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Abstract: With the popularity of big data analysis with insurance claim count data, diverse regression
models for count response variable have been developed. However, there is a multicollinearlity
issue with multivariate input variables to the count response regression models. Recently, deep
learning and neural network models for count response have been proposed, and a Keras and
Tensorflow-based deep learning model has been also proposed. To apply the deep learning and
neural network models to non-normal insurance claim count data, we perform the root mean
square error accuracy comparison of gradient boosting machines (a popular machine learning
regression tree algorithm), principal component analysis (PCA)-based Poisson regression, PCA-
based negative binomial regression, and PCA-based zero inflated poisson regression to avoid the
multicollinearity of multivariate input variables with the simulated normal distribution data and
the non-normal simulated data combined with normally distributed data, binary data, copula-based
asymmetrical data, and two real data sets, which consist of speeding ticket and Singapore insurance
claim count data.

Keywords: deep learning; poisson; zero inflated poisson; negative binomial regression
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1. Introduction

Since 2019, the news has provided people with information about COVID-19 (Coron-
avirus disease 2019). In an effort to protect people from COVID-19, researchers have studied
the relationship between the number of COVID-19 patients (i.e., patients with a confirmed
COVID-19 infection) in their country and their government’s policies related to COVID-19,
such as restrictions on international air travel and closures of institutions. The analysis of
medical data using machine learning methods could potentially be useful in understanding
how to protect people from COVID-19. An example of the usefulness of machine learning
methods is extracting information from the data produced from social media platforms.
Deep learning (DL) has provided useful results in predicting problems for a variety of
fields [1,2]. In particular, the core architectures that currently dominate DL are autoen-
coders, convolutional neural networks, deep feed-forward neural networks, generative
adversarial networks, long short-term memory networks, and recurrent neural networks.

It has been interesting to study DL from a statistical perspective [3,4]. Standard statis-
tical models such as the Poisson generalized linear model (GLM) and Cox’s proportional
hazards (PH) model have been applied to the DL models [5,6].

The DL model can be regarded as a highly nonlinear and generalized non-parametric
function form including the traditional statistical models. In particular, the feed-forward
DL model can be viewed as a stacked GLM with recursively defined nonlinear link func-
tions [7,8]. Machine learning techniques have generated actionable intelligence for the
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manufacturing industry through the processing of big data [9], which has helped in in-
creasing manufacturing efficiency without requiring significant changes. Machine learning
to statistical process control (SPC) for count or binary response data has been developed
to improve the quality of products and reduce process variations [10–15]. The principal
component analysis (PCA)-based Poisson, negative binomial and COM-Poisson r-control
charts for monitoring dispersed count data to avoid multicollinearity have been proposed
by [14,15]. The deep learning and neural network-based residual control charts for the
binary asymmetrical response variable with highly correlated multivariate covariates have
been outperformed by PCA-based GLM with probit, PCA-based GLM with logit, nonlinear
PCA-based GLM with probit, and nonlinear PCA-based GLM with logit [11,12]. Based
on the results of [11,12], the deep learning (DL) and neural network (NN) residual control
charts for the count response regression model to monitor the asymmetrical and dispersed
count response data have been proposed by [16]. Meanwhile, Kim and Ha’s DL residual
control chart outperformed PCA-based Poisson, PCA-based negative binomial, nonlinear
PCA-based Poisson, and nonlinear PCA-based negative binomial in terms of accuracy [16].

Recently, several NN and DL models for analyzing count data, including insurance
claim data, have been studied [17–22]. However, these researchers did not investigate the
behaviors of network models allowing for correlated and/or non-normal input variables.
A multilayer deep neural network (DLk) survival model using Keras and Tensorflow has
been proposed by [5].

In this paper, we also consider an important class of machine learning algorithms
featuring a tree-based ensemble method including gradient boosting machines (GBM).
The GBM is a machine learning technique used in regression and classification tasks,
among others. It generates a final prediction model in the form of an ensemble of weak
prediction models, which are multiple decision trees. In this research, we want to compare
DL and NN models with the DLk model, GBM, PCA-based Poisson regression (POI), PCA-
based negative binomial regression (NB), and PCA-based zero-inflated Poisson regression
(ZIP) when the high correlated multivariate input variables follow nonlinear and non-
normal distributions.

DL and NN models for the asymmetrical count response variable with highly cor-
related covariates will be applied to simulated, highly correlated multivariate normal
and non-normal data generated by copula functions, real speeding ticket data and real
insurance claim data. This paper is organized as follows: Section 2 reviews the statistical
regression models and DL models for count data methods. In Section 3, we compare DL
and NN with DLk, GBM, POI, ZIP, and NB using simulated non-normal data generated by
copula functions. Section 4 also compares DL and NN with DLk, GBM, POI, ZIP, and NB
using two real datasets, which are the speeding ticket and Singapore insurance claim count
data. Finally, Section 5 presents conclusions and future study.

