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Abstract: This work presents a procedure for constructing the solution of a second order nonlin-
ear partial differential equation subjected to nonlinear boundary conditions in a very simple and
systematic way. The class of equations to be considered here includes, but is not limited to, the
partial differential equations which govern the steady-state heat transfer process in bodies with
temperature-dependent thermal conductivity and temperature-dependent internal heat source. In
addition, it will be considered a large class of nonlinear boundary conditions, especially those arising
from the description of the heat exchange process from/to bodies at high temperature levels. Proofs
of the solution’s existence and uniqueness are presented.
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1. Introduction

Conduction heat transfer in rigid bodies is usually described under severe approxi-
mations that, many times, are not physically realistic, such as Dirichlet boundary condi-
tions [1,2], Neumann boundary conditions [3,4], linear boundary conditions [4,5], constant
source term [1,6], and constant thermal conductivity [2,5]. Such approximations have, as
their main goal, the purpose of simplifying the mathematical description, allowing the use
of more available and low-cost methods for simulations.

Nevertheless, when the heat transfer process involves great temperature variations
and, in particular, involves high temperature levels, these “linear approaches” may give
rise to considerably inaccuracies [7–9]. The dependence of the thermal conductivity on the
temperature has been the main subject of many works in the last twenty years, especially
those which employ the Kirchhoff Transform [10–15].

The solution of nonlinear second order differential equations is the subject of many
papers as, for instance, references [16–20]. In reference [16], the steady state heat transfer
is treated by means of the local multi-quadratic radial basis function collocation method.
In reference [17], a double iteration process is employed, while in [18], an enthalpy-based
finite element method is employed, taking into account a phase change process. In [19],
a nonstandard finite difference method is used for a heat transfer problem. Meshless
methods, that represent the solution as a superposition of shape functions, have also been
used for heat transfer problems [20].

The goal of this work is to provide a reliable and simple procedure for describing and
simulating heat transfer problems, without the need for the usual simplifications, carried
out for minimizing mathematical complexities.

In order to illustrate, in an explicit way, the main objective of this work, let us consider
the following problems:
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Problem 1. Find v, solution of the linear problem below [21]

∆v− cv + s = 0 in Ω, s = ŝ(x), c = constant ≥ 0
−∇v·n = αv− γ on ∂Ω, γ = γ̂(x), α = constant > 0

(1)

Problem 2. Find T, solution of

∇·(k ∇T) +
.
q = 0 in Ω, k = k̃(T),

.
q = q̂(x, T)

−k∇T·n = f̂ (x, T) on ∂Ω
(2)

in which Ω is a bounded open set with piecewise smooth boundary ∂Ω (see Figure 1).
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Figure 1. The bounded open set Ω and its boundary ∂Ω.

Clearly, Problem 1 is one of the most studied and well known mathematical problems.
On the other hand, Problem 2 is a nonlinear problem that requires much more effort to be
simulated than what is necessary for Problem 1.

In this work, we represent the solution of Problem 2 by means of the solution of
problems such as Problem 1, provided the following conditions hold:

• There exists a positive constant δ such that, for any T, k̃(T) ≥ δ > 0;
• .

q = q̂(x, T) is a non-increasing function of T, for any x;
• f̂ (x, T) is a strictly increasing function of T, for any x;
• lim

T→∞
f̂ (x, T) = + ∞, for any x;

• lim
T→−∞

f̂ (x, T) = − ∞, for any x;

• f̂ (x, 0) ≤ 0, for any x ∈ ∂Ω;
• q̂(x, a) ≥ 0, for any x ∈ Ω, for any a ∈ (−∞, ∞).

In other words, the solution of Problem 2 will be represented by the limit of the
sequence [p1, p2, p3 . . .], in which

∆vi − cvi + si−1 = 0 in Ω, si−1 = ŝi−1(x), c = non negative constant
−∇vi·n = αvi − γi−1 on ∂Ω, γi−1 = γ̂i−1(x), α = positive constant
vi = Θ̃(pi), d

dz Θ̃(z) = k̃(z) ≥ δ > 0, δ = constant
(3)

The (known) functions ŝi−1(x) and γ̂i−1(x) are obtained from the knowledge of vi−1.
It is to be noticed that almost all steady-state heat transfer problems can be described

by Problem 2 and satisfy the six above conditions. In addition, it is remarkable that the
function Θ always admits an inverse. In fact, when k represents the thermal conductivity
(or any diffusion coefficient), the existence of a positive lower bound is always ensured.

