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Abstract: In this paper, some novel conditions for the stability results for a class of fractional-order
quasi-linear impulsive integro-differential systems with multiple delays is discussed. First, the
existence and uniqueness of mild solutions for the considered system is discussed using contraction
mapping theorem. Then, novel conditions for Mittag–Leffler stability (MLS) of the considered system
are established by using well known mathematical techniques, and further, the two corollaries are
deduced, which still gives some new results. Finally, an example is given to illustrate the applications
of the results.
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1. Introduction

Differential equations involving an arbitrary non-integer order are often used as excel-
lent tools for describing many dynamical processes because they have nonlocal properties
and weakly singular kernels; for more details, see [1–3]. Most the investigations show
that non-integer order calculus is more suitable and has accuracy when describing vari-
ous physical systems in areas such as mechanical systems, electro-chemistry, biological
systems and diffusion processes; see, for instance, [4–8]. Further, as pointed out in [9],
the fractional-order derivative provides fundamental and general computation ability for
efficient information processing and stimulus anticipation for real models. Usually, systems
with nonlocal conditions are generalizations of local nonlinear boundary conditions, which
gives better approximations in some physical problems [10]. Further, the quasi-linear
integro-differential equations have occurred during the study of the nonlinear behavior
of elastic strings and other areas of physics. Many interesting results on various forms of
systems, including fractional-order, quasi-linear, integro-differential and non-local systems,
are found in [11–15] and references therein.

On the other hand, impulses in differential equations reflect the dynamics of real world
problems with unexpected discontinuities and rapid changes at certain instants, such as
blood flows, heart beats and so on [16]. Impulsive behavior often exists in many real world
systems. Fundamentally, the impulses are samples of state variables of a controlled system
at discrete moments. These effects most often occur in pharmacokinetics, the radiation
of electromagnetic waves, nanoelectronics, etc. [17]. There are number of interesting
research papers on impulsive differential equations found in the literature; see [18–20] and
references therein. The piecewise-continuous solutions for the impulsive Cauchy problem
and impulsive boundary-value problem were studied in [21]. The existence and finite-time
stability of an impulsive fractional-order system (FOS) using Gronwall inequality involving
Hadamard-type singular kernel has been investigated in [20]. Wang et al. [19] derived
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the finite-time stability of impulsive fractional-order delayed systems using generalized
Bellman-Gronwall’s inequality.

The sufficient conditions for MLS and uniform asymptotic stability of nonlinear im-
pulsive FOSs were obtained in [22]. The MLS of nonlinear FOSs with impulses has been
analyzed in [23]. The MLS for impulsive FOSs with instantaneous and non-instantaneous
impulses were studied in [24]. The MLS of a nonlinear FOS was studied in [25] by extend-
ing the Lyapunov direct method. The MLS for a coupled system of FOSs with impulses
was investigated in [26]. The MLS for nonlinear fractional neutral singular systems were
obtained in [27]. The finite time stability of delayed FOSs by Mittag–Leffler functions was
analyzed in [28]. An MLS estimator for a nonlinear FOS using a linear quadratic regulator
approach was studied in [29]. Many problems in viscoelasticity, acoustics, populations
dynamics, electromagnetics, hydrology, chemical reactions and other areas can be modeled
by fractional integro-differential equations; see [30–32] and references therein. For example,
take the the nonlinear oscillation of earthquake model, fluid-dynamic traffic model, second-
grade fluid model, circulant Halvorsen system, susceptible-infected-recovered epidemic
model with a fractional derivative and many other recent developments in the description
of anomalous by fractional dynamics; see [33–36].