2. Statistical Methods

This research compares all available count regression models for asymmetrical count
response variables with highly correlated independent variables. To show the superiority
of Kim and Ha’s [16] DL and NN methods for insurance claim data, we compare the
root mean square error (RMSE) of the DL and NN models to Keras and Tensorflow-based
Poisson deep learning model (DLk) [5], gradient boosting machines (GBM), PCA-based
Poisson regression (POI), PCA-based negative binomial regression (NB), and PCA-based
zero-inflated Poisson regression (ZIP), which [10–12,14] considered the PCA method for
SPC with the multivariate highly correlated data.

The principal component analysis (PCA)-based Poisson, negative binomial and COM–
Poisson residual control charts for monitoring dispersed count data to avoid multicollinear-
ity have been proposed by [14,15]. The PCA-based count regression models was reviewed
by the authors of [14] well. We recommend reading [14]’s paper to understand the PCA-
based count regression models.
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Poisson regression is one of the most popular count response regression models.
The variable of this model represents the number of events, such as the number of car
insurance claims over a given period of time. Poisson distribution is from the simple
exponential family, so the model belongs to a generalized linear model [23]. There is
another popular count regression model, which is the negative binomial (NB) regression
model. An extended model of the Poisson regression model is the NB regression model,
which loosens the restrictive assumption made by the Poisson model that the variance is
equal to the mean. The response variable in the GLM usually does not have the normal
distribution assumption, but it typically assumes a distribution from an exponential family
(e.g., binomial, Poisson, negative binomial, multinomial, normal, etc.) [23]. Therefore,
DL and NN allow more flexibility by virtue of accommodating more complex nonlinear
relationships between the inputs and output.

Below, we outline a framework of the DL model with a feed-forward neural network
(FNN) architecture. We first describe an analytical form of the DL model. It consists of
one input layer with p input nodes, L hidden layers with JL hidden nodes, and one output
layer with K output nodes. For simplicity of argument, we consider the DL model with
L = 2 and K = 1. Then, the two hidden layers with p input variables xi’s (i = 1, . . . , p) are
given by the following forms [1]

h1j = f1

( p∑
i=1

w(1)
ij xi + b1j

)
, j = 1, . . . , J1,

h2j = f2

( J1∑
i=1

w(2)
ij h1i + b2j

)
, j = 1, . . . , J2,

and the output layer is

ŷ = fy

( J2∑
j=1

β jh2j + β0

)
,

where ŷ = E(Y|x) and the jth node (unit) of thesecond (final) hidden layer h2j = h2j(x; w)

depends on weights w in the hidden layer and features x in the input layer. Here, w(`)
ij

(` = 1, 2) and β j values, including bias (intercept) terms b`j (` = 1, 2) and β0 are input and
output weights (unknown parameters), respectively, and f1(·), f2(·) and fy(·) are activation
functions for the first, second and output layers. For a graphical representation of a simple
DL model with a two-hidden layer of J1 = J2 = J, see Figure 1. In fact, the FNN DL model
above can be viewed as a recursive GLM [7] where the activation function corresponds
to an inverse link function in the GLM. The activation function can be pre-specified as a
nonlinear function (e.g., sigmoid, ReLU with max(0, a)) in the hidden layer and as a linear
or nonlinear function according to the type of response y in the output layer. For example,
for the activation function of the output layer, we can use a linear function for continuous
response data and an exponential function for count response data.
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Figure 1. A feed-forward deep learning model with two-hidden layers where bias terms are omitted
for brevity but are written in the main text.

The DL model is fitted via the following learning algorithms during a training process.
The unknown weights θ = {w(`)

ij , b`j, β j, β0}`∈L are estimated by minimizing the objective
function (denoted by L(θ)) based on the empirical loss function (e.g., squared loss or
negative log-likelihood) over all the training data. For example, for the squared loss, we
have that

θ̂ = arg min
θ

L(θ) = arg min
θ

n∑
i=1

(yi − ŷi(θ))
2,

where ŷi(θ) = ŷi(θ; x) is the ith component of ŷ in the output layer above. The computation
of θ̂ for minimizing L(θ) can be implemented using backpropagation and a stochastic
gradient descent (SGD) optimization method such as the Adam algorithm [24]. It can be
crucial to appropriately choose or tune the hyper-parameters (e.g., the depth (L) and width
(JL)) due to their sensitivity to the performance of the DL model. For more details, see [1,3].
The initial idea of the NN is a brain chain reaction neurons’ network, and the applications
of NN can be found in [2,25–29]. Hereafter, we call the DL and NN models using Kim
and Ha’s method [16] to be DL and NN models, respectively. For data analysis for the
DL and NN models, we used the ’neuralnet’ R package [30] training neural networks
using backpropagation and logistic activation function for smoothing the result of the cross
product of the covariate or neurons and the weights by using the ’neuralnet’ command. We
also followed the procedures of Kim and Ha’s DL and NN methods for count response [16].
First, we normalize the whole data including count output variable and input variables
with the normalizing formula:

data−min(data)
max(data)−min(data)