When Equation (2) represents a heat transfer process,
.
q is a heat source (per unit time

and per unit volume), k is the thermal conductivity, and T is the temperature. The function
f represents the heat loss (per unit time and per unit area) from the body boundary.

The main subject of this work is concerned with real physical applications arising from
heat transfer problems. In this way, the domain Ω is assumed to have the cone property
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and that its boundary is composed by a finite number of smooth parts. In addition, it is
assumed that

.
q and f are bounded and are piecewise continuous functions of x for each

given T. As physically expected, the function T (temperature) will be a continuous function
in Ω and will satisfy Problem 2 almost everywhere.

It is to be noticed that, in general, real heat transfer problems are nonlinear and usually
are simulated under a severe hypothesis in order to avoid complex mathematical tools for
their solutions. With the procedure proposed in this work, a large class of nonlinear heat
transfer problems can be treated with simple basic tools, such as those used for solving the
linear problems. The proposed procedure allows a low-cost simulation for problems that,
usually, require sophisticated methods.

In addition, since the solution will be obtained as the limit of a non-decreasing se-
quence (with a known upper bound), it is easy to verify the consistency of a given simula-
tion. In other words, if the sequence does not behave as expected, the simulation must be
stopped, because something must be corrected (probably α or c is not large enough).

2. Construction of the Non-Decreasing Sequence [v1, v2, v3 . . .]

Let us consider the problem below:

∆Φ + Q = 0 in Ω, Q = Q̂(x, Φ)
−∇Φ·n = F̂(x, Φ) on ∂Ω

(4)

in which the functions F̂(x, Φ) and Q̂(x, Φ) have the following properties

• Q̂(x, Φ) is a non-increasing function of Φ, for any x ∈ Ω;
• F̂(x, Φ) is a strictly increasing function of Φ, for any x ∈ ∂Ω;
• lim

Φ→+∞
F̂(x, Φ) = +∞, for any x ∈ ∂Ω;

• lim
Φ→−∞

F̂(x, Φ) = − ∞, for any x ∈ ∂Ω;

• F̂(x, 0) ≤ 0, for any x ∈ ∂Ω;
• Q̂(x, a) ≥ 0, for any x ∈ Ω, for any a ∈ (−∞, ∞).

Thus, the sequence [v1, v2, v3 . . .], whose elements are obtained from the solution of

∆vi − cvi + si−1 = 0 in Ω, i = 1, 2, . . .
−∇vi·n = αvi − γi−1 on ∂Ω, i = 1, 2, . . .
si−1 = ŝi−1(x) = cvi−1 + Q̂(x, vi−1)
γi−1 = γ̂i−1(x) = αvi−1 − F̂(x, vi−1)
v0 ≡ 0

(5)

is a convergent non-increasing sequence, provided c and α are sufficiently large constants
in order to ensure that

c(vi − vi−1) ≥ Q̂(x, vi−1)− Q̂(x, vi), i = 1, 2, . . .
α(vi − vi−1) ≥ F̂(x, vi)− F̂(x, vi−1), i = 1, 2, . . .

(6)

As a first step, let us prove that v1 is non-negative everywhere. Aiming for this, we
write, from Equation (5), for i = 1

∆v1 − cv1 + s0 = 0 in Ω
−∇v1·n = αv1 − γ0 on ∂Ω
s0 = cv0 + Q̂(x, v0)
γ0 = αv0 − F̂(x, v0)
v0 ≡ 0

(7)

Now, let us assume that v1 assumes its minimum at a point x∗ ∈ Ω. Thus, there
exists a small neighborhood of x∗ in which ∆v1 ≥ 0. Therefore, in this neighborhood,
−cv1 + s0 ≤ 0. Since v0 ≡ 0 and Q̂(x, 0) ≥ 0, we are able to conclude that, if v1 has a local
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minimum in Ω, then this minimum is non-negative. On the other hand, if this minimum
does not occur in Ω, we have that there exists a subset ∂Ω−1 ⊆ ∂Ω, such that [21,22]

inf
∂Ω

v1 = inf
∂Ω−1

v1 = inf
Ω

v1 (8)

