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1. Introduction

Throughout, let Cm×n denote the collections of all m× n matrices with complex numbers;
A∗ denote the conjugate transpose; r(A) denote the rank of A, i.e., the maximum order of the
invertible submatrix of A; R(A) = {Ax | x ∈ Cn} and N (A) = {x ∈ Cn | Ax = 0} denote
the range and the null space of a matrix A ∈ Cm×n, respectively; Im denote the identity
matrix of order m; and [ A, B] denote a columnwise partitioned matrix consisting of two
submatrices A and B. The Moore–Penrose generalized inverse of A ∈ Cm×n, denoted by
A†, is the unique matrix X ∈ Cn×m that satisfies the four Penrose equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA, (1)

see [1]. Starting with Penrose himself, a matrix X is called a {i, . . . , j}-generalized inverse
of A, denoted by A(i,...,j), if it satisfies the ith,. . . , jth equations in (1). The collection of all
{i, . . . , j}-generalized inverses of A is denoted by {A(i,...,j)}. There are in all 15 types of
{i, . . . , j}-generalized inverses of A by definition, but matrix X is called an inner inverse of
A if it satisfies AXA = A and is denoted by A(1) = A−.

In this paper, we focus our attention on {1}-generalized inverses of matrices. As usual,
we denote matrix qualities composed of {1}-generalized inverses by

f (A−1 , A−2 , . . . , A−p ) = g(B−1 , B−2 , . . . , B−q ), (2)

where A1, A2, . . . , Ap, B1, B2, . . . , Bq are given matrices of appropriate sizes. For a given
general algebraic matrix equality, a primary task that we are confronted with is to determine
clear and intrinsic identifying conditions for it to hold. However, there do not exist
effective and useful rules and techniques of characterizing a given algebraic equality by
means of ordinary operations of matrices and their generalized inverses because of the
noncommutativity of matrix algebra and the singularity of matrices. In view of this fact, few
of (2) can be described with satisfactory conclusions in the theory of generalized inverses
except some kinds of special cases with simple and reasonable forms. As well-known
examples of (2), we mention the following two matrix equalities:

(AB)− = B−A−, (ABC)− = C−B−A−, (3)
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where A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Obviously, they can be viewed as the direct
extensions of the two ordinary reverse-order laws (AB)−1 = B−1 A−1 and (ABC)−1 =
C−1B−1 A−1 for the products of two or three invertible matrices of the same size, and
therefore, they are usually called the reverse-order laws for generalized inverses of the
matrix products AB and ABC, respectively. Apparently, the two reverse-order laws in (3)
and their special forms, such as (AB)† = B† A† and (ABC)† = C†B† A†, seem simple and
neat in comparison with many other complicated matrix equalities that involve generalized
inverses. On the other hand, since MM† = Im and M† M = In do not necessarily hold
for a singular matrix M, the two reverse-order laws in (3) do not necessarily hold for
singular matrices. Therefore, it is a primary work to determine the necessary and sufficient
conditions for the two reverse-order laws in (3) to hold before we can utilize them in dealing
with calculations related to matrices and their generalized inverses. In fact, they were well
known as classic objects in the theory of generalized inverses of matrices and have been
studied by many authors since the 1960s; see, e.g., [2–14] for the historical perspective and
development on the subject area of reverse-order laws.

In addition to ordinary forms of reverse-order laws in (3), there are many other kinds
of simple and complicated algebraic equalities that are composed of mixed reverse-order
products of given matrices and their generalized inverses, such as

(AB)− = B−(ABB−)−, (AB)− = (A−AB)−A−, (4)

(ABC)− = (BC)−B(AB)−, (ABC)− = C−(A−ABCC−)−A−, (5)

(ABCD)− = (CD)−C(BC)−B(AB)−, (6)

(ABCDE)− = (CDE)−CD(BCD)−BC(ABC)−. (7)

These equalities are usually called the mixed or nested reverse-order laws for generalized
inverses of matrices. Clearly, these reverse-order laws of special kinds are all constructed
from the ordinary algebraic operations of the given matrices and their generalized inverses,
and each of them has certain reasonable interpretations; in particular, they can be reduced
to the reverse-order laws for standard inverses of matrix products when the given matrices
in them are all invertible. Admittedly, knowing how to deal with a given matrix equality
composed by matrices and their generalized inverses is a difficult problem. In fact, these
kinds of problems have no uniformly acceptable solutions, and no algebraists and algebraic
techniques can accurately tell people what to do with complicated matrix operations and
matrix equalities.

The rest of this paper is organized as follows. In Section 2, the author introduces a
group of known formulas, facts, and results about ranks, ranges, and generalized inverses.
In Section 3, the author derives several groups of equivalent facts related to the matrix
equalities in (3)–(7) and gives some of their consequences. Section 4 gives some remarks
and further research problems pertaining to characterizations of matrix equalities for
generalized inverses of matrix products.

2. Some Preliminaries

We begin with presentations and expositions of a series of known facts and results
regarding matrices and their ordinary operations, which can be found in various reference
books about linear algebra and matrix theory (cf. [2,15–17]).

Note from the definitions of generalized inverses of a matrix that they are in fact
defined to be (common) solutions of some matrix equations. Thus, analytical expressions of
generalized inverses of matrices, as shown below, can be written as certain matrix-valued
functions with one or more variable matrices.

Lemma 1 ([1]). Let A ∈ Cm×n. Then, the general expression of A− of A can be written as

A− = A† + FAU + VEA, (8)
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where EA = Im − AA†, FA = In − A† A, and U, V ∈ Cn×m are arbitrary.

There is much good to be said about equalities and inequalities for ranks of matrices.
In what follows, we present a series of well-known or established results and facts con-
cerning ranks of matrices, which we shall use to deal with matrix equality problems and
matrix set inclusion problems with regard to the generalized inverses of matrix products
described above.