(1)

and we divide 80% normalized training data and 20% normalized test data from the
standardized whole data. Second, we fit the normalized training data to either the DL or
NN regression models in order to find the best model. Third, we apply the normalized test
data to the best model of DL or NN based on the normalized train data. Fourth, we find
the predicted values from the model. Fifth, we transform the normalized predicted values
back to the original data format as follows

predicted values× (max(orignal data)−min(orignal data)) + min(orignal data) (2)

and we calculate the residual with the transformed predicted values and original count test
data. Lastly, we perform the above procedures 1000 times to produce the root mean square
error (RMSE) to determine the accuracy of each model.
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3. Simulation Study
3.1. Simulation Setup

We generate highly correlated normal and non-normal simulated data to compare the
methods we mentioned in the previous session. For non-normal simulated data, we used a
copula function in this paper. Copulas are a good statistical method for finding multivariate
dependence structures because copulas do not require normality, linearity, or independence
assumptions. See [31,32] for detailed information about copulas. To construct a highly
correlated dependence structure of input variables, we employ the Archimedean Clayton
copula function. The reason that we choose the Clayton copula function for the simulation
study is that the Clayton copula function has lower tail dependence. The insurance data
have more lower tail dependence rather than upper tail dependence because most claims
are either zero or one. In the simulation study, we considered two cases. The first case
is a multivariate normal distribution simulation data, and the second case is the non-
normal simulated combined data consisting of multivariate normal data, binary data,
and copula-based simulated data. The first simulation setup is that twelve input variables
X = (X1, X2, X3, X4, · · · , X9, X10, X11, X12)

T are generated from the multivariate normal
distribution with mean (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and covariance matrix A as follows:

A =



1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −0.1
0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4
0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9
−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1


The output variable was randomly generated from a uniform distribution from 0 to 10.

The values of the response variable are 0 to 10 integers. The number of observations for
each output and input variable is 1000.

The second simulation setup takes X = (X1, X2, X3, X4, · · · , X37, X38, X39, X40)
T as

input variables. The first four variables are generated from the multivariate normal distri-
bution with mean (1, 2, 3, 4)T and covariance matrix:

B =


1.0 0.9 0.2 0.1
0.9 1.0 0.4 0.3
0.2 0.4 1.0 0.7
1.0 0.3 0.7 1.0


The next thirty variables are generated by the Clayton copula function, and the last

six variables are binary variables (0 or 1). We set up the parameters for the Clayton
copula function with a dependence parameter equaling to 8 and the number of dimensions
equaling to 30. We generated a random sample of 1000 observations from the copula.
The random sample is assigned to the input variables. The input variables generated by
copula function follow the uniform distribution (0,1) so that all values are in between the
range of 0 and 1. We then multiply 10 to all input variables and then rounded the decimal
values to integers. To help readers understand the detailed simulation setup better, we
included R codes in Appendix A. To employ PCA-based GLM in this paper, we used five
principal components which can explain enough of the total variation of our data by using
R commands (see Appendix A). Readers can change the number of principal components
depending on how many highly correlated covariates they have in order to explain the
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total variation of data. We also include a GBM method for comparison. We uses R package
“gbm” in this paper. To understand the GBM method, we recommend reading [33]’s tutorial
for gradient boosting machines. In our paper, we used the R commands (see Appendix A).
To compare the accuracy of the DL, NN, DLk, GBM, and PCA-based POI, NB and ZIP
models [14,15], each using the simulated data displayed in Table 1, we employ the root
mean square error (RMSE) formula as follows:

RMSE =

√∑n
i=1(yi − ŷi)

n
, (3)

where RMSE = root mean squared error, i = variable i, n = the number of observations,
yi = the actual observation, and ŷi = the predicted value of the yi observation.

For the multivariate normal simulated data and non-normal simulated data combined
with the multivariate normal, Clayton copula, and binary data, we randomly generate
input and output data with a sample size of 1000. We then take a random sample of
800 observations (training data) from the generated data (X, Y) 1000 observations with
1000 repetitions. We compute the RMSEs with the predicted values from the DL, NN,
DLk, GBM, POI, NB and ZIP models and 20% testing data for the three simulated cases in
Table 1. The DL model was built with double hidden layers with (2,2) neurons, and the NN
model was built with a single hidden layer with two neurons for each multivariate normal,
Clayton copula and binary combined case. For the simulation study of the DLk model, we
followed Kim and Ha’s basic settings including the transformed normalization of the input
and output variables; we also set two hidden layers with two neurons in each hidden layer,
sigmoid activation functions in each layer dense command in Keras, and mean squared
error loss.

Table 1. RMSE of Simulated Multivariate Normal Data and Non-Normal Combined Data with
Multivariate Normal, Copula and Binary Data under 1000 Repetitions.