On the subset ∂Ω−1 ⊆ ∂Ω, from the boundary condition, we have

−∇v1·n = αv1 − αv0 + F̂(x, v0) ≥ 0 on ∂Ω−1 (9)

Therefore, since F̂(x, 0) ≤ 0, we conclude that v1 is non-negative everywhere. There-
fore, v1 ≥ v0 ≡ 0.

From Equation (5), we may write

∆(vi+1 − vi)− c(vi+1 − vi) + si − si−1 = 0 in Ω, i = 1, 2, . . .
−∇(vi+1 − vi)·n = α(vi+1 − vi)− (γi − γi−1) on ∂Ω, i = 1, 2, . . .
si − si−1 = c(vi − vi−1) +

(
Q̂(x, vi)− Q̂(x, vi−1)

)
γi − γi−1 = α(vi − vi−1)−

(
F̂(x, vi)− F̂(x, vi−1)

)
v0 = 0 on ∂Ω

(10)

Combining Equation (10) with Equation (6), we conclude that, if vi ≥ vi−1 every-
where, then

∆(vi+1 − vi) ≤ 0 in Ω (11)

and vi+1 − vi does not reach a minimum in Ω. Again, using Equation (6) and taking into
account the boundary conditions, we conclude that

vi ≥ vi−1 in Ω ⇒ inf
∂Ω

(vi+1 − vi) = inf
Ω
(vi+1 − vi) ≥ 0 (12)

Since v1 ≥ v0 in Ω, the above result enables us to conclude (non-decreasing se-
quence) that

. . . vi ≥ vi−1 ≥ . . . v2 ≥ v1 ≥ 0 in Ω (13)

3. An Upper Bound for the Sequence

The solution of Equations (4), denoted by Φ, is an upper bound for the elements of the
sequence [v1, v2, v3 . . .]. In order to prove this affirmation, let us combine Equations (4) and (5)
to obtain

∆(Φ− vi) + Q(x, Φ) + cvi − cvi−1 − Q̂(x, vi−1) = 0 in Ω
−∇(Φ− vi)·n = F̂(x, Φ)− αvi + αvi−1 − F̂(x, vi−1) on ∂Ω

(14)

or, in a more convenient form,

∆(Φ− vi) + Q(x, Φ)− Q̂(x, vi) + c(vi − vi−1) + Q̂(x, vi)− Q̂(x, vi−1) = 0 in Ω
−∇(Φ− vi)·n = F̂(x, Φ)− F̂(x, vi)− α(vi − vi−1) + F̂(x, vi)− F̂(x, vi−1) on ∂Ω

(15)

Now, let us suppose that the difference Φ− vi assumes its minimum in Ω. In this case
we must have ∆(Φ− vi) ≥ 0 in a small neighborhood of the local minimum. Therefore, in
this neighborhood, taking into account Equation (6), we have

Q(x, Φ)− Q̂(x, vi) + c(vi − vi−1) + Q̂(x, vi)− Q̂(x, vi−1) ≤ 0 ⇒ Φ ≥ vi (16)

On the other hand, if Φ− vi does not assume a minimum in Ω, we must have a subset
∂Ω−i , such that

inf
∂Ω

(Φ− vi) = inf
∂Ω−i

(Φ− vi) = inf
Ω
(Φ− vi) (17)

and, on this subset, taking into account the boundary conditions and Equation (6),

F̂(x, Φ)− F̂(x, vi) ≥ 0 ⇒ Φ ≥ vi on ∂Ω−i (18)
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Thus, it is proven that Φ ≥ vi in Ω. Clearly, it must be proven that (4) admits a solution
and that Φ ≡ v∞. In the next section, with the aid of a variational formulation, we prove
that the solution Φ exists and is unique.