The stability of dynamical systems is an essential one in the qualitative theory of
dynamical systems, as it addresses the system trajectories under small perturbations of
initial conditions. The stability analysis of FOS is more difficult than the classical ones
because the fractional-order derivative is nonlocal and has infirm singular kernels [37,38].
In the literature, the concepts of the stability analysis of impulsive FOS are studied by
various approaches. Among them, MLS is more useful in FOSs because the Mittag–Leffler
functions are commonly used in fractional calculus, which generally features power-law
convergence. Thus, in this paper we made an attempt to study MLS analysis for quasi-linear
impulsive FOS with multiple time delays. Recently, many authors focused on the various
types of stability analysis for FOS; for example, the q-MLS and direct Lyapunov method
for q-FOS is discussed in [39]. The Mittag–Leffler input stability of FOSs with exogenous
disturbances using the Lyapunov characterization is studied in [40]. Li et al. [41] proposed
the MLS using the fractional Lyapunov direct method.

However, there are few results available for the MLS of FOS with impulse effects
that could not be suitable for FOSs of quasi-linear type with multiple time delays. To the
best of our knowledge, the Mittag–Leffler stability of FOSs has not been fully investigated,
which motivated our present study. Thus, in this study the existence and uniqueness of
solutions and MLS analysis of the impulsive quasi-linear FOS with multiple time delays
are established using the well-known fixed point theorems and Mittag–Leffler approach.
Further, the main contribution of this paper lies in deriving new stability conditions for
the fractional-order quasi-linear system with nonlocal conditions, multiple time delays
and impulses. Novel conditions for the Mittag–Leffler stability of FOSs is established. The
existence and uniqueness of mild solutions for the FOS are discussed with help of the
contraction mapping principle. Finally, an example is provided to show the applicability of
the results.

2. Problem Description

Consider the fractional model given by

Dβz(t) + A(t, z(t))z(t) = f(t, z(t), z(τ(t))) +
∫ t

0
g(t, α, z(α), z(δ(α)))dα,

z(0) + h(z) = z0, (1)

∆z(tk) = Ik(z(tk)),

in Banach space X, 0 < β ≤ 1, t ∈ J = [0, T], z0 ∈ X, k = 1, 2, . . . ,m and 0 < t1 < t2 < ... <
tm < T. Assume −A(t, z(t)) is a closed linear operator defined on a dense domain D(A) in
X into X such that D(A) is independent of t, and it generates an evolution operator in X.
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Let z ∈ PC(J, X) be continuous at t 6= tk and left continuous at t = tk; in addition, right limit
z(t+k ) exists for k = 1, 2, . . . ,m. Clearly PC(J, X) is a Banach space with the norm ‖z‖PC =
sup
t∈J
‖z(t)‖. Additionally, z(τ) = (z(τ1), z(τ2), . . . , z(τr)) and z(δ) = (z(δ1), z(δ2), . . . , z(δκ))

are multiple time-delays. The functions f, g and h are nonlinear in nature, satisfying:

(H1) function f : J × Xr+1 → X is continuous, and there exist positive constants f1, f2
such that

‖f(t, z1, z2, . . . , zr+1)− f(t, z̃1, z̃2, . . . , z̃r+1)‖X ≤ f1

r+1

∑
p=1
‖zp − z̃p‖X ,

zp, z̃p ∈ X and f2 = max
t∈J
‖f(t, 0, . . . , 0)‖X .

(H2) function g : Λ × Xκ+1 → X is continuous, and there exist positive constants g1, g2
such that∫ t

0
‖g(t, α, z1, z2, . . . , zκ+1) − g(t, α, z̃1, z̃2, . . . , z̃κ+1)‖Xdα

≤ g1

κ+1

∑
q=1
‖zq − z̃q‖X , zq, z̃q ∈ X,

g2 = max
{ ∫ t

0
‖g(t, α, 0, . . . , 0)‖Xdα : (t, α) ∈ Λ

}
.

(H3) τp and δq : J → J are bijective and absolutely continuous, and there exist constants cp

and bq such that τ
′
p(t) ≥ cp and δ

′
q(t) ≥ bq, respectively, for t ∈ J and Λ = {(t, θ), 0 ≤

θ ≤ t ≤ T}.
(H4) Let Ω be a subset of X, and h : PC(J, Ω)→ Y is Lipschitz continuous in X and bounded

in Y; i.e., there exist positive constants h1, h2 such that

‖h(z)‖Y ≤ h1 and ‖h(z)− h(z̃)‖Y ≤ h2 max
t∈J
‖z− z̃‖PC, z, z̃ ∈ PC(J, X).