Multivariate Normal Distribution

Model Min Q1 Median Mean Q3 Max IQR

DL 0.0005 0.3295 0.6544 0.8707 1.1626 8.2775 0.8331

NN 0.0020 0.3393 0.6406 0.7988 1.1279 7.1339 0.7886

DLk 0.0026 0.2834 0.6127 0.7987 1.0401 8.4060 0.7567

GBM 0.0017 0.2519 0.5293 0.6418 0.9370 2.6102 0.6850

POI 0.0015 0.3999 0.8425 0.9949 1.4125 4.0888 1.0125

ZIP 0.0001 0.3584 0.7742 0.9225 1.3505 3.8733 0.9920

NB 0.0016 0.4000 0.8425 0.9949 1.4215 4.0888 1.0125

Multivariate Normal, Binary and Clayton Copula

Model Min Q1 Median Mean Q3 Max IQR

DL 0.0002 0.5277 0.9982 1.2227 1.7328 4.7735 1.2052

NN 0.0009 0.4935 1.0258 1.2163 1.7223 4.6658 1.2288

DLk 0.0014 0.5083 1.0752 1.2591 1.8047 5.1306 1.2964

GBM 0.0007 0.5039 1.0827 1.2773 1.8091 5.4367 1.3052

POI 0.0024 0.4939 1.0077 1.2108 1.6895 4.8488 1.1957

ZIP 0.0019 0.5055 1.0290 1.2227 1.7382 4.9925 1.2327

NB 0.0023 0.4939 1.0077 1.2108 1.6895 4.8488 1.1957
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3.2. Simulation Results

Table 1 shows that the GBM model is the best model for the multivariate normal
distribution simulation case in terms of the median and IQR for RMSE and that the DL
model is the best model for the combined non-normal simulated case with multivariate
normal distribution, Clayton copula, and binary data in terms of the median for RMSE.
Table 1 also shows that the NN model has the smallest maximum value of RMSE for the
combined non-normal simulated data. These findings coincide with the results from [11,12]
in that the DL and NN models for binary response data are more efficient than the PCAGLM
with logit and PCA-GLM with probit models. The Violin plots in Figure 2 confirm that the
GBM model for the multivariate normal distribution simulation case is superior to the DL,
NN, DLk, POI, ZIP, and NB models in terms of the median and IQR, and the DL model for
each non-normal combined simulation case with multivariate normal, Clayton copula and
binary shows a superiority over the NN, DLk, GBM, POI, ZIP and NB models in terms of
the median.

0
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8

DL NN DLk GBM POI ZIP NB

● ● ● ●

● ● ●

R
M

S
E

RMSE for Simulated Multivariate Normal Data

0
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2
3

4
5

DL NN DLk GBM POI ZIP NB

● ● ● ●
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R
M

S
E

Normal, Binary and Clayton Copula Data

Figure 2. Violin Plots of RMSE with Simulated Multivariate Normal Data and Non-Normal Combined
Data with Multivariate Normal, Copula and Binary Data.

4. Illustrated Data Analysis

To compare the accuracy of DL, NN, DLk, GBM, PCA-based POI, NB and ZIP models
with real insurance-related data, we used speeding ticket data from [34] and Singapore
automobile claims data from the R Package insuranceData, which came from [35]. The
speeding ticket dataset has 68,357 observations across nine variables. Table 2 contains
descriptions of the nine variables that we used in our analysis. For our analysis, ’Amount’
was used as the output variable Y, and the remaining eight variables were used as the
input variables.
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Table 2. Variables and description of speeding ticket data.

Variable Description

Amount Amount of fine (in dollars) assessed for speeding

Age Age of speeding driver (in years)

MPHover Miles per hour over the speed limit

Black Dummy = 1 if driver was black, =0 if not

Hispanic Dummy = 1 if driver was Hispanic, =0 if not

Female Dummy = 1 if driver was female, =0 if not

OutTown Dummy = 1 if driver was not from local town, =0 if not

OutState Dummy = 1 if driver was not from local state, =0 if not

StatePol Dummy = 1 if driver was stopped by State Police, =0 if stopped by other (local)

The Singapore automobile claims data were used for proposing hierarchical models
of Singapore driving experience by [36]. The data can be downloaded from the general
insurance association of Singapore organization website: www.gia.org.sg (accessed on
5 February 2022). The data features 7483 observations and 13 variables. Table 3 shows the
variables in the Singapore automobile claims dataset that we used for our data analysis.
Here, ’Clm Exp Count’ (number of claims during the year) was used as the output variable
Y, and the remaining 12 variables were used as input variables.

Table 3. Variables and description of Singapore automobile claims data.

Variable Description

Female 1 if female, 0 otherwise

PC 1 if private vehicle, 0 otherwise

Clm Exp Count Number of claims during the year

Exp weights Exposure weight or the fraction of the year that the policy is in effect

LNWEIGHT Logarithm of exposure weight

NCD
NoClaims Discount. This is based on the previous accident record of the policyholder.

The higher the discount, the better the prior accident record.

AgeCat
The age of the policyholder, in years grouped into seven categories.

0–6 indicate age groups 21 and younger, 22–25, 26–35, 36–45, 46–55, 56–65, 66 and over.

