 = −1 λ1 = −0.975λ2 = −1 λ1 = −0.975λ2 = −1
g

λ
(4) = 0.7gλ(4) = 0.9 g

λ
(4) = 0.1gλ(4) = 0.3 g

λ
(4) = 0.4gλ(4) = 0.6

g
λ
(3) = 0.964gλ(3) = 1 g

λ
(3) = 0.733gλ(3) = 0.93 g

λ
(3) = 0.888gλ(3) = 1

g
λ
(2) = 0.972gλ(2) = 1 g

λ
(2) = 0.972gλ(2) = 1 g

λ
(2) = 0.901gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.443λ2 = −0.904 λ1 = −0.443λ2 = −0.904 λ1 = −0.443λ2 = −0.904
g

λ
(3) = 0.4gλ(3) = 0.6 g

λ
(3) = 0.4gλ(3) = 0.6 g

λ
(3) = 0.4gλ(3) = 0.6

g
λ
(2) = 0.729gλ(2) = 0.875 g

λ
(2) = 0.729gλ(2) = 0.875 g

λ
(2) = 0.729gλ(2) = 0.875

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

A4 A5 A6
g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej)

λ1 = −0.625λ2 = −1 λ1 = −0.625λ2 = −1 λ1 = −0.625λ2 = −1
g

λ
(2) = 0.8gλ(2) = 0.1 g

λ
(2) = 0.8gλ(2) = 0.1 g

λ
(2) = 0.4gλ(2) = 0.6

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1
g

λ
(5) = 0.7gλ(5) = 0.9 g

λ
(5) = 0.7gλ(5) = 0.9 g

λ
(5) = 0.7gλ(5) = 0.9

g
λ
(4) = 0.822gλ(4) = 0.96 g

λ
(4) = 0.944gλ(4) = 1 g

λ
(4) = 0.944gλ(4) = 1

g
λ
(3) = 0.969gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1

g
λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.975λ2 = −1 λ1 = −0.975λ2 = −1 λ1 = −0.975λ2 = −1
g

λ
(4) = 0.7gλ(4) = 0.9 g

λ
(4) = 0.8gλ(4) = 1 g

λ
(4) = 0.8gλ(4) = 1

g
λ
(3) = 0.827gλ(3) = 1 g

λ
(3) = 0.823gλ(3) = 1 g

λ
(3) = 0.823gλ(3) = 1

g
λ
(2) = 0.846gλ(2) = 0.927 g

λ
(2) = 0.908gλ(2) = 1 g

λ
(2) = 0.927gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

λ1 = −0.443λ2 = −0.904 λ1 = −0.443λ2 = −0.904 λ1 = −0.443λ2 = −0.904
g

λ
(3) = 0.4gλ(3) = 0.6 g

λ
(3) = 0.4gλ(3) = 0.6 g

λ
(3) = 0.4gλ(3) = 0.6

g
λ
(2) = 0.729gλ(2) = 0.875 g

λ
(2) = 0.729gλ(2) = 0.875 g

λ
(2) = 0.729gλ(2) = 0.875

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

(4) The value of the main criteria (xi, i = 1, 2, 3, 4)) regarding the EOL options At(t =
1, 2, 3, 4, 5) are calculated using the CT-integral as follows; taking “primary criteria x2
of EOL options A1”, for example, α = 0:

(c)
∫

f j
2,1

dg
λ
= min{ f 3

2,1
, g

λ
(1)}+ min{ f 4

2,1
− f 3

2,1
, g

λ
(2)}+ min{ f 1

2,1
− f 4

2,1
, g

λ
(3)}

+ min{ f 5
2,1
− f 1

2,1
, g

λ
(4)}+ min{ f 2

2,1
− f 5

2,1
, g

λ
(5)}

= min{0.4− 0, 1}+ min{0.4− 0.4, 0.972}+ min{0.7− 0.4, 0.896}
+ min{0.7− 0.7, 0.641}+ min{0.8− 0.7, 0.4}
= 0.4 + 0 + 0.3 + 0 + 0.1

= 0.8.
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In the same manner, (c)
∫

f
j
2,1 dgλ = 1. Therefore,

(c)
∫

f j
2,1 dg

λ
=

[
(c)

∫
f j

2,1
dg

λ
, (c)

∫
f

j
2,1 dgλ

]
= [0.8, 1].