(H5) Ik : X → X are continuous and there exist constants l > 0, such that
‖Ik(z)− Ik(z̃)‖ ≤ l‖z− z̃‖, z, z̃ ∈ X, where k = 1, 2, 3, . . . ,m.

2.1. Preliminaries

Let X and Y be two Banach spaces such that Y is densely and continuously embedded
in X. For Banach space, the norm of X is denoted by ‖.‖X . The space of all bounded linear
operators from X to Y is denoted by B(X, Y), and B(X, X) is written as B(X).

Now we recall some basic definitions and lemmas which will be useful in the main results.

Definition 1. A two-parameter family of bounded linear operators U(t, Θ) and 0 ≤ Θ ≤ t ≤ T,
on X, is called an evolution system if the following two conditions are satisfied:
(1) U(t, t) = I, U(t, r)U(r, Θ) = U(t, Θ) for 0 ≤ Θ ≤ r ≤ t ≤ T,
(2) (t, Θ)→ U(t, Θ) is strongly continuous for 0 ≤ Θ ≤ t ≤ T.

Let E be the Banach space formed from domain D(A) with the graph norm. Since
−A(t) is a closed operator, it follows that −A(t) is in the set of bounded operators from E
to X.

Definition 2. A resolvent operator for (1) is a bounded operator-valued function Rz(t, Θ) ∈ B(X),
0 ≤ Θ ≤ t ≤ T, the space of bounded linear operator on X, having the following properties:

• Rz(t, Θ) is strongly continuous in Θ and t, Rz(Θ, Θ) = I, 0 ≤ Θ ≤ T, ‖Rz(t, Θ)‖ ≤
ΥeN(t−Θ) for some constants Υ and N.

• Rz(t, Θ)E ⊂ E, Rz(t, Θ) is strongly continuous in Θ and t on E.
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• For x ∈ X, Rz(t, Θ)x is continuously differentiable for Θ ∈ [0, T] and
∂Rz

∂Θ
(t, Θ)x =

Rz(t, Θ)A(Θ, z(Θ))x.
• For x ∈ X and Θ ∈ [0, T], Rz(t, Θ)x is continuously differentiable for t ∈ [Θ, T] and

∂Rz

∂t
(t, Θ)x = −A(t, z(t))Rz(t, Θ)x,

with
∂Rz

∂Θ
(t, Θ)x and

∂Rz

∂t
(t, Θ)x are strongly continuous on 0 ≤ Θ ≤ t ≤ T. Further, Rz(t, Θ)

can be extracted from the evolution operator of the generator −A(t, z). The resolvent operator is
similar to the evolution operator for non-autonomous systems in a Banach space.

The Mittag–Leffler function (MLF) in one parameter is defined by Eβ(z) =
∞
∑

n=0

zn

Γ(βn+1)

where β > 0 and MLF in two parameters is Eβ1,β2(z) =
∞
∑

n=0

zn

Γ(β1n+β2)
where β1 > 0, β2 > 0

and z ∈ C. Additionally, for β2 = 1, Eβ1(z) = Eβ1,1(z) and E1,1(z) = ez. Further, the

Laplace transform of MLF in two parameters is L
{

tβ2−1Eβ1,β2(−γtβ)
}
= sβ1−β2

sβ1+γ
for t ≥ 0,

where γ, s ∈ R.

Lemma 1 ([21]). Let β ∈ (0, 1) and f : J → R be continuous. A function z(t) ∈ C(J, R) given by

z(t) = z0 −
1

Γ(β)

∫ a

0
(a− α)β−1f(α)dα +

1
Γ(β)

∫ t

0
(t− α)β−1f(α)dα,

is the only solution of the fractional Cauchy problem cDβ
t = f(t) for all t ∈ J, z(a) = z0, where

a > 0.