Lemma 2. Let A ∈ Cm×n, B ∈ Cm×k, A1 ∈ Cm×n1 , A2 ∈ Cm×n2 , B1 ∈ Cm×p1 , and B2 ∈
Cm×p2 . Then,

R(A) ⊆ R(B) and r(A) = r(B)⇒ R(A) = R(B), (9)

R(A1) = R(A2) and R(B1) = R(B2)⇒ r[A1, B1] = r[A2, B2]. (10)

Lemma 3 ([18]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then,

r[A, B] = r(A) + r(EAB) = r(B) + r(EB A), (11)

r
[

A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (12)

r
[

A B
C 0

]
= r(B) + r(C) + r(EB AFC), (13)

r
[

A B
C D

]
= r(A) + r

[
0 EAB

CFA D− CA†B

]
. (14)

In particular, the following results hold:

(a) r [A, B] = r(A)⇔ R(B) ⊆ R(A)⇔ AA†B = B⇔ EAB = 0.

(b) r
[

A
C

]
= r(A)⇔ R(C∗) ⊆ R(A∗)⇔ CA† A = C ⇔ CFA = 0.

(c) r
[

A B
C 0

]
= r(B) + r(C)⇔ EB AFC = 0.

(d) r
[

A B
C D

]
= r(A)⇔ R(B) ⊆ R(A), R(C∗) ⊆ R(A∗), and CA†B = D.

Lemma 4 ([8]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then,

r(D− CA†B) = r
[

A∗AA∗ A∗B
CA∗ D

]
− r(A). (15)

In particular,

r(D− CA†B) = r
[

AA∗ B
CA∗ D

]
− r(A) i f R(B) ⊆ R(A), (16)

r(D− CA†B) = r
[

A∗A A∗B
C D

]
− r(A) i f R(C∗) ⊆ R(A∗). (17)

Lemma 5 ([18]). Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then,

r(AB) = r(A) + r(B)− n + r((In − BB−)(In − A−A)), (18)

r(ABC) = r(AB) + r(BC)− r(B) + r((In − (BC)(BC)−)B(Ip − (AB)−(AB))) (19)

hold for all A−, B−, (AB)−, and (BC)−. In particular, the following results hold:

(a) The rank of AB satisfies the following inequalities:

max{0, r(A) + r(B)− n} ≤ r(A) + r(B)− r[A∗, B] ≤ r(AB) ≤ min{r(A), r(B)}. (20)
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(b) The rank of ABC satisfies the following inequalities:

r(ABC) ≤ min{r(AB), r(BC)} ≤ min{r(A), r(B), r(C)}, (21)

r(ABC) ≥ max{0, r(AB) + r(BC)− r(B)}
≥ max{0, r(A) + r(B) + r(C)− r[ A∗, B ]− r[ B∗, C ]}
≥ max{0, r(A) + r(B) + r(C)− n− p}, (22)

r(ABC) ≥ r(AB) + r(C)− r[ (AB)∗, C ]

≥ max{0, r(AB) + r(C)− p}
≥ max{0, r(A) + r(B) + r(C)− n− p}, (23)

r(ABC) ≥ r(A) + r(BC)− r[A∗, BC]

≥ max{0, r(A) + r(BC)− n}
≥ max{0, r(A) + r(B) + r(C)− n− p}. (24)

(c) r(ABC) = r(B)⇔ r(AB) = r(BC) = r(B).
(d) r(ABC) = r(A) + r(B) + r(C)− n− p⇔ r(ABC) = r(AB) + r(C)− p and r(AB) =

r(A) + r(B)− n.
(e) r(ABC) = r(A) + r(B) + r(C)− n− p⇔ r(ABC) = r(A) + r(BC)− n and r(BC) =

r(B) + r(C)− p.

Lemma 6 ([19,20]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k be given. Then,

max
A−∈{A−}

r(D− CA−B) = min
{

r[C, D], r
[

B
D

]
, r
[

A B
C D

]
− r(A)

}
. (25)

Therefore,

CA−B = D for all A− ⇔ [C, D] = 0 or
[

B
D

]
= 0 or

[
A B
C D

]
= r(A). (26)

There is no doubt that analytical formulas for calculating ranks of matrices can be
used to establish and analyze various complicated matrix expressions and matrix equalities.
Specifically, the rank equalities and their consequences in the above four lemmas are un-
derstandable in elementary linear algebra. When the matrices are given in various concrete
forms, these established results can be simplified further by usual computations of matrices,
so that we can employ them to describe a variety of concrete matrix equalities that involve
products of matrices and their generalized inverses in matrix analysis and applications.

At the end of this section, we give a known result regarding a matrix equality com-
posed of six matrices and their generalized inverses.

Lemma 7 ([21]). Let A1 ∈ Cm1×m2 , A2 ∈ Cm3×m2 , A3 ∈ Cm3×m4 , A4 ∈ Cm5×m4 , A5 ∈
Cm5×m6 , and A ∈ Cm1×m6 be given. Then, the following five statements are equivalent:

(a) The equality A1 A−2 A3 A−4 A5 = A holds for all A−2 and A−4 .
(b) The product A1 A−2 A3 A−4 A5 is invariant with respect to the choices of A−2 and A−4 , and

A1 A†
2 A3 A†

4 A5 = A.
(c) One of the following six conditions holds:

(i) A1 = 0 and A = 0.
(ii) A3 = 0 and A = 0.
(iii) A5 = 0 and A = 0.
(iv) A = 0, A1 A†

2 A3 = 0, R(A∗1) ⊆ R(A∗2), and R(A3) ⊆ R(A2).
(v) A = 0, A3 A†

4 A5 = 0, R(A∗3) ⊆ R(A∗4), and R(A5) ⊆ R(A4).
(vi) A = A1 A†

2 A3 A†
4 A5, R(A∗1) ⊆ R(A∗2), R(A5) ⊆ R(A4), R((A1 A†

2 A3)
∗) ⊆

R(A∗4), R(A3 A†
4 A5) ⊆ R(A2), and EA2 A3FA4 = 0.
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(d) One of the following six conditions holds:

(i) A1 = 0 and A = 0.
(ii) A3 = 0 and A = 0.
(iii) A5 = 0 and A = 0.