Similarly, we can calculate the evaluation values for the remaining sub-criteria, as
shown in Table 6.

Table 6. The evaluation value of primary criteria for α = 0 with respect to the cabinet frame.

Criteria Weights A1 A2 A3 A4 A5 A6

x1 [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.8, 1] [0.8, 1] [0.7, 0.8] [0, 0.2]
x1

1 [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0, 0.2]
x2

1 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.8, 1] [0.7, 0.9] [0.4, 0.6] [0, 0.2]
x2 [0.7, 0.9] [0.8, 1] [0.8, 1] [0.8, 1] [0.7, 0.9] [0.8, 1] [0.8, 1]
x1

2 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0, 0.2] [0, 0.2]
x2

2 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.1, 0.3]
x3

2 [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.7, 0.9]
x4

2 [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6]
x5

2 [0.4, 0.6] [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.1, 0.3] [0, 0.2]
x3 [0.8, 1] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.8, 1] [0.8, 1]
x1

3 [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.8, 1]
x2

3 [0.4, 0.6] [0.1, 0.3] [0, 0.2] [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.7, 0.9]
x3

3 [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0, 0.2] [0.7, 0.9]
x4

3 [0.1, 0.3] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9]
x4 [0.4, 0.6] [0.8, 1] [0.8, 1] [0.8, 1] [0.1, 0.3] [0.8, 1] [0.8, 1]
x1

4 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.1, 0.3] [0.4, 0.6] [0.4, 0.6]
x2

4 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.8, 1] [0.1, 0.3] [0.8, 1] [0.4, 0.6]
x3

4 [0.4, 0.6] [0.8, 1] [0.8, 1] [0.8, 1] [0, 0.2] [0.8, 1] [0.8, 1]

Fifth Step: The CT-integral on the interval-value Sugeno probability measure is used
to calculate the EOL options (A1, A2, A3, A4, A5, A6) of the values of the main criteria,
xi(i = 1, 2, 3, 4).

For EOL option A1, α = 0; then,

(1) From Table 6, we can obtain ( f1,1)0 = [0.7, 0.9], ( f2,1)0 = [0.8, 1], ( f3,1)0 = [0.8, 1],
( f4,1)0 = [0.8, 1].

(2) From Table 6, we can obtain gλ(x1) = [0.8, 1], gλ(x2) = [0.7, 0.9], gλ(x3) = [0.8, 1],
gλ(x4) = [0.4, 0.6].

(3) In order of magnitude f
i,1

, f
i,1
(i = 1, 2, 3, 4), there are f

1,1
≤ f

2,1
≤ f

3,1
≤ f

4,1
. Then,

we have x′1, x′2, x′3, x′4, which is a permutation of x1
2, x2

2, x3
2, x4

2, where x′1 = x1, x′2 = x2,
x′3 = x3, x′4 = x4.
Then, the values of the parameters λ and the weights of the joint attributes on the
main criterion were calculated in the same way. These are listed in Table 7.

(4) For the EOL options, At(t = 1, 2, 3, 4, 5, 6) are calculated using the CT-integral as fol-
lows:

(c)
∫

f
i,1

dg
λ
= min{ f

2,1
, g

λ
(1)}+ min{ f

2,1
− f

2,1
, g

λ
(2)}+ min{ f

2,1
− f

2,1
, g

λ
(3)}

+ min{ f
2,1
− f

2,1
, g

λ
(4)}+ min{ f

2,1
− f

2,1
, g

λ
(5)}

= min{0.4− 0, 1}+ min{0.4− 0.4, 0.972}+ min{0.7− 0.4, 0.896}
+ min{0.7− 0.7, 0.641}+ min{0.8− 0.7, 0.4}
= 0.4 + 0 + 0.3 + 0 + 0.1

= 0.8.