Lemma 2 ([10]). Let Rz(t, Θ) and Rz̃(t, Θ) be the resolvent operators for system (1). There exists
a constant c > 0 such that

‖Rz(t, Θ)W − Rz̃(t, Θ)W‖ ≤ c‖W‖Y

∫ t

Θ
‖z(σ)− z̃(σ)|‖dσ,

for every z, z̃ ∈ PC(J, X) and every W ∈ Y.
Let Sλ = {z : z ∈ PC(J, X), z(0) + h(z) = z0, ∆z(tk) = Ik(z(tk)), ‖z‖ ≤ λ}, for t ∈ J,

λ > 0, z0 ∈ X and k = 1, 2, 3, . . . ,m.

Lemma 3 ([12]). For

φ(t) =
1

Γ(β)

∫ t

0
(t− α)β−1[f(α, z(α), z(τ(α))) +

∫ α

0
g(α, η, z(η), z(δ(η)))dη]dα,

there exists a constant θ such that ‖φ(t)‖Y ≤ θ holds.

2.2. Existence and Uniqueness

Before presenting the stability results, we discuss the existence and uniqueness of mild
solutions for the FOS (1).

Theorem 1. Let −A(t, z(t)) generate the resolvent operator ‖Rz(t, Θ)‖ ≤ ΥeN(t−Θ) with
Υ0 = max‖Rz(t, Θ)‖Y for all 0 ≤ Θ ≤ t ≤ T, z ∈ Ω, and the conditions (H1)–(H5) hold.
If there exist positive constants λ1, λ2, λ3 ∈ (0, λ

3 ] and ρ1, ρ2, ρ3 ∈ [0, 1
3 ) such that
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λ1 = Υ0‖u0‖Y + Υ0h1, λ2 = Υ0ν, λ3 = Υ0mlλ and

ρ1 = cT‖z0‖Y + h1cT + Υ0h2,

ρ2 = cTν + Υ0
Tβ

Γ(1 + β)

[
f1

(
1 +

1
c1

+ . . . +
1
cr

)
+ g1

(
1 +

1
b1

+ . . . +
1
bκ

)]
,

ρ3 = cTmlλ + Υ0ml, where
m

∑
k=1

l = ml,

ξ =
Tβ

Γ(1 + β)

[
f1

( 1
c1

+ . . . +
1
cr

)
+ g1

( 1
b1

+ . . . +
1
bκ

)]
,

ν =
Tβ

Γ(1 + β)
λ(g1 + f1) + ξλ +

Tβ

Γ(1 + β)
(g2 + f2)

are satisfied, then the system (1) has a unique mild solution

z(t) = Rz(t, 0)z0 − Rz(t, 0)h(z) +
1

Γ(β)

∫ t

0
(t− α)β−1Rz(t, Θ)[f(α, z(α), z(τ(α)))

+
∫ α

0
g(α, η, z(η), z(δ(η)))dη]dα + ∑

0<tk<t
Rz(t, tk)Ik(z(tk)) (2)

on J for all z0 ∈ X.

By contraction mapping theorem, the unique mild solution of the form (2) for system
(1) can be easily derived; for detailed proof, one can refer to [12].

Remark 1. It is noted that in addition to the Assumptions (H1)–(H5), if Y is reflexive and the
functions f and g are uniformly Hölder continuous, then the system (1) has a unique classical
solution similar to (2) on J.

3. Stability Results

In this section, we prove the Mittag–Leffler stability of the considered system.

Definition 3. The mild solution of system (1) is said to be Mittag–Leffler stable if there exists a
constant β ∈ (0, 1) and positive constants a, b, M and µ such that the solution z(t) of system (1)
satisfies

‖z(t)‖ ≤ M‖z0‖b
(

Eβ(−µ(t− t0)
β)
)a

, t ≥ 0.