VAgeCat
The age of the vehicle, in years, grouped into seven categories.

0–6 indicate groups 0, 1, 2, 3–5, 6–10, 11–15, 16 and older, respectively

AutoAge0 1 if private vehicle and VAgeCat = 0, 0 otherwise

AutoAge1 1 if private vehicle and VAgeCat = 1, 0 otherwise

AutoAge2 1 if private vehicle and VAgeCat = 2, 0 otherwise

AutoAge 1 if Private vehicle and VAgeCat = 0, 1 or 2, 0 otherwise

VAgecat1 VAgeCat with categories 0, 1, and 2 combined

For the two real datasets, we take a random sample of 800 observations from the real
data (X, Y) observations with 1000 repetitions. We compute the RMSEs with the predicted
values from the DL, NN, DLk, GBM, POI, NB, and ZIP models and 20% testing data for
the two real data cases in Table 4. Table 4 shows that the DL model is the best model for

www.gia.org.sg
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the large size speeding ticket dataset in terms of the median for RMSE and that the NN
model is the best model for the smaller size Singapore auto claims dataset in terms of IQR.
This may be because large real insurance-related datasets can follow a multivariate non-
normal distribution. These results coincide with the result of the multivariate non-normal
simulated case shown in the Table 1. Violin plots in Figure 3 confirm that the DL model
has the smallest maximum value of RMSE and is superior to the NN, DLk, GBM, POI,
ZIP, and NB models in terms of the median. The DL model was built with double hidden
layers with (2,2) neurons, and the NN model was built with a single hidden layer with two
neurons for each real datum. For the real data analysis with the DLk model, we set the
same settings as the DL and NN, with double hidden layers with (2,2) neurons.

Table 4. RMSE of speeding ticket data and Singapore automobile claims with 1000 repetitions.

Speeding Tickets

Model Min Q1 Median Mean Q3 Max IQR

DL 0.0587 19.9503 39.9615 47.9565 69.4222 182.4835 49.4719

NN 0.0243 19.9641 40.0596 47.8394 67.8350 184.3338 47.8709

DLk 0.0259 19.4476 41.1430 49.5775 71.4395 192.8575 51.9919

GBM 0.0470 22.1840 42.1820 48.6240 68.9000 183.6440 46.7166

POI 0.0157 27.5435 63.1032 73.2054 104.4818 363.6643 76.9383

ZIP 0.0306 19.3467 41.3465 48.8347 72.2811 191.3155 52.9344

NB 0.0168 27.6735 63.0762 73.2649 104.8259 364.1900 77.1524

Singapore Automobile Claims

Model Min Q1 Median Mean Q3 Max IQR

DL 0.0005 0.0924 0.2022 0.2375 0.3471 1.0236 0.2547

NN 0.0001 0.1045 0.1997 0.2380 0.3397 1.0111 0.2352

DLk 0.0001 0.0964 0.2025 0.2466 0.3636 1.0991 0.2672

GBM 0.0004 0.0089 0.2035 0.2436 0.3428 1.0895 0.2529

POI 0.0013 0.0932 0.1985 0.2349 0.3398 0.9863 0.2465

ZIP 0.0001 0.0891 0.1987 0.2353 0.3436 0.9699 0.2545

NB 0.0001 0.0937 0.1997 0.2350 0.3400 0.9865 0.2463
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Figure 3. Plots of RMSE with real data.
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5. Conclusions

In this research, we compare Kim and Ha’s DL and NN models for the non-normal
highly correlated input variables with DLk, GBM, PCA-based POI, ZIP, and NB models in
terms of accuracy using the median of RMSE. With simulated non-normal data and real
insurance-related data, we showed that the DL model is superior to the NN, DLk, GBM,
POI, ZIP, and NB models in terms of the median. With simulated normal data, we showed
that the GBM model is superior to the DL, NN, DLk, POI, ZIP and NB models in terms of
the median and IQR. In terms of computation time, Kim and Ha’s DL and NN models are
much faster than the DLk model. When we deal with a large insurance claim non-normal
data, the Kim and Ha’s DL model can be a fast and accurate prediction model. In future
studies, we will consider bivariate or multivariate count response variables allowing for
highly correlated non-normal input variables with Kim and Ha’s DL and NN models.
We will also consider insurance description text count data analysis with the textual data
mining method and Kim and Ha’s DL and NN models.
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Appendix A. R Codes for Data Analysis

The following R codes produce the results of our real data analysis.

rm( l i s t = l s ( ) )

l i b r a r y (MASS)
l i b r a r y ( c l u s t e r G e n e r a t i o n )
l i b r a r y ( mvtnorm )
l i b r a r y ( nnet )
l i b r a r y ( kernlab )
l i b r a r y ( deepnet )
l i b r a r y ( copula )
l i b r a r y ( keras )