Since (from Equation (5))

∆vi − c(vi − vi−1) + Q̂(x, vi−1) = 0 in Ω, i = 1, 2, . . .
−∇vi·n = α(vi − vi−1) + F̂(x, vi−1) on ∂Ω, i = 1, 2, . . .
v0 ≡ 0

(19)

we have that
∆v∞ + Q̂(x, v∞) = 0 in Ω
−∇v∞·n = F̂(x, v∞) on ∂Ω

(20)

Therefore, Φ ≡ v∞ (the limit of the sequence [v1, v2, v3 . . .] consists of a solution of
Problem 4, provided it admits a solution).

4. Existence and Uniqueness of the Solution of Equation (4)

The solution of Equation (4) is the field which minimizes the functional I[η], defined by

I[η] = 1
2

∫
Ω
|∇η|2dV −

∫
Ω

Â(x, η)dV +
∫

∂Ω
B̂(x, η)dA,

∂
∂Φ Â(x, Φ) = Q̂(x, Φ), ∂

∂Φ B̂(x, Φ) = F̂(x, Φ)
(21)

Since, for any θ ∈ (0, 1), the following inequality holds:

(1− θ)θ|∇(η1 − η2)|2 = θ∇η1·∇η1

+(1− θ)∇η2·∇η2 − θ2∇η1·∇η1 − (1− θ)2∇η2·∇η2 − 2θ(1− θ)∇η1·∇η2 ≥ 0
(22)

we ensure that

θ
∫
Ω

|∇η1|2dV + (1− θ)
∫
Ω

|∇η2|2dV −
∫
Ω

|∇{θη1 + (1− θ)η2}|2dV ≥ 0, θ ∈ (0, 1) (23)

In addition, since the derivative (with respect to Φ) of −Â(x, Φ) is non-negative and
the derivative (with respect to Φ) of B̂(x, Φ) is positive, we may write (convexity of the
functional I[η])

θ I[η1] + (1− θ)I[η2]− I[θη1 + (1− θ)η2] ≥ 0, θ ∈ (0, 1) (24)

A necessary condition for ensuring the equality in Equation (22), for two different
functions η1 and η2, is η1 − η2 = constant.

Nevertheless, from the definition of B̂(x, Φ), this constant must be zero for ensuring
the equality in (24). Therefore, we conclude that the functional I[η] is strictly convex. This
ensures the uniqueness of the minimum, provided it exists.

In order to prove the existence of the minimum, it is sufficient to show that the convex
functional I[η] is such that (coerciveness) [23]

lim
γ→∞

I[γη]

γ
= ∞, ‖η‖ = 1 (25)

in which ‖η‖ is the usual norm of H1(Ω) [24].
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Taking into account that ‖η‖ = 1 and considering the behavior of Q̂(x, Φ) and of
F̂(x, Φ), the above limit may be represented as follows:

lim
γ→∞

I[γη]
γ = lim

γ→∞

{
1

2γ

∫
Ω
|∇γη|2dV −

∫
Ω

Â(x,γη)
γ dV +

∫
∂Ω

B̂(x,γη)
γ dA

}

= lim
γ→∞

{
γ
2

∫
Ω
|∇η|2dV −

∫
Ω

η Q̂(x, γη)dV +
∫

∂Ω
η F̂(x, γη)dA

}
= ∞

(26)

ensuring the coerciveness (solution existence).
At this point, it is convenient to show that the minimization of I[η] corresponds, in a

weak sense, to the solution of (4). Aiming to this, based on Equation (21), let us calculate
the first variation of I[η] as follows

δI[η] =
∫
Ω

∇η·∇δηdV −
∫
Ω

{
∂

∂η
Â(x, η)

}
δηdV +

∫
∂Ω

{
∂

∂η
B̂(x, η)

}
δηdA (27)

or, in a more convenient way, as

δI[η] =
∫
Ω

∇η·∇δηdV −
∫
Ω

Q̂(x, Φ)δηdV +
∫

∂Ω

f̂ (x, Φ)δηdA (28)