Theorem 2. Let −A(t, z(t)) generate the bounded resolvent operator ‖Rz(t, Θ)‖ ≤ ΥeN(t−Θ)

with Υ0 = max‖Rz(t, Θ)‖Y for all 0 ≤ Θ ≤ t ≤ T, z ∈ Ω, and the conditions (H1)–(H5) hold.
If there exist constants f1, g1, h1, the mild solution of system (1) satisfies

‖z(t)‖ ≤ (1/ϑ)Υ0(‖z0‖+ h1)Eβ

(
µtβ
)

, ∀t ∈ J, (3)

where ϑ = (1− Υ0ml) and µ = Υ0(f1+g1)
ϑ , so the system (1) is Mittag–Leffler stable.
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Proof. Consider the mild solution of the system (1) of (2). Taking the norm on both sides,
one can have

‖z(t)‖ ≤ ‖Rz(t, 0)‖‖z0‖+ ‖Rz(t, 0)‖‖h(z)‖

+
1

Γ(β)

∫ t

0
(t− α)β−1 ‖Rz(t, Θ)‖‖f(α, z(α), z(τ1(α)), . . . , z(τr(α)))‖dα

+
1

Γ(β)

∫ t

0
(t− α)β−1‖Rz(t, Θ)‖

×
( ∫ α

0
‖g(α, η, z(η), z(δ1(η)), . . . , z(δκ(η)))‖dη

)
dα

+ ∑
0<tk<t

‖Rz(t, tk)‖‖Ik(z(tk))‖.

Using the conditions (H1), (H2), (H4) and (H5), we get

‖z(t)‖ ≤ Υ0‖z0‖+ Υ0h1 + Υ0ml‖z(t)‖

+Υ0
1

Γ(β)

∫ t

0
(t− α)β−1(f1(‖z(α)‖+ ‖z(τ1(α))‖+ . . .

+‖z(τr(α))‖)
)
dα + Υ0

1
Γ(β)

∫ t

0
(t− α)β−1(g1(‖z(α)‖

+‖z(δ1(α))‖+ . . . + ‖z(δκ(α))‖)
)
dα,

≤ Υ0‖z0‖+ Υ0h1 + Υ0ml‖z(t)‖
+0D−β

t [f1(‖z(t)‖+ ‖z(τ1(t))‖+ . . . + ‖z(τr(t))‖)]Υ0

+0D−β
t [g1(‖z(t)‖+ ‖z(δ1(t))‖+ . . . + ‖z(δκ(t))‖)]Υ0.

There exists a non-negative function M(t). We have

‖z(t)‖ = Υ0‖z0‖+ Υ0k5 + Υ0ml‖z(t)‖
+0D−β

t (f1(‖z(t)‖+ ‖z(τ1(t))‖+ . . . + ‖z(τr(t))‖))Υ0

+0D−β
t (g1(‖z(t)‖+ ‖z(δ1(t))‖+ . . . + ‖z(δκ(t))‖))Υ0 −M(t). (4)

Taking Laplace transformations of both sides of (4), we get

‖z(s)‖ =
Υ0‖z0‖

s
+

Υ0h1

s
+ Υ0ml‖z(s)‖+ Υ0f1s−β(‖z(s)‖+ ‖z(τ1(s))‖+ . . .

+‖z(τr(s))‖) + Υ0g1s−β(‖z(s)‖+ ‖z(δ1(s))‖+ . . . + ‖z(δκ(s))‖)−M(s),

ϑ
[ sβ − µ

sβ

]
‖z(s)‖ =

1
s

[
Υ0‖z0‖+ Υ0h1 + Υ0f1s1−β(‖z(τ1(s))‖+ . . . + ‖z(τr(s))‖)

+Υ0g1s1−β(‖z(δ1(s))‖+ . . . + ‖z(δκ(s))‖)− sM(s)
]
.