(iv) A = 0 and r
[

A2 A3
A1 0

]
= r(A2).

(v) A = 0 and r
[

A4 A5
A3 0

]
= r(A4).

(vi) A = A1 A†
2 A3 A†

4 A5, R([ 0, A1]
∗) ⊆ R

([
A3 A2
A4 0

])∗
, R

[
0

A5

]
⊆ R

[
A3 A2
A4 0

]
,

and r
[

A3 A2
A4 0

]
= r(A2) + r(A4).

(e) One of the following six conditions holds:

(i) A1 = 0 and A = 0.
(ii) A3 = 0 and A = 0.
(iii) A5 = 0 and A = 0.

(iv) A = 0 and r
[

A2 A3
A1 0

]
= r(A2).

(v) A = 0 and r
[

A4 A5
A3 0

]
= r(A4).

(vi) r

−A 0 A1
0 A3 A2

A5 A4 0

 = r(A2) + r(A4).

Obviously, all the preceding formulas and facts belong to mathematical competencies
and conceptions in matrix algebra. Specifically, the rank equalities for block matrices in
Lemma 7 are easy to understand and grasp, and thereby, they can technically and perspic-
uously be utilized to establish and describe many kinds of concrete matrix expressions
and equalities consisting of matrices and their generalized inverses. As a matter of fact,
the matrix rank method has been highly regarded as the ultimate manifestation of the
characterizations of algebraic matrix equalities in comparison with other algebraic tools in
matrix theory.

3. Set Inclusions for Generalized Inverses of Matrix Products

The formulas and facts in Lemma 7 are explicit in form and easily manageable for the
different choices of the given matrices, and thereby, they are readily used to solve a wide
range of problems for establishing algebraic equalities for matrices and generalized inverses.
In this section, we propose a rich variety of matrix set inclusions that are originated from the
reverse-order laws in (3)–(7) and derive several groups of equivalent statements associated
with these matrix set inclusions through the use of formulas and facts prepared in Section 2.

Referring to Lemma 7, we can perspicuously illustrate how to describe matrix set
inclusions for generalized inverses of different matrices.

Theorem 1. Let A1 ∈ Cm1×m2 , A2 ∈ Cm3×m2 , A3 ∈ Cm3×m4 , A4 ∈ Cm5×m4 , A5 ∈ Cm5×m6 ,
and A ∈ Cm6×m1 . Then, we have the following results:

(a) The following five statements are equivalent:

(i) {A1 A−2 A3 A−4 A5} ⊆ {A−}, namely, AA1 A−2 A3 A−4 A5 A = A holds for all A−2
and A−4 .

(ii) {AA1 A−2 A3 A−4 A5} ⊆ {AA−}.
(iii) {A1 A−2 A3 A−4 A5 A} ⊆ {A−A}.

(iv) A = 0 or r

−A 0 AA1
0 A3 A2

A5 A A4 0

 = r(A2) + r(A4).
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(v) A = 0 or r
[

A3 A2
A4 A5 AA1

]
= r(A2) + r(A4)− r(A).

(b) The following four statements are equivalent:

(i) {A−2 A3 A−4 } ⊆ {A−}, namely AA−2 A3 A−4 A = A holds for all A−2 and A−4 .
(ii) {AA−2 A3 A−4 } ⊆ {AA−}.
(iii) {A−2 A3 A−4 A} ⊆ {A−A}.

(iv) A = 0 or r
[

A3 A2
A4 A

]
= r(A2) + r(A4)− r(A).

(c) Let A ∈ Cm×n, B ∈ Cp×m and C ∈ Cp×n. Then, the following four statements are
equivalent:

(i) {A−B−} ⊆ {C−}, namely CA−B−C = C holds for all C−.
(ii) {CA−B−} ⊆ {CC−}.
(iii) {A−B−C} ⊆ {C−C}.
(iv) C = 0 or r(BA− C) = r(A) + r(B)− r(C)−m.

Proof. By definition, the set inclusion {A1 A−2 A3 A−4 A5} ⊆ {A−} is equivalent to AA1 A−2 A3
A−4 A5 A = A holds for all A−2 and A−4 . In this case, replacing A1 with AA1 and A5 with
A5 A in Lemma 7(a) and (e), and then simplifying lead to the equivalence of (i) and (iv) in
(a) of this theorem.

Furthermore, it is easy to verify by elementary block matrix operations that the
following rank equality:

r

−A 0 AA1
0 A3 A2

A5 A A4 0

 = r

−A 0 0
0 A3 A2
0 A4 A5 AA1

 = r(A) + r
[

A3 A2
A4 A5 AA1

]

holds. Substituting it into (vi) of Lemma 7(e) leads to the equivalence of (iv) and (v) in (a)
of this theorem.

Pre- and post-multiplying both sides of the set inclusion in (i) of (a) of this theorem
with A, respectively, lead to (ii) and (iii) in (a) of this theorem. Conversely, post- and
pre-multiplying both sides of the set inclusions in (ii) and (iii) of (a) of this theorem with A,
respectively, lead to (i) in (a) of this theorem.

Results (b) and (c) are direct consequences of (a) under the given assumptions.

Mindful of the differences of both sides of the matrix set inclusions in the above
theorem, we may say that the statements in Theorem 1 in fact provide some useful strate-
gies and techniques of describing matrix set inclusions via matrix rank equalities, and
thereby, they can be utilized to construct and solve various equality problems that ap-
pear in matrix theory and its applications with regard to products of matrices and their
generalized inverses.

In the following, we present some applications of the above results in the character-
izations of reverse-order laws for generalized inverses of two or more matrix products.
Recall that there were plenty of classic discussions in the literature on the construction and
characterization of reverse-order laws for generalized inverses of the matrix product AB,
which motivated from time to time deep-going considerations and explorations of various
universal algebraic methods to deal with reverse-order law problems. The first reverse-
order law in (3) was proposed and well approached in the theory of generalized inverses of
matrices; see, e.g., [7,9,14,22–24]. In view of this fact, we first derive from Theorem 1(c) a
group of equivalent facts concerning the matrix set inclusion {(AB)−} ⊇ {B−A−} and its
variation forms.