Since [25]∫
Ω

∇η·∇δηdV =
∫
Ω

(∇·(δη ∇η)−∇·(∇η)δη)dV = −
∫
Ω

∇·(∇η)δηdV +
∫

∂Ω

δη ∇η·ndA (29)

we may write

δI[η] = −
∫
Ω

∇·(∇η)δηdV +
∫

∂Ω

δη ∇η·ndA−
∫
Ω

Q̂(x, η)δηdV +
∫

∂Ω

f̂ (x, η)δηdA (30)

Thus, taking into account that δη is arbitrary, δI[η] = 0 gives rise to (Euler–Lagrange
equation and natural boundary condition)

∇·(∇η) + Q̂(x, η) = 0 in Ω
∇η·n + F̂(x, η) = 0 on ∂Ω

(31)

proving the equivalence between (4) and the minimization of the functional I[η] (note that
∇·∇ ≡ ∆ ≡ div(grad) represents the Laplacian).

In other words, we have that, in a weak sense, (4) admits one, and only one, solution.
In fact, this minimum will belong to H2(Ω). Since the domain Ω belongs to R3 and has the
cone property, this minimum will be continuous in Ω (Sobolev imbedding theorem [24]).

It is natural to ask about the use of I[η] for reaching the solution Φ. Surely, the
minimization of I[η] is a valid and reliable procedure, but, the procedure proposed in this
work is also reliable and involves much more simple tools.

5. Construction of the Solution of Problem 2

Since k̃(T) ≥ δ > 0, the knowledge of the elements of the sequence [v1, v2,v3 . . .], as
well as its limit, enable us to determine, in a unique way, the elements of the sequence
[p1, p2, p3 . . .], as well as its limit. In other words, the knowledge of Φ determines, in a
unique way, the solution of Problem 2.

The functional relationship between Φ (solution of (4)) and T(solution of (2)) depends
on the choice of the function Θ̃(z). There are infinite possible choices. For instance, when
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the physically considered range for the temperature is the interval T ∈ [a, b], the function
Θ may be defined as [26]

Θ = Θ̃(T) =



{
k̂(a)

}
T, i f T < a

T∫
a

k̂(ξ)dξ +
{

k̂(a)
}

a, i f a ≤ T ≤ b

b∫
a

k̂(ξ)dξ +
{

k̂(a)
}

a +
{

k̂(b)
}
(T − b), i f b < T

(32)

It is to be noticed that, for any real heat transfer process, a and b are positive valued
constants, provided T represents an absolute temperature.

In order to illustrate the calculation of T from the knowledge of Φ, let us consider a
particular case in which, within the physically admissible range,

k = k̂(T) = ka +
T − a
b− a

(kb − ka), ka ≥ δ > 0, kb ≥ δ > 0 (33)

In this case

Φ = Φ̃(T) =


kaT, i f T < a

ka(T − a) + kb−ka
b−a

(T−a)2

2 + kaa, i f a ≤ T ≤ b
(ka − kb)

a+b
2 + kbT, i f b < T

(34)

and the temperature is given by

T = T̃(Φ) =



Φ
ka

, i f Φ < kaa

akb−bka
kb−ka

+
(

b−a
kb−ka

)√
(ka)

2 − 2
(

kb−ka
b−a

)
(kaa−Φ),

i f kaa ≤ Φ ≤ kaa + (ka + kb)
b−a

2
Φ
kb
− (ka−kb)(a+b)

2kb
, i f kaa + (ka + kb)

b−a
2 < Φ

(35)

The linear relationship between the thermal conductivity k and the temperature T is
the most usual for describing heat transfer processes. Other relationships may be used as,
for instance, the one proposed in [26] and used in [27].

Figure 2 illustrates a particular case of Equation (34).
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( )ˆsup ,0 0w Q in
∈Ω

 Δ + = Ω x
x  (36)

For instance, an always possible choice (not a unique choice and, probably, often not 
the best) for w  is 

( ) ( ){ }1 ˆsup ,0 ,
6

w Q
∈Ω

 = − ∈Ω x
x x x x  (37)

Combining Equation (4) with Equation (36), we have 

( ) ( ) ( ) ( )垐 , sup ,0 0 0w Q Q w in
∈Ω

 Δ Φ − + Φ − =  Δ Φ − ≥ Ω x
x x  (38)