###### # Real Data I # Speading t i c k e t data ######

s p e e d i n g _ t i c k e t s <− read . csv ( f i l e = ’ s p e e d i n g _ t i c k e t s . csv ’ )

s p e e d i n g _ t i c k e t s [ i s . na ( s p e e d i n g _ t i c k e t s ) ] <− 0
head ( s p e e d i n g _ t i c k e t s )

y <− s p e e d i n g _ t i c k e t s [ , 4 ] x <− as . matrix ( s p e e d i n g _ t i c k e t s [ , −4])

data <− data . frame ( y , x )

summary ( data )

data1 <−~data
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normalize <− funct ion ( x ) {
re turn ( ( x − min ( x ) ) / (max( x ) − min ( x ) ) )
}

data2 <− as . data . frame ( lapply ( data1 , normalize ) )

head ( data2 ) nrow ( data2 )

###### # Real Data I I # Singapore Auto Claim data ######

l i b r a r y ( " insuranceData " )
data ( SingaporeAuto )
head ( SingaporeAuto )
nrow ( SingaporeAuto )

SingaporeAutofull <−na . omit ( SingaporeAuto [ , − c ( 1 , 3 ) ] )
head ( SingaporeAutoful l )

y <− SingaporeAutoful l [ , 3 ]
x <− as . matrix ( SingaporeAutoful l [ , −3])

data <− data . frame ( y , x )

data1 <−~data

normalize <− funct ion ( x ) {
re turn ( ( x − min ( x ) ) / (max( x ) − min ( x ) ) )
}

data2 <− as . data . frame ( lapply ( data1 , normalize ) )

head ( data2 )
nrow ( data2 )

###### # Simulat ion setup I # M u l t i v a r i a t e normal d i s t r i b u t i o n case
( case 1) ####

s e t . seed ( 1 1 ) # Set~seed

N <− 1000 # Number of~observat ions

vec <− round ( r u n i f (N, 0 , 1 0 ) )

l i b r a r y (MASS)

m <− 12
n <−~1000

sigma <− matrix ( c ( 1 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 ,
0 . 3 , 0 . 2 , 0 . 1 , 0 , −0 .1 , 0 . 9 , 1 , 0 . 9 , 0 . 8 , 0 . 7 ,
0 . 6 , 0 . 5 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 , 0 , 0 . 8 , 0 . 9 , 1 ,
0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 ,
0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 ,
0 . 4 , 0 . 3 , 0 . 2 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 , 0 . 8 ,
0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 , 0 . 3 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 ,
1 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 , 0 . 4 , 0 . 5 , 0 . 6 ,
0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 ,
0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 ,
0 . 8 , 0 . 7 , 0 . 6 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 ,
0 . 9 , 1 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 ,
0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 , 0 . 8 , 0 , 0 . 1 , 0 . 2 ,
0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 0 . 9 , −0 .1 ,
0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 ,
1 ) , nrow=12)

z <− mvrnorm ( n ,mu=rep ( 0 , m) , Sigma=sigma , empir i ca l=T)+ vec
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colnames ( z)<−c ( " z1 " , " z2 " , " z3 " , " z4 " , " z5 " , " z6 " , " z7 " , " z8 " , " z9 " , " z10 " , " z11 " , " z12 " )

z<−data . frame ( z )

data1 <−data . frame ( cbind ( vec , z ) ) cor ( data1 )

y <− data1 [ , 1 ] x <− as . matrix ( data1 [ , −1])

data <− data . frame ( y , x )

data1 <−~data

normalize <− funct ion ( x ) {
re turn ( ( x − min ( x ) ) / (max( x ) − min ( x ) ) )
}

data2 <− as . data . frame ( lapply ( data1 , normalize ) )

head ( data2 ) nrow ( data2 )

###### # Simulat ion setup I I # M u l t i v a r i a t e normal d i s t r i b u t i o n ,
Copula and Binary case ( case 2) # Mixed simulat ion data ####

rPCA <−funct ion ( n . obs ) {
Sigma <− matrix ( c ( 1 , 0 . 9 , 0 . 2 , 0 . 1 , 0 . 9 , 1 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 4 , 1 , 0 . 7 , 0 . 1 , 0 . 3 , 0 . 7 , 1 ) ,
4 , 4 )
X <− rmvnorm ( n . obs , c ( 1 : 4 ) , Sigma )
re turn (X)
}

## Generate a sample from the copula , which w i l l be~transformed

## to pseudo−observat ions in ’C . n ( ) ’

n <−~1000

s e t . seed ( 6 1 )

d<−30

cc <− claytonCopula ( 8 , dim=d ) # Clayton Copula~simulat ion

pca0 <−rPCA( n . obs = n )

vec0 <− round ( rCopula ( n , copula = cc ) * 1 0 , 0 )

vec1 <− round ( r u n i f ( n , 0 , 1 ) )

vec2 <− round ( r u n i f ( n , 0 , 1 ) )

vec3 <− round ( r u n i f ( n , 0 , 1 ) )

vec4 <− round ( r u n i f ( n , 0 , 1 ) )

vec5 <− round ( r u n i f ( n , 0 , 1 ) )

vec6 <− round ( r u n i f ( n , 0 , 1 ) )