Then,

ϑ‖z(s)‖ =
1

s[sβ − µ]

[
sβΥ0‖z0‖+ Υ0h1sβ + Υ0f1s(‖z(τ1(s))‖+ . . . + ‖z(τr(s))‖)

+Υ0g1s[‖z(δ1(s))‖+ . . . + ‖z(δκ(s))‖]− sβ+1M(s)
]

=
1

sβ − µ

[
sβ−1Υ0[‖z0‖+ h1]− sβ M(s)

+Υ0f1sβ−β(‖z(τ1(s))‖+ . . . + ‖z(τr(s))‖)

+Υ0g1sβ−β(‖z(δ1(s))‖+ . . . + ‖z(δκ(s))‖)
]
. (5)
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Taking Laplace inverse transformations on both sides of (5),

ϑ‖z(t)‖ = Υ0(‖z0‖+ h1)Eβ,1(µtβ)−M(t) ∗
[
t−1Eβ,0(µtβ)

]
+Υ0f1

[
tβ−1Eβ,β(µtβ)

]
∗ [‖z(τ1(t))‖+ . . . + ‖z(τr(t))‖]

+Υ0g1[tβ−1Eβ,β(µtβ)] ∗ [‖z(δ1(t))‖+ . . . + ‖z(δκ(t))‖],

≤ Υ0(‖z0‖+ h1)Eβ,1

(
µtβ
)

,

where * denotes the convolution operator; the terms involving with it are non-negative.
Therefore, (3) has been achieved. Hence, from Definition 3, the solution of system (1) is
Mittag–Leffler stable.

In the case of the nonlocal term h(z) = 0, the initial condition of system (1) is reduced
to z(0) = z0, Then, the Mittag–Leffler stability results for this case can be achieved through
the following corollary.

Corollary 1. Let −A(t, z(t)) generate the bounded resolvent operator ‖Rz(t, Θ)‖ ≤ ΥeN(t−Θ)

with Υ0 = max‖Rz(t, Θ)‖Y for all 0 ≤ Θ ≤ t ≤ T, z ∈ Ω, and the conditions (H1)–(H3), (H5)
hold. If there exist constants f1, g1, the mild solution of system (1) satisfies

‖z(t)‖ ≤ (1/ϑ)Υ0‖z0‖Eβ(µtβ), ∀t ∈ J,

so the system (1) is Mittag–Leffler stable.

In the case
∫ t

0 g(t, α, z(α), z(δ(α)))dα = 0 in (1), the system is reduced to an impulsive,
fractional, nonlocal, quasilinear multi-delayed system of the form

Dβz(t) + A(t, z(t))z(t) = f(t, z(t), z(τ(t))),

z(0) + h(z) = z0, (6)

∆z(tk) = Ik(z(tk)), k = 1, 2, . . . ,m,

where t ∈ J. Then, the stability of (6) can be stated as follows:

Corollary 2. Let −A(t, z(t)) generate the bounded resolvent operator ‖Rz(t, Θ)‖ ≤ ΥeN(t−Θ)

with Υ0 = max‖Rz(t, Θ)‖Y for all 0 ≤ Θ ≤ t ≤ T, z ∈ Ω, and the conditions (H1), (H3)–(H5)
hold. If there exist constants f1, h1, the mild solution of system (6) satisfies

‖z(t)‖ ≤ (1/ϑ)Υ0([‖z0‖+ h1)Eβ

( Υ0f1
1− Υ0ml

tβ
)

, ∀t ∈ J,

so the system (6) is Mittag–Leffler stable.