In the same way, (c)
∫

f i,1 dgλ = 1. Therefore,

(c)
∫

f2,1 dg
λ
=

[
(c)

∫
f

2,1
dg

λ
, (c)

∫
f 2,1 dgλ

]
= [0.8, 1].
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Similarly, it is possible to calculate the evaluation values for the remaining primary
criteria, as shown in Table 8.

Sixth Step: In the process of fuzzy number processing, as the triangular fuzzy numbers
cannot be applied directly we must first defuzzify the fuzzy numbers before applying them.
There are many methods of defuzzification, and in this study, we choose the mean value
method of defuzzification. The mean value was calculated for each of the triangular fuzzy
numbers in Table 8 in order to convert the fuzzy number into an exact number.

A similar optimal EOL option for other the components can be obtained as shown in
Table 9.

For data comparison, in Tables 1–5 and Tables 10–12 we use the data in [23], while
Tables 6, 8 and 9 show the results obtained in this paper. Although the final EOL strategy
standards reached by the two are the same, the final data obtained are different. Compared
with [23], the data with the method in this paper are more concise.

Table 7. The value of fuzzy measures on the primary criteria for α = 0 with respect to the cabi-
net frame.

A1 A2 A3
g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej)

λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1
g

λ
(4) = 0.641gλ(4) = 0.84 g

λ
(4) = 0.822gλ(4) = 0.96 g

λ
(4) = 0.944gλ(4) = 1

g
λ
(3) = 0.896gλ(3) = 0.984 g

λ
(3) = 0.967gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1

g
λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

A4 A5 A6
g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej) g

λ
(Ej)gλ(Ej)

λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1 λ1 = −0.993λ2 = −1
g

λ
(4) = 0.822gλ(4) = 0.96 g

λ
(4) = 0.944gλ(4) = 1 g

λ
(4) = 0.944gλ(4) = 1

g
λ
(3) = 0.969gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1 g

λ
(3) = 0.969gλ(3) = 1

g
λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1 g

λ
(2) = 0.984gλ(2) = 1

g
λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1 g

λ
(1) = 1gλ(1) = 1

Table 8. The comprehensive evaluation value of EOL options with respect to the cabinet frame.

Main Criteria (c)
∫

f dgλ Crisp Number
A1 A2 A3 A1 A2 A3

Overall EOL (0.8, 0.9, 1) (0.8, 0.9, 1) (0.8, 0.99, 1) 0.9 0.9 0.933 *

Main criteria (c)
∫

f dgλ Crisp number
A4 A5 A6 A4 A5 A6

Overall EOL (0.8, 0.9, 1) (0.8, 0.9, 1) (0.8, 0.9, 1) 0.9 0.9 0.9
* Represents the largest value in each group.

In the above example, we know that Table 10 shows the result of the sub-criteria for the
general Choquet aggregation and Table 6 the result of the sub-criteria for the aggregation
of CTM -integral. Tables 11 and 12 contain the final results of the aggregation of the general
Choquet integral, while Tables 8 and 9 are the final results of the aggregation of CTM -
integral. By comparing them, we know that the same result as the general Choquet integral
can be obtained when the t-norm in the CT integral is taken as the minimum t-norm (TM).
In this case, the CT integral is more advantageous than the Choquet integral in terms of
calculation efficiency.
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Table 9. Refrigerator component relevant closeness RC and appropriate EOL strategy.