x<−data . frame ( cbind ( pca0 , vec0 , vec1 , vec2 , vec3 , vec4 , vec5 , vec6 ) )

z <− rpois ( n , lambda = 2)

data0 <−data . frame ( z , x )
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fm <− glm ( z ~ . , data = data0 , family =" poisson " )

beta <−as . numeric ( coef ( fm ) )

xmat <− as . matrix ( cbind ( rep ( 1 , n ) , x ) )

lambda <− exp ( beta %*% t ( xmat ) )

y <− rpois ( n , lambda = lambda )

data <− data . frame ( y , x )

data1 <−~data

normalize <− funct ion ( x ) {
re turn ( ( x − min ( x ) ) / (max( x ) − min ( x ) ) )
}

data2 <− as . data . frame ( lapply ( data1 , normalize ) )

head ( data2 ) nrow ( data2 )

### Computation~Pa r t s

RMSE.DL = NULL
RMSE.NN = NULL
RMSE. DL_k = NULL
RMSE. POI = NULL
RMSE.NB = NULL
RMSE. zeroPOI<−NULL
RMSE. gbm <−~NULL

############ ( 1 ) DNN_neuralnet ############

k = 1000
samplesize = 0 . 8 0 * nrow ( data2 )

f o r ( i in 1 : k ) {
s e t . seed ( i )
index = sample ( 1 : nrow ( data2 ) , samplesize )

trainNN = data2 [ index , ]
testNN = data2 [ − index , ]
d a t a t e s t = data2 [ − index , ]

x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]

{ # 4 . NEURAL NETWORK
l i b r a r y ( neura lnet )
dl <− neuralnet ( y ~ . , data=trainNN , hidden=c ( 2 , 2 ) , a c t . f c t = " l o g i s t i c " , l i n e a r . output=TRUE, threshold =1)
dl . r e s u l t s <− compute ( dl , testNN )
d l r e s u l t s <− data . frame ( a c t u a l = testNN$y , p r e d i c t i o n = dl . r e s u l t s $ n e t . r e s u l t )
# r e s u l t s

predic teddl= d l r e s u l t s $ p r e d i c t i o n * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )
a c t u a l d l = d l r e s u l t s $ a c t u a l * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )

# predic ted= r e s u l t s $ p r e d i c t i o n
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# a c t u a l = r e s u l t s $ a c t u a l

RMSE.DL[ i ]<− s q r t ( ( sum( ac tua ld l −predic teddl )^2)/ length ( a c t u a l d l ) )

nn <− neuralnet ( y ~ . , data=trainNN , hidden =2 , a c t . f c t = " l o g i s t i c " , l i n e a r . output=TRUE, threshold =1)
# nn$resul t . matrix
# p l o t ( nn )

# nn$resul t . matrix

nn . r e s u l t s <− compute ( nn , testNN )
r e s u l t s <− data . frame ( a c t u a l = testNN$y , p r e d i c t i o n = nn . r e s u l t s $ n e t . r e s u l t )
# r e s u l t s

predic ted= r e s u l t s $ p r e d i c t i o n * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )
a c t u a l = r e s u l t s $ a c t u a l * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )

RMSE.NN[ i ]<− s q r t ( ( sum( actual −predic ted )^2)/ length ( a c t u a l ) )

}

############ ( 2 ) PCA_poi ############

pca <− prcomp ( data [ , − 1 ] , s c a l e = F ) #pca <− princomp ( data [ , − 1 ] , cor
= F , s c o r e s = TRUE) l i b r a r y ( f a c t o e x t r a ) f v i z _ e i g ( pca ) y<−data [ , 1 ]
data . pca <− data . frame ( y , pca$x [ , 1 : 5 ] )

f o r ( i in 1 : k ) {
s e t . seed ( i )
index = sample ( 1 : nrow ( data . pca ) , samplesize )

trainNN = data . pca [ index , ]
testNN = data . pca [ − index , ]
d a t a t e s t = data . pca [ − index , ]

x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]

# F i t Poisson model
glmpoisson <−glm ( y ~ . , data=trainNN , family =" poisson " )

y_hat <− exp ( glmpoisson$coef [1 ]+ glmpoisson$coef [−1]%*% t ( x_te ) )

RMSE. POI [ i ]<− s q r t ( ( sum( y_te −y_hat )^2)/ length ( y_te ) )

}

############ ( 3 ) PCA_zlp ############

l i b r a r y ( " p s c l " )

f o r ( i in 1 : k ) {
s e t . seed ( i )
index = sample ( 1 : nrow ( data . pca ) , samplesize )

trainNN = data . pca [ index , ]
testNN = data . pca [ − index , ]



Axioms 2022, 11, 280 15 of 18

d a t a t e s t = data . pca [ − index , ]

x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]