Therefore, there exists a subset +∂Ω ⊆ ∂Ω  in which ( ) 0w∇ Φ − ≥n , such that 

( ) ( ) ( )sup sup supw w w
+ ∂Ω Ω∂Ω

Φ − = Φ − = Φ −  (39)

Taking into account the boundary condition, we may write  

( ) ( ) ( )垐 , , 0w F w on F w on +−∇ Φ − = Φ + ∇ ∂Ω  Φ + ∇ ≤ ∂Ωn x n x n    (40)

Since, 

( ) ( ) ( )sup sup supw w w
+ ∂Ω Ω∂Ω

Φ − = Φ − = Φ −  (41)

we are able to write 

Figure 2. Φ as a function of T for a case in which a = 1, b = 2, and k = k̂(T) = T for T ∈ [1, 2].
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6. The Constants c and α

The constants c and α must satisfy Equation (6). Since (4) admits a unique solution
and Φ ≥ vi, the existence of the constants c and α is ensured.

In order to provide a sufficiently (not necessarily) large value for each of these two
constants, it is convenient to establish an upper bound for Φ before solving the problem.

Aiming at this, let us define the function w, (any) solution of the following partial
differential equation:

∆w + sup
x∈Ω

[
Q̂(x, 0)

]
= 0 in Ω (36)

For instance, an always possible choice (not a unique choice and, probably, often not
the best) for w is

w = −1
6
(x·x)

{
sup
x∈Ω

[
Q̂(x, 0)

]}
, x ∈ Ω (37)

Combining Equation (4) with Equation (36), we have

∆(Φ− w) + Q̂(x, Φ)− sup
x∈Ω

[
Q̂(x, 0)

]
= 0 ⇒ ∆(Φ− w) ≥ 0 in Ω (38)

Therefore, there exists a subset ∂Ω+ ⊆ ∂Ω in which ∇(Φ− w)·n ≥ 0, such that

sup
∂Ω+

(Φ− w) = sup
∂Ω

(Φ− w) = sup
Ω

(Φ− w) (39)

Taking into account the boundary condition, we may write

−∇(Φ− w)·n = F̂(x, Φ) +∇w·n on ∂Ω ⇒ F̂(x, Φ) +∇w·n ≤ 0 on ∂Ω+ (40)

Since,
sup
∂Ω+

(Φ− w) = sup
∂Ω

(Φ− w) = sup
Ω

(Φ− w) (41)

we are able to write

sup
Ω

Φ ≤ sup
∂Ω+

(Φ− w) + sup
Ω

w ≤ sup
∂Ω+

Φ− inf
∂Ω+

w + sup
Ω

w (42)

in which w is a known function.
Therefore, any constant Φ+ satisfying the inequality

F̂
(
x, Φ+

)
+∇w·n ≤ 0, x ∈ ∂Ω+ (43)

will be greater than the supremum of Φ on ∂Ω+. Therefore,

sup
Ω

Φ ≤ Φ+ − inf
∂Ω+

w + sup
Ω

w (44)

Once known, an upper bound for Φ, the constants c and α may be chosen from the
following inequalities (sufficient conditions, but not necessary):

c(b− a) ≥ Q̂(x, a)− Q̂(x, b), sup
Ω

Φ > b > a > 0

α(b− a) ≥ F̂(x, b)− F̂(x, a), sup
Ω

Φ > b > a > 0
(45)

It must be highlighted that c and α satisfying (45) ensure the convergence of the
non-decreasing sequence [v1, v2, v3 . . .]. Nevertheless, in general, this non-decreasing
convergent sequence may be reached with lower values for c and α.
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When Q̂(x, Φ) and F̂(x, Φ) are differentiable with respect to Φ, within the interval of
interest, (45) may be rewritten as follows:

c ≥ − ∂
∂ξ

{
Q̂(x, ξ)

}
, sup

Ω
Φ > ξ > 0, f or any x ∈ Ω

α ≥ ∂
∂ξ

{
F̂(x, ξ)

}
, sup

Ω
Φ > ξ > 0, f or any x ∈ ∂Ω

(46)

Clearly, from Equation (45), if Q̂(x, Φ) does not depend on Φ, then c may be zero.