Theorem 2. Let A ∈ Cm×n and B ∈ Cn×p be given. Then, the following 23 statements are equivalent:

(i) {(AB)−} ⊇ {B−A−}.
(ii) {(AB)−} ⊇ {B∗(BB∗)−(A∗A)−A∗}.
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(iii) {(AB)−} ⊇ {B−(BB−)−(A−A)−A−}.
(iv) {AB(AB)−} ⊇ {ABB−A−}.
(v) {AB(AB)−} ⊇ {ABB∗(BB∗)−(A∗A)−A∗}.
(vi) {AB(AB)−} ⊇ {ABB−(BB−)−(A−A)−A−}.
(vii) {(AB)−AB} ⊇ {B−A−AB}.
(viii) {(AB)−AB} ⊇ {B∗(BB∗)−(A∗A)−A∗AB}.
(ix) {(AB)−AB} ⊇ {B−(BB−)−(A−A)−A−AB}.
(x) {B(AB)−A} ⊇ {BB−A−A}.
(xi) {B(AB)−A} ⊇ {BB−(BB−)−(A−A)−A−A}.
(xii) {(A−ABB−)−} ⊇ {(BB−)−(A−A)−}.
(xiii) {(B∗A∗)−} ⊇ {(A∗)−(B∗)−}.
(xiv) {(A∗ABB∗)−} ⊇ {(BB∗)−(A∗A)−}.
(xv) {(BB∗A∗A)−} ⊇ {(A∗A)−(BB∗)−}.
(xvi) {((A∗A)1/2(BB∗)1/2)−} ⊇ {((BB∗)1/2)−((A∗A)1/2)−}.
(xvii) {((BB∗)1/2(A∗A)1/2))−} ⊇ {((A∗A)1/2)−((BB∗)1/2)−}.
(xviii) {(AA∗ABB∗B)−} ⊇ {(BB∗B)−(AA∗A)−}.
(xix) {(B∗BB∗A∗AA∗)−} ⊇ {(A∗AA∗)−(B∗BB∗)−}.
(xx) AB = 0 or r(AB) = r(A) + r(B)− n.
(xxi) AB = 0 or (In − BB−)(In − A−A) = 0 for some/all A− and B−.
(xxii) N (A) ⊇ R(B) or N (A) ⊆ R(B).
(xxiii) R(A∗) ⊇ N (B∗) or R(A∗) ⊆ N (B∗).

Proof. Replacing C with AB in (i) and (iv) of Theorem 1(c), we see that (i) in this theorem
holds if and only if AB = 0 or

r(A) + r(B)− r(AB) = r
[

In B
A AB

]
= r
[

In 0
0 0

]
= n,

establishing the equivalence of (i) and (xx).
By (i) and (v) in Theorem 1(a), (ii) in this theorem holds if and only if AB = 0 or

r(A) + r(B)− r(AB) = r(A∗A) + r(BB∗)− r(AB) = r
[

In BB∗

A∗A A∗ABB∗

]
= r
[

In 0
0 0

]
= n,

establishing the equivalence of (ii) and (xx).
By (i) and (v) in Theorem 1(a), (iii) in this theorem holds if and only if AB = 0 or

r(A)+ r(B)− r(AB) = r(A−A)+ r(BB−)− r(AB) = r
[

In BB−

A−A A−ABB−

]
= r
[

In 0
0 0

]
= n,

establishing the equivalence of (iii) and (xx).
The equivalences of (i) and (xii)–(xx) follow from the following rank equalities:

r(A) = r(AA−) = r(AA∗) = r(AA∗A), (27)

r(B) = r(B−B) = r(B∗B) = r(BB∗B), (28)

r(AB) = r(B∗A∗) = r(A−ABB−) = r(A∗ABB∗) = r(BB∗A∗A)

= r((A∗A)1/2(BB∗)1/2) = r((BB∗)1/2(A∗A)1/2)

= r(AA∗ABB∗B) = r(B∗BB∗A∗AA∗). (29)

The equivalences of (i)–(xi) in this theorem follow from (i), (ii), and (iii) in Theorem 1(a).
The equivalences of (i) and (xx)–(xxiii) in this theorem were proven in [14].

Theorem 3. Let A ∈ Cm×n and B ∈ Cn×p. Then, the following 16 statements are equivalent:
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(i) {(AB)−} 3 B† A†, i.e., ABB† A† AB = AB.
(ii) {(AB)−} ⊇ {(B∗B)−B∗A∗(AA∗)−}.
(iii) {AB(AB)−} 3 ABB† A†.
(iv) {AB(AB)−} ⊇ {AB(B∗B)−B∗A∗(AA∗)−}.
(v) {(AB)−AB} 3 B† A† AB.
(vi) {(AB)−AB} ⊇ {(B∗B)−B∗A∗(AA∗)−AB}.
(vii) {B(AB)−A} 3 BB† A† A.
(viii) {B(AB)−A} ⊇ {B(B∗B)−B∗A∗(AA∗)−A}.
(ix) {(A−ABB−)−} 3 (BB−)†(A−A)†.
(x) {(A∗ABB∗)−} 3 (BB∗)†(A∗A)†.
(xi) {(BB∗A∗A)−} 3 (A∗A)†(BB∗)†.
(xii) {((A∗A)1/2(BB∗)1/2)−} 3 ((BB∗)1/2)†((A∗A)1/2)†.
(xiii) {((BB∗)1/2(A∗A)1/2))−} 3 ((A∗A)1/2)†((BB∗)1/2)†.
(xiv) {(AA∗ABB∗B)−} 3 (BB∗B)†(AA∗A)†.
(xv) {(B∗BB∗A∗AA∗)−} 3 (A∗AA∗)†(B∗BB∗)†.
(xvi) r(AB) = r(A) + r(B)− r[A∗, B].