4. Application

Consider the fractional-order, nonlocal, impulsive, integro-differential systems with
multiple delays of the form

∂βz(x, t)
∂tβ

+ a(x, t, z(x, t))
∂2z(x, t)

∂x2 = xarc tan ϕp(x, t, z) +
∫ t

0
e−ϕq(x,s,z)ds, (7)

z(x, 0) +
m

∑
k=1

ckz(x, tk) = z0(x), x ∈ [0, π],

z(0, t) = z(π, t) = 0, t ∈ J,

∆z(tk, x) =
z(tk, x)

2 + z(tk, x)
, x ∈ (0, 1), k = 1, . . . ,m,
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where 0 < β ≤ 1, 0 < t1 < . . . < tm < T. Let X = L2[0, π], PC = PC(J, Sδ), Sδ =
{y ∈ L2[0, π] : ‖y‖ ≤ δ}. First, we prove that −A(t, z(t)) generates the bounded resolvent
operator Rz(t, Θ) with the help of the following analysis. Let a(x, t, z(x, t)) be continuous;
define A(t, .) : X −→ X by (A(t, .)w)(x) = a(x, t, z(x, t))w

′′
with domain D(A(t, .)) =

{w ∈ X : w, w′ being absolutely continuous, w
′′ ∈ X; w(0) = w(π) = 0} is dense in the X

and independent of t. Then,

A(t, z)w =
∞

∑
n=1

n2(w, wn), w ∈ D(A), (8)

where (., .) is the inner product in L2[0, π], wn = Zn ◦ z is the orthogonal set of eigenvectors

in A(t, z) and Zn(t, s) =
√

2
π sin n(t− s)β, 0 < β ≤ 1, 0 ≤ s ≤ t ≤ a, n = 1, 2, . . .

Then, the operator [A(t, .) + λβ I]−1 exits in L(X) for any λ with Reλ ≤ 0 and

‖[A(t, .) + λβ I]−1‖ ≤ Cα

|λ|+ 1
, t ∈ J. (9)

Additionally, there exist constants ν ∈ (0, 1] and Cβ such that

‖[A(t1, .)− A(t2, .)]A−1(s, .)‖ ≤ Cβ|t1 − t2|η , t1, t2, s ∈ J. (10)

Under the conditions (8)–(10), each operator −A(s, .), s ∈ J generates an evolution
operator exp(−tα A(s, .)) for t > 0, and there exists a constant Cα such that

‖An(s, .)exp(−tβ A(s, .))‖ ≤
Cβ

tn , ∀ n = 0, 1, t > 0, s ∈ J.

Therefore, it can be concluded that the evolution operator of the (β, z) resolvent family
has the form

R(β,z)(t, s)w =
∞

∑
n=1

exp[−n2(t− s)β](w, wn)wn, w ∈ X.

From (7), the functions f(·), g(·) are given by f(t, z(β(t))) = xarc tan ϕp(x, t, z) and
g(t, s, z(γ(t))) = e−ϕq(x,s,z), which satisfies the assumptions (H1)–(H3) for ϕη(x, s, z) =
(z(x, sin t), z(x, (sin t)/2), . . . , z(x, (sin t)/η)) and βτ(t) = γτ(t) = (sin t)/τ, τ = 1, . . . , η,
η = max(r, k).

Additionally, from the nonlocal (function) initial condition, h(z(., t)) =
m

∑
k=1

ckz(., tk)

will satisfy Assumption (H4) with
m

∑
k=1

ck = h1. Further, the at impulse moments Ik(z(tk)) =

z(tk ,x)
2+z(tk ,x) satisfies Assumption (H5) with l = 1

2 .
Thus, Assumptions (H1)–(H5) (all) are satisfied, and it is possible to choose the

constants in Theorem 2, which satisfy the required stability condition (3). Hence, by
Definition 3, the considered system (7) is MLS on J.

5. Conclusions

The Mittag–Leffler stability results for a class of fractional-order, quasilinear, impulsive,
integro-differential systems with multiple delays has been investigated. Based on the
contraction mapping principle, the existence and uniqueness of a solution for the FOS
was achieved. Then, novel conditions for MLS of the considered system were derived by
using well known mathematical techniques, and further, some corollaries were proposed
for the cases of initial conditions without a nonlocal term and an FOS in the absence of
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an integro-differential part. At last, the presented results were verified with an example,
which illustrated the applications.
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