Component A1 A2 A3 A4 A5 A6
Appropriate EOL

Strategy

Cabinet frame 0.9 0.9 0.933 * 0.9 0.9 0.9 Primary recycle
Cabinet 0.9 0.9 0.9 0.933 * 0.8 0.9 Secondary recycle

Duct in room 0.9 0.9 0.9 0.9 0.933 * 0.8 Incinerate
Fan unit 1 0.9 0.9 0.933 * 0.8 0.9 0.8 Primary recycle
Fan unit 2 0.933 * 0.8 0.8 0.7 0.9 0.8 Reuse

Evaporator 0.933 * 0.9 0.9 0.8 0.9 0.9 Reuse
Rear board 0.9 0.8 0.933 * 0.8 0.9 0.9 Primary recycle

Compressor 0.9 0.9 0.933 * 0.9 0.9 0.8 Primary recycle
Condenser 0.9 0.9 0.933 * 0.8 0.9 0.8 Primary recycle

Base 0.9 0.933 * 0.9 0.8 0.8 0.9 Remanufacturing
Door 1 0.9 0.9 0.9 0.8 0.933 * 0.9 Incinerate
Door 2 0.933 * 0.8 0.8 0.7 0.9 0.8 Reuse

Gasket 1 0.9 0.9 0.933 * 0.7 0.9 0.8 Primary recycle
Gasket 2 0.9 0.8 0.9 0.933 * 0.9 0.9 Secondary recycle

Door liner 1 0.9 0.9 0.9 0.933 * 0.9 0.8 Secondary recycle
Door liner 2 0.9 0.9 0.8 0.933 * 0.8 0.8 Secondary recycle
Control unit 0.933 * 0.9 0.9 0.9 0.9 0.8 Reuse

Heater 0.9 0.9 0.933 * 0.8 0.9 0.8 Primary recycle
Dryer 0.9 0.9 0.933 * 0.8 0.9 0.9 Primary recycle

Shelf set 0.9 0.8 0.933 * 0.8 0.9 0.9 Primary recycle
* Represents the largest value in each group.

Table 10. The evaluation value of primary criteria for α = 0 with respect to the cabinet frame.

Criteria Weights A1 A2 A3 A4 A5 A6

x1 [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.56, 0.84] [0.78, 1] [0.75, 1] [0, 0.2]
x1

1 [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0, 0.2]
x2

1 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.8, 1] [0.7, 0.9] [0.4, 0.6] [0, 0.2]
x2 [0.7, 0.9] [0.709, 0.955] [0.782, 0.996] [0.761, 0.99] [0.691, 0.888] [0.742, 0.99] [0.59, 0.87]
x1

2 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0, 0.2] [0, 0.2]
x2

2 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.1, 0.3]
x3

2 [0.7, 0.9] [0.4, 0.6] [0.8, 1] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.7, 0.9]
x4

2 [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6]
x5

2 [0.4, 0.6] [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.1, 0.3] [0, 0.2]
x3 [0.8, 1] [0.751, 0.99] [0.317, 0.579] [0.788, 1] [0.648, 0.888] [0.657, 1] [0.78, 1]
x1

3 [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.8, 1] [0.4, 0.6] [0.8, 1] [0.8, 1]
x2

3 [0.4, 0.6] [0.1, 0.3] [0, 0.2] [0.8, 1] [0.7, 0.9] [0.1, 0.3] [0.7, 0.9]
x3

3 [0.7, 0.9] [0.8, 1] [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0, 0.2] [0.7, 0.9]
x4

3 [0.1, 0.3] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9] [0.4, 0.6] [0.4, 0.6] [0.7, 0.9]
x4 [0.4, 0.6] [0.773, 0.988] [0.74, 0.96] [0.691, 0.95] [0.073, 0.287] [0.692, 0.95] [0.56, 0.84]
x1

4 [0.4, 0.6] [0.7, 0.9] [0.7, 0.9] [0.4, 0.6] [0.1, 0.3] [0.4, 0.6] [0.4, 0.6]
x2

4 [0.4, 0.6] [0.8, 1] [0.7, 0.9] [0.8, 1] [0.1, 0.3] [0.8, 1] [0.4, 0.6]
x3

4 [0.4, 0.6] [0.8, 1] [0.8, 1] [0.8, 1] [0, 0.2] [0.8, 1] [0.8, 1]

Table 11. The comprehensive evaluation value of EOL options with respect to the cabinet frame.