Proof. The equivalence of (i) and (xvi) follows from the well-known rank formula:

r(AB− ABB† A† AB) = r[A∗, B]− r(A)− r(B) + r(AB);

see [25,26].
By (i) and (iv) in Theorem 1(b), (ii) in this theorem holds if and only if AB = 0 or

r(A) + r(B)− r(AB) = r(AA∗) + r(B∗B)− r(AB) = r
[

B∗A∗ B∗B
AA∗ AB

]
= r([A∗, B]∗[A∗, B]) = r[A∗, B].

Note also that AB = 0 is a special case of the above matrix rank equality, thus establishing
the equivalence of (ii) and (xvi).

The equivalences of (i) and (ix)–(xvi) in this theorem follow from (27)–(29), and

r[A∗, B] = r[(A−A)∗, BB−] = r[A∗A, BB∗] = r[(A∗A)1/2, (BB∗)1/2] = r[A∗AA∗, BB∗B].

The equivalences of (i)–(viii) in this theorem follow from (i), (ii), and (iii) in Theorem 1(b).

In the following, the author presents two groups of results on set inclusions associated
with the two reverse-order laws (ABC)− = (BC)−B(AB)− and (ABC)− = C−B−A− and
their variation forms for a triple matrix product ABC.

Theorem 4. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q be given, and denote M = ABC. Then,
the following 36 statements are equivalent:

(i) {M−} ⊇ {(BC)−B(AB)−}.
(ii) {M−} ⊇ {C∗(BCC∗)−B(A∗AB)−A∗}.
(iii) {M−} ⊇ {(B∗BC)−B∗BB∗(ABB∗)−}.
(iv) {M−} ⊇ {C∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗}.
(v) {M−} ⊇ {C−(BCC−)−B(A−AB)−A−}.
(vi) {M−} ⊇ {(B−BC)−B−BB−(ABB−)−}.
(vii) {M−} ⊇ {C−(B−BCC−)−B−BB−(A−ABB−)−A−}.
(viii) {MM−} ⊇ {M(BC)−B(AB)−}.
(ix) {MM−} ⊇ {MC∗(BCC∗)−B(A∗AB)−A∗}.
(x) {MM−} ⊇ {M(B∗BC)−B∗BB∗(ABB∗)−}.
(xi) {MM−} ⊇ {MC∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗}.
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(xii) {MM−} ⊇ {MC−(BCC−)−B(A−AB)−A−}.
(xiii) {MM−} ⊇ {M(B−BC)−B−BB−(ABB−)−}.
(xiv) {MM−} ⊇ {MC−(B−BCC−)−B−BB−(A−ABB−)−A−}.
(xv) {M−M} ⊇ {(BC)−B(AB)−M}.
(xvi) {M−M} ⊇ {C∗(BCC∗)−B(A∗AB)−A∗M}.
(xvii) {M−M} ⊇ {(B∗BC)−B∗BB∗(ABB∗)−M}.
(xviii) {M−M} ⊇ {C∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗M}.
(xix) {M−M} ⊇ {C−(BCC−)−B(A−AB)−A−M}.
(xx) {M−M} ⊇ {(B−BC)−B−BB−(ABB−)−M}.
(xxi) {M−M} ⊇ {C−(B−BCC−)−B−BB−(A−ABB−)−A−M}.
(xxii) {CM−A} ⊇ {C(BC)−B(AB)−A}.
(xxiii) {CM−A} ⊇ {CC∗(BCC∗)−B(A∗AB)−A∗A}.
(xxiv) {CM−A} ⊇ {C(B∗BC)−B∗BB∗(ABB∗)−A}.
(xxv) {CM−A} ⊇ {CC∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗A}.
(xxvi) {CM−A} ⊇ {CC−(BCC−)−B(A−AB)−A−A}.
(xxvii) {CM−A} ⊇ {C(B−BC)−B−BB−(ABB−)−A}.
(xxviii) {CM−A} ⊇ {CC−(B−BCC−)−B−BB−(A−ABB−)−A−A}.
(xxix) {(A−MC−)−} ⊇ {(BCC−)−B(A−AB)−}.
(xxx) {(A∗MC∗)−} ⊇ {(BCC∗)−B(A∗AB)−}.
(xxxi) {(AA∗MC∗C)−} ⊇ {(BCC∗C)−B(AA∗AB)−}.
(xxxii) {((AB)−M(BC)−)−} ⊇ {((BC)(BC)−)−B((AB)−(AB))−}.
(xxxiii) {((AB)∗M(BC)∗)−} ⊇ {((BC)(BC)∗)−B((AB)∗(AB))−}.
(xxxiv) {(((AB)∗(AB))1/2B−((BC)(BC)∗)1/2)−} ⊇ {(((BC)(BC)∗)1/2)−B(((AB)∗(AB))

1/2)−}.
(xxxv) M = 0 or (In − (BC)(BC)−)B

(
Ip − (AB)−(AB)

)
= 0 for some/all (AB)− and (BC)−.

(xxxvi) M = 0 or r(M) = r(AB) + r(BC)− r(B).

Proof. By (i) and (iv) in Theorem 1(b), (i) in this theorem holds if and only if

M = 0 or r(AB) + r(BC)− r(M) = r
[

B BC
AB ABC

]
= r
[

B 0
0 0

]
= r(B),

establishing the equivalence of (i) and (xxxvi). The equivalences of (i)–(xxviii) in this
theorem can also be shown by Theorem 1(b) and (c). The details of the proofs are omitted
here due to space limitation.

The equivalences of (i), (xxix)–(xxxiv), and (xxxvi) follow from the following ba-
sic facts:

r(AB) = r(A−AB) = r(A∗B) = r(AA∗AB),

r(BC) = r(BCC−) = r(BCC∗) = r(BCC∗C),

r(M) = r(A−MC−) = r(A∗MC∗) = r(AA∗MC∗C)

= r((AB)−M(BC)−) = r((AB)∗M(BC)∗).