# F i t Poisson model
glmzeropoisson <− z e r o i n f l ( y ~ . , d i s t = ’ poisson ’ , data=trainNN )

predic t_zero <− p r e d i c t ( glmzeropoisson , x_te )

resul tzeroPOI <− data . frame ( a c t u a l = y_te , p r e d i c t i o n = p r ed ic t _z er o )

predictedzeroPOI=r e s u l t z e r o P O I $ p r e d i c t i o n
actualzeroPOI=r e s u l t z e r o P O I $ a c t u a l

RMSE. zeroPOI [ i ]<− s q r t ( ( sum( actualzeroPOI −predictedzeroPOI )^2)/ length ( actualzeroPOI ) )

}

############ ( 4 ) PCA_nb ############

f o r ( i in 1 : k ) {
s e t . seed ( i )
index = sample ( 1 : nrow ( data . pca ) , samplesize )

trainNN = data . pca [ index , ]
testNN = data . pca [ − index , ]
d a t a t e s t = data . pca [ − index , ]

x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]

# F i t Poisson model
glmNB1<−glm . nb ( y ~ . , data=trainNN )

y_hat <− exp ( glmNB1$coef [1 ]+ glmNB1$coef[−1]%*% t ( x_te ) )

RMSE.NB[ i ]<− s q r t ( ( sum( y_te −y_hat )^2)/ length ( y_te ) )

}

############ ( 5 ) DNN_keras ############

data2 <− as . matrix ( data2 )

f o r ( i in 1 : k ) {

s e t . seed ( i )
index = sample ( 1 : nrow ( data2 ) , samplesize )

trainNN = data2 [ index , ]
testNN = data2 [ − index , ]
# d a t a t e s t = data [ − index , ]
x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]
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k _ c l e a r _ s e s s i o n ( )
use_sess ion_with_seed ( 1 2 3 )
model <− keras_model_sequentia l ( ) %>%
layer_dense ( uni t = 2 , input_shape=dim ( x _ t r ) [ 2 ] , a c t i v a t i o n = ’ sigmoid ’ ) %>%
layer_dense ( uni t = 2 , a c t i v a t i o n = ’ sigmoid ’ ) %>%
layer_dense ( uni t = 1)

model

model %>% compile (
l o s s = ’ mean_squared_error ’ ,
opt imizer = optimizer_nadam ( l r = 0 . 0 0 3 )
)

c a l l b a c k s _ l i s t = l i s t (
c a l l b a c k _ e a r l y _ s t o p p i n g (
monitor = " v a l _ l o s s " ,
min_delta = 0 . 0 0 0 0 0 5 ,
pat ience = 15
) ,
ca l lback_reduce_ l r_on_pla teau (
monitor = " v a l _ l o s s " ,
f a c t o r = 0 . 2 ,
verbose = 0 ,
min_lr = 0
)
)

use_sess ion_with_seed ( 1 2 3 )
h i s t o r y <− model %>% f i t ( x_tr , y_tr ,
b a t c h _ s i z e = nrow ( x _ t r )/6 , epochs = 2000 , verbose = 0 , c a l l b a c k s = c a l l b a c k s _ l i s t ,
v a l i d a t i o n _ s p l i t = 0 . 2 5 )

y_te_k <− model %>% p r e d i c t ( x_te )

predic teddl_k=y_te_k * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )
ac tua l d l_k = y_te * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )

RMSE. DL_k [ i ] <− s q r t ( ( sum( actualdl_k −predic teddl_k )^2)/ length ( ac tu a ld l_k ) )

}

wri te . csv (RMSE. DL_k , " . /RMSE. DL_k_gumbel . csv " )

l i b r a r y (gbm)

############ Gradient Boosting Machine ############

k = 1000
samplesize = 0 . 8 0 * nrow ( data2 )

f o r ( i in 1 : k ) {

s e t . seed ( i )
index = sample ( 1 : nrow ( data2 ) , samplesize )

trainNN = data2 [ index , ]
testNN = data2 [ − index , ]
# d a t a t e s t = data [ − index , ]
x _ t r <− trainNN [ , −1]
y_ t r <− trainNN [ , 1 ]
x_te <− testNN [ , −1]
y_te <− testNN [ , 1 ]

gbm1 <− gbm(
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formula = y ~ . ,
d i s t r i b u t i o n = " gaussian " ,
data = trainNN ,
var . monotone = NULL,
n . t r e e s = 200 ,
i n t e r a c t i o n . depth = 3 ,
n . minobsinnode = 10 ,
shrinkage = 0 . 1 ,
bag . f r a c t i o n = 0 . 5 ,
t r a i n . f r a c t i o n = 0 . 8 ,
cv . f o l d s = 5 ,
keep . data = TRUE,
verbose = FALSE ,
n . cores = NULL
)

y_hat = p r e d i c t (gbm1 , x_te , n . t r e e s =100 , type = " l i n k " , s i n g l e . t r e e = FALSE)

predicted_gbm = y_hat * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )
actual_gbm = y_te * (max( data1$y ) −min ( data1$y ) ) + min ( data1$y )

RMSE. gbm[ i ]<− s q r t ( ( sum( actual_gbm −predicted_gbm )