Main Criteria (c)
∫

f dgλ Crisp number
A1 A2 A3 A1 A2 A3

Overall EOL (0.755, 0.876, 0.99) (0.75, 0.874, 0.989) (0.755, 0.892, 1) 0.874 0.871 0.882 *

Main criteria (c)
∫

f dgλ Crisp number
A4 A5 A6 A4 A5 A6

Overall EOL (0.757, 0.879, 1) (0.733, 0.858, 1) (0.723, 0.877, 1) 0.879 0.864 0.867
* Represents the largest value in each group.
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Table 12. Refrigerator component relevant closeness RC and appropriate EOL strategy.

Component A1 A2 A3 A4 A5 A6
Appropriate EOL

Strategy

Cabinet frame 0.874 0.871 0.882 * 0.879 0.864 0.867 Primary recycle
Cabinet 0.8859 0.871 0.8644 0.8947 * 0.8457 0.88 Secondary recycle

Duct in room 0.8834 0.8785 0.8725 0.8667 0.8878 * 0.8363 Incinerate
Fan unit 1 0.8787 0.8685 0.8981 * 0.7563 0.8889 0.7908 Primary recycle
Fan unit 2 0.8847 * 0.8051 0.8465 0.7191 0.8633 0.8074 Reuse

Evaporator 0.8974 * 0.8919 0.891 0.8495 0.8677 0.8821 Reuse
Rear board 0.8759 0.8382 0.8974 * 0.8473 0.8954 0.879 Primary recycle

Compressor 0.8873 0.8739 0.8927 * 0.8697 0.8887 0.841 Primary recycle
Condenser 0.8538 0.8683 0.8944 * 0.7563 0.8869 0.834 Primary recycle

Base 0.8741 0.8856 * 0.8729 0.8493 0.8326 0.881 Remanufacturing
Door 1 0.8573 0.8737 0.8737 0.8475 0.8886 * 0.8752 Incinerate
Door 2 0.8954 * 0.8051 0.8196 0.7272 0.8849 0.8093 Reuse

Gasket 1 0.8533 0.8685 0.8939 * 0.6727 0.8868 0.776 Primary recycle
Gasket 2 0.8532 0.8381 0.8964 0.8974 * 0.8914 0.888 Secondary recycle

Door liner 1 0.8851 0.8788 0.8726 0.8987 * 0.8667 0.8364 Secondary recycle
Door liner 2 0.8677 0.8774 0.754 0.8886 * 0.8422 0.7979 Secondary recycle
Control unit 0.8981 * 0.8788 0.8779 0.8667 0.893 0.8364 Reuse

Heater 0.8759 0.8685 0.8944 * 0.7563 0.8889 0.8341 Primary recycle
Dryer 0.8684 0.8736 0.8936 * 0.8382 0.8745 0.867 Primary recycle

Shelf set 0.8566 0.8382 0.8953 * 0.8471 0.8941 0.888 Primary recycle
* Represents the largest value in each group.

5. Conclusions

Through the derivation process and examples provided in the paper, we find that
the CT-integral on the interval-valued Sugeno probability measure is more advantageous
than the general Choquet integral on the interval-valued Sugeno probability measure.
Moreover, the CT-integral on interval-valued Sugeno probability measure improves the
computational procedure, making the computation simpler and less intensive compared to
the general Choquet integral on interval-valued Sugeno probability measure. Furthermore,
the CT-integral is the Choquet integral when the t-norm is T(x, y) = xy in the CT-integral.
In addition, this paper only provides the discrete expression of the CT-integral on the
interval-valued Sugeno probability measure, in particular its application in multi-criteria
decision-making problems; its specific properties are not studied, nor are its properties as a
pre-aggregation function. These properties of the CT-integral should be considered in future
work in order to obtain a better understand of the CT-integral and its potential applications.

Although this paper studies CT-integral, it only studies its applications and charac-
teristics in the context of the interval-valued Sugeno measure. Important research on the
CT-integral has yet to be carried out. For example, the CT-integral is more widely applicable
than the Choquet integral. The calculation intensity of the CTM -integral o then CT-integral
is less than that od the Choquet integral, thus, whether TŁ, TDP, TNM, and THP are the same
as the CT-integral is worth studying in the future.
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