The equivalence of (xxxv) and (xxxvi) follows from (19).

Theorem 5. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q be given, and denote M = ABC. Then,
the following 27 statements are equivalent:

(i) {M−} ⊇ {C−B−A−}.
(ii) {M−} ⊇ {C∗(CC∗)−B−(A∗A)−A∗}.
(iii) {M−} ⊇ {C−(CC−)−B−(A−A)−A−}.
(iv) {M−} ⊇ {(BC)−A−} and {(BC)−} ⊇ {C−B−}.
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(v) {M−} ⊇ {C−(AB)−} and {(AB)−} ⊇ { B−A−}.
(vi) {MM−} ⊇ {MC−B−A−}.
(vii) {MM−} ⊇ {MC∗(CC∗)−B−(A∗A)−A∗}.
(viii) {MM−} ⊇ {MC−(CC−)−B−(A−A)−A−}.
(ix) {MM−} ⊇ {M(BC)−A−} and {BC(BC)−} ⊇ {BCC−B−}.
(x) {MM−} ⊇ {MC−(AB)−} and {AB(AB)−} ⊇ {ABB−A−}.
(xi) {M−M} ⊇ {C−B−A−M}.
(xii) {M−M} ⊇ {C∗(CC∗)−B−(A∗A)−A∗M}.
(xiii) {M−M} ⊇ {C−(CC−)−B−(A−A)−A−M}.
(xiv) {M−M} ⊇ {(BC)−A−M} and {(BC)−BC} ⊇ {C−B−BC}.
(xv) {M−M} ⊇ {C−(AB)−M} and {(AB)−AB} ⊇ { B−A−AB}.
(xvi) {CM−A} ⊇ {CC−B−A−A}.
(xvii) {CM−A} ⊇ {CC∗(CC∗)−B−(A∗A)−A∗A}.
(xviii) {CM−A} ⊇ {CC−(CC−)−B−(A−A)−A−A}.
(xix) {BCM−A} ⊇ {BC(BC)−A−A} and {C(BC)−B} ⊇ {CC−B−B}.
(xx) {CM−AB} ⊇ {CC−(AB)−AB} and {B(AB)−A} ⊇ {BB−A−A}.
(xxi) {(C∗B∗A∗)−} ⊇ {(A∗)−(B∗)−(C∗)−}.
(xxii) {(A−MC−)−} ⊇ {(CC−)−B−(A−A)−}.
(xxiii) {(A∗MC∗)−} ⊇ {(CC∗)−B−(A∗A)−}.
(xxiv) {(AA∗MC∗C)−} ⊇ {(CC∗C)−B−(AA∗A)−}.
(xxv) M = 0 or r(M) = r(A) + r(B) + r(C)− n− p.
(xxvi) M = 0 or {r(M) = r(A) + r(BC)− n and r(BC) = r(B) + r(C)− p}.
(xxvii) M = 0 or {r(M) = r(AB) + r(C)− p and r(AB) = r(A) + r(B)− n}.

Proof. We first obtain from Lemma 5(b) the following inequalities:

p− r(C) + r(M) ≥ r(M) ≥ 0, (30)

n− r(A) + r(M) ≥ r(M) ≥ 0, (31)

r(M) ≥ r(A) + r(B) + r(C)− n− p ≥ 0, (32)

which we shall use in the sequel. By (i) and (iv) in Theorem 1(b), (i) in this theorem holds if
and only if

M = 0 or r
[

B− C
A M

]
− r(A)− r(C) + r(M) = 0 (33)

holds for all B−. Applying (25) to the block matrix in (33), we obtain

max
B−

r
[

B− C
A M

]
= max

B−
r
([

Ip
0

]
B−[In, 0] +

[
0 C
A M

])

= min

r
[

Ip 0 C
0 A M

]
, r

In 0
0 C
A M

, r

−B In 0
Ip 0 C
0 A M

− r(B)


= min

r
[

Ip 0 0
0 A 0

]
, r

In 0
0 C
0 0

, r

 0 In 0
Ip 0 0
0 0 0

− r(B)


= min{p + r(A), n + r(C), n + p− r(B)}. (34)

Substituting this result into the second equality in (33) and simplifying by (30)–(32) lead to

min{p− r(C) + r(M), n− r(A) + r(M), n + p− r(A)− r(B)− r(C) + r(M)}
= n + p− r(A)− r(B)− r(C) + r(M) = 0. (35)
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Combining (35) with the first condition M = 0 in (33) leads to the equivalence of (i)
and (xxv).

The equivalences of (i)–(xx) in this theorem can be shown from Theorem 1(a) and (b)
by similar approaches, and therefore, their proofs are omitted here.

From Lemma 5(b) also, we obtain the following inequalities:

r(M) ≥ r(A) + r(BC)− n ≥ r(A) + r(B) + r(C)− n− p,

r(M) ≥ r(AB) + r(C)− p ≥ r(A) + r(B) + r(C)− n− p.

Therefore,

r(M) = r(A) + r(B) + r(C)− n− p

⇔ r(M) = r(A) + r(BC)− n and r(BC) = r(B) + r(C)− p

⇔ r(M) = r(AB) + r(C)− p and r(AB) = r(A) + r(B)− n.

These facts imply that (xxv), (xxvi), and (xxvii) are equivalent.
The equivalences of (i) and (xxi)–(xxiv) follow from the basic rank equalities r(M) =

r(A−M) = r(A∗M) = r(AA∗M), r(M) = r(MC−) = r(MC∗) = r(MC∗C), and r(M) =
r(A−MC−) = r(A∗MC∗) = r(AA∗MC∗C).