7. Conclusions

This work provides a powerful and simple tool for simulating any steady-state heat
transfer phenomenon and any other process, described by a nonlinear second order partial
differential equation such as Equation (2), even when subjected to nonlinear boundary
conditions (for instance, arising from thermal radiation heat transfer from/to the body) and
involving temperature-dependent source terms (even when this dependence is not linear).

The results presented here generalize common situations in which the source term is
assumed to be known (i.e., did not depend on the temperature) and where the boundary
condition is the classical linear Newton law of cooling.

The proposed procedure for constructing the solution may be used together with any
numerical scheme available for a linear problem such as Problem 1, making a large class of
nonlinear problems accessible to any student (of engineering, physics, or mathematics). An
example is presented in Appendix A.

The conditions imposed for ensuring the convergence are sufficient conditions, but are
not necessary. In other words, the procedure may work even outside of the ensured range.

The disadvantage of the proposed procedure is the fact of not knowing the optimal
value of the constant α (the lower one which ensures convergence). On the other hand, if
the convergence is reached for a given α = α, it will be reached for any α greater than α.

It is to be noticed that linear problems, in particular those involving linear boundary
conditions, admit an equivalent minimum principle represented by a quadratic functional.
Nonlinear problems are not equivalent to the minimization of quadratic functionals.

Funding: This research was funded by [CNPq] grant number [306364/2018-1] and by Brazilian
Agency CAPES (finance code 001). The APC was funded by CNPq/Brazil.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. An Example

In order to explicitly illustrate the solution construction, let us consider the one-
dimensional problem below, which represents the heat transfer in a slab with thickness 2L.

k d2T
dx2 +

.
q = 0, −L < x < L,

.
q = constant > 0, k = constant > 0

−k dT
dx = h|T|mT, at x = L, h = constant > 0, m > −1

k dT
dx = h|T|mT, at x = −L, h = constant > 0, m > −1

(A1)

In this case, the solution T is given by (when m = 0 we have the linear case)

T =

.
q

2k

(
L2 − x2

)
+

( .
qL
h

)1/(m+1)

, −L ≤ x ≤ L (A2)

At the surfaces x = L and x = −L, we have the same temperature, given by

TSURFACE =

( .
qL
h

)1/(m+1)

, at x = −L and at x = L (A3)
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Figure A1. The temperature at the surface as a function of
.
qL/h for three values of m.

In order to illustrate the procedure proposed in this work, let us consider the following
particular case of Equation (A1):

d2T
dx2 + 1 = 0, −1 < x < 1
− dT

dx = |T|3T, at x = 1
dT
dx = |T|3T, at x = −1

(A4)

which describes the coupled conduction–radiation heat transfer process in a black slab
(thickness = 2), represented in a convenient system of units.

The solution is obtained as the limit of the sequence [w1, w2, w3, . . .], whose elements
are obtained from

d2wi+1
dx2 + 1 = 0, −1 < x < 1
− dwi+1

dx = α(wi+1 − wi) + |wi|3wi, at x = 1
dwi+1

dx = α(wi+1 − wi) + |wi|3wi, at x = −1

(A5)

in which w0 ≡ 0.
Each element is given by

wi+1 =
1
2

(
1− x2

)
+ µi, −1 ≤ x ≤ 1, i = 0, 1, 2, . . . (A6)

in which the µi’s are constants (µ0 = 0).
Figures A2 and A3 below illustrate the convergence process for two different values

of the constant α. In both cases, the convergence is reached, but the convergence speed for
α = 4.0 is greater than the convergence speed for α = 10.0.

In fact, as α decreases, the convergence speed increases. Nevertheless, very low values
of α may not give rise to convergence.

For instance, if we consider α = 2.0 in Equation (A5), the convergence is not reached.
This fact is illustrated in Figure A4, in which µi is represented as a function of “i” for some
selected values of the constant α.
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For sufficiently large α, it is to be noticed that, for i→ ∞ , µi represents the temperature
at x = ±1. This is not true for α = 2.0.

In Figure A5, the same result is presented, considering i = 0, 1, 2, . . . , 100.
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