Theorem 6. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and D ∈ Cq×s be given, and denote
N = ABCD. Then, the following 36 statements are equivalent:

(i) {N−} ⊇ {(CD)−C(BC)−B(AB)−}.
(ii) {N−} ⊇ {(C∗CD)−C∗C(BC)−BB∗(ABB∗)−}.
(iii) {N−} ⊇ {(CD)−CC∗(B∗BCC∗)−B∗B(AB)−}.
(iv) {N−} ⊇ {D∗(C∗CDD∗)−C∗C(BC)−BB∗(A∗ABB∗)−A∗}.
(v) {N−} ⊇ {(C∗CD)−C∗CC∗(B∗BCC∗)−B∗BB∗(ABB∗)−}.
(vi) {N−} ⊇ {D∗(C∗CDD∗)−C∗CC∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗}.
(vii) {N−} ⊇ {(C−CD)−C−C(BC)−BB−(ABB−)−}.
(viii) {N−} ⊇ {(CD)−CC−(B−BCC−)−B−B(AB)−}.
(ix) {N−} ⊇ {D−(C−CDD−)−C−C(BC)−BB−(A−ABB−)−A−}.
(x) {N−} ⊇ {(C−CD)−C−CC−(B−BCC−)−B−BB−(ABB−)−}.
(xi) {N−} ⊇ {D−(C−CDD−)−C−CC−(B−BCC−)−B−BB−(A−ABB−)−A−}.
(xii) {NN−} ⊇ {N(CD)−C(BC)−B(AB)−}.
(xiii) {NN−} ⊇ {N(C∗CD)−C∗C(BC)−BB∗(ABB∗)−}.
(xiv) {NN−} ⊇ {N(CD)−CC∗(B∗BCC∗)−B∗B(AB)−}.
(xv) {NN−} ⊇ {ND∗(C∗CDD∗)−C∗C(BC)−BB∗(A∗ABB∗)−A∗}.
(xvi) {NN−} ⊇ {N(C∗CD)−C∗CC∗(B∗BCC∗)−B∗BB∗(ABB∗)−}.
(xvii) {NN−} ⊇ {ND∗(C∗CDD∗)−C∗CC∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗}.
(xviii) {NN−} ⊇ {N(C−CD)−C−C(BC)−BB−(ABB−)−}.
(xix) {NN−} ⊇ {N(CD)−CC−(B−BCC−)−B−B(AB)−}.
(xx) {NN−} ⊇ {ND−(C−CDD−)−C−C(BC)−BB−(A−ABB−)−A−}.
(xxi) {NN−} ⊇ {N(C−CD)−C−CC−(B−BCC−)−B−BB−(ABB−)−}.
(xxii) {NN−} ⊇ {ND−(C−CDD−)−C−CC−(B−BCC−)−B−BB−(A−ABB−)−A−}.
(xxiii) {N−N} ⊇ {(CD)−C(BC)−B(AB)−N}.
(xxiv) {N−N} ⊇ {(C∗CD)−C∗C(BC)−BB∗(ABB∗)−N}.
(xxv) {N−N} ⊇ {(CD)−CC∗(B∗BCC∗)−B∗B(AB)−N}.
(xxvi) {N−N} ⊇ {D∗(C∗CDD∗)−C∗C(BC)−BB∗(A∗ABB∗)−A∗N}.
(xxvii) {N−N} ⊇ {(C∗CD)−C∗CC∗(B∗BCC∗)−B∗BB∗(ABB∗)−N}.
(xxviii) {N−N} ⊇ {D∗(C∗CDD∗)−C∗CC∗(B∗BCC∗)−B∗BB∗(A∗ABB∗)−A∗N}.
(xxix) {N−N} ⊇ {(C−CD)−C−C(BC)−BB−(ABB−)−N}.
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(xxx) {N−N} ⊇ {(CD)−CC−(B−BCC−)−B−B(AB)−N}.
(xxxi) {N−N} ⊇ {D−(C−CDD−)−C−C(BC)−BB−(A−ABB−)−A−N}.
(xxxii) {N−N} ⊇ {(C−CD)−C−CC−(B−BCC−)−B−BB−(ABB−)−N}.
(xxxiii) {N−N} ⊇ {D−(C−CDD−)−C−CC−(B−BCC−)−B−BB−(A−ABB−)−A−N}.
(xxxiv) N = 0 or r(N) = r(AB) + r(BC) + r(CD)− r(B)− r(C).
(xxxv) N = 0 or {r(N) = r(ABC) + r(CD)− r(C) and r(ABC) = r(AB) + r(BC)− r(B)}.
(xxxvi) N = 0 or {r(N) = r(AB) + r(BCD)− r(B) and r(BCD) = r(BC) + r(CD)− r(C)}.

Proof. We first obtain from Lemma 5(b) the following inequalities:

r(N) + r(C)− r(CD) ≥ r(N) ≥ 0, (36)

r(N) + r(B)− r(AB) ≥ r(N) ≥ 0, (37)

r(N)− r(AB)− r(BC)− r(CD) + r(B) + r(C) ≥ 0. (38)

By (i) and (iv) in Theorem 1(b), (i) in this theorem holds if and only if

N = 0 or r
[

C(BC)−B CD
AB N

]
− r(AB)− r(CD) + r(N) = 0 (39)

holds for all (BC)−, where by (25), the maximum rank of the block matrix in (39) is

max
(BC)−

r
[

C(BC)−B CD
AB ABCD

]
= max

(BC)−
r
([

C
0

]
(BC)−[B, 0] +

[
0 CD

AB ABCD

])

= min

r
[

C 0 CD
0 AB ABCD

]
, r

 B 0
0 CD

AB ABCD

, r

−BC B 0
C 0 CD
0 AB ABCD

− r(BC)


= min

r(AB) + r(C), r(CD) + r(B), r

0 B 0
C 0 0
0 0 0

− r(BC)


= min{r(AB) + r(C), r(CD) + r(B), r(B) + r(C)− r(BC)}. (40)

Substituting this result into the second equality in (39) and simplifying by (36)–(38) lead to

min{r(N) + r(C)− r(CD), r(N) + r(B)− r(AB),

r(N)− r(AB)− r(BC)− r(CD) + r(B) + r(C)}
= r(N)− r(AB)− r(BC)− r(CD) + r(B) + r(C) = 0, (41)

Combining (41) with the first condition N = 0 in (39) leads to the equivalence of (i) and
(xxxiv). The equivalences of (i)–(xxxiii) can be shown by similar approaches, and therefore,
the details are omitted.

The equivalences of (xxxiv), (xxxv), and (xxxvi) in this theorem follow from
Lemma 5(b).

Given the above results and their derivations, we believe intuitively that there exist
many possible variations and extensions of the matrix set inclusion problems. We conclude
this section with direct applications of the preceding results to some specified operations
of matrices.
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Corollary 1. Let A ∈ Cm×m be given. Then, the following matrix set inclusions always hold:

{(A− A2)−} ⊇ {A−(Im − A)−}, (42)

{(A− A2)−} ⊇ {(Im − A)−A−}, (43)

{(Im − A2)−} ⊇ {(Im + A)−(Im − A)−}, (44)

{(Im − A2)−} ⊇ {(Im − A)−(Im + A)−}, (45)

{(A− A3)−} ⊇ {A−(Im + A)−(Im − A)−}, (46)

{(A− A3)−} ⊇ {(Im + A)−A−(Im − A)−}, (47)

{(A− A3)−} ⊇ {(Im + A)−(Im − A)−A−}. (48)

Proof. Recall that the following three rank formulas:

r(A− A2) = r(A) + r(Im − A)−m,

r(Im − A2) = r(Im + A) + r(Im − A)−m,

r(A− A3) = r(A) + r(Im + A) + r(Im − A)− 2m

are well known in elementary linear algebra. In this situation, applying Theorem 2(i) and
(xx), Theorem 5(i) and (xxv), and the above three rank formulas to the matrix products
A− A2 = A(Im − A) = (Im − A)A, Im − A2 = (Im + A)(Im − A) = (Im − A)(Im + A),
and A − A3 = A(Im + A)(Im − A) = (Im + A)A(Im − A) = (Im + A)(Im − A)A lead
to (42)–(48).

Theorem 7. Let A, B ∈ Cm×n be given. Then, the following six statements are equivalent:

(i) {(A + B)−} ⊇
{[

A
B

]−[A 0
0 B

]
[A, B]−

}
.

(ii) {(A + B)−} ⊇
{[

A∗A
B∗B

]−[A∗AA∗ 0
0 B∗BB∗

]
[AA∗, BB∗]−

}
.

(iii) {(A + B)−} ⊇
{[

A−A
B−B

]−[A−AA− 0
0 B−BB−

]
[AA−, BB−]−

}
.

(iv) {(A + B)−} ⊇
{
[In, In]

[
A−A A−A
B−B B−B

]−[A−AA− 0
0 B−BB−

][
AA− BB−

AA− BB−

]−[Im
Im

]}
.

(v) {(A + B)−} ⊇
{
[In, In]

[
A∗A A∗A
B∗B B∗B

]−[A∗AA∗ 0
0 B∗BB∗

][
AA∗ BB∗

AA∗ BB∗

]−[Im
Im

]}
.

(vi) A + B = 0 or r(A + B) = r
[

A
B

]
+ r[A, B]− r(A)− r(B).

Proof. Writing the sum A + B as A + B = [Im, Im]

[
A 0
0 B

][
In
In

]
and applying Theorem 4 to

this triple matrix product yield the desired results.

4. Concluding Remarks

The author collected and proposed a series of known and novel equalities for products
of matrices and their generalized inverses, including a wide range of reverse-order laws for
generalized inverses (matrix set inclusions associated with generalized inverses), and also
presented various necessary and sufficient conditions for these matrix equalities to hold
through the skillful use of various equalities and inequalities for ranks of matrices. Clearly,
this study is a critical manifestation of how to construct reasonable matrix equalities that
involve generalized inverses and how to describe these equalities by means of the cogent
matrix rank method.

Finally, the author gives some additional remarks about relevant research problems
regarding reverse-order laws. It has been recognized that the construction and characteriza-
tion of reverse-order laws for generalized inverses of multiple matrix products are a huge
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algebraic work in matrix theory and applications, which mainly includes the following
research topics:

(I) Construct and classify different types of reverse-order laws.
(II) Establish necessary and sufficient conditions for each reverse-order law to hold

through the use of various matrix analysis methods and techniques.

Furthermore, the author points out that this kind of research problems can reasonably
be proposed and studied for generalized inverses of elements in other algebraic sys-
tems, in which many different kinds of generalized inverses can properly be defined;
see, e.g., [22,27–41] for their expositions.
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39. Mosić, D.; Djordjević, D.S. Some results on the reverse-order law in rings with involution. Aequat. Math. 2012, 83, 271–282.

[CrossRef]
40. Wang, L.; Zhang, S.; Zhang, X.; Chen, J. Mixed-type reverse-order law for Moore–Penrose inverse of products of three elements in

ring with involution. Filomat 2014, 28, 1997–2008. [CrossRef]
41. Zhu, H.; Zhang, X.; Chen, J. Generalized inverses of a factorization in a ring with involution. Linear Algebra Appl. 2015,

472, 142–150. [CrossRef]

http://dx.doi.org/10.1016/0024-3795(79)90027-2
http://dx.doi.org/10.1016/S0096-3003(02)00796-8
http://dx.doi.org/10.1016/j.aml.2010.09.005
http://dx.doi.org/10.1016/j.laa.2010.11.022
http://dx.doi.org/10.4064/sm-103-1-71-77
http://dx.doi.org/10.4064/sm-106-2-129-138
http://dx.doi.org/10.1007/s00010-017-0524-5
http://dx.doi.org/10.1007/BF01200329
http://dx.doi.org/10.1080/03081088808817878
http://dx.doi.org/10.1016/j.laa.2014.09.003
http://dx.doi.org/10.1007/s00020-008-1562-0
http://dx.doi.org/10.1007/s00010-012-0125-2
http://dx.doi.org/10.2298/FIL1410997W
http://dx.doi.org/10.1016/j.laa.2015.01.025

	Introduction
	Some Preliminaries
	Set Inclusions for Generalized Inverses of Matrix Products
	4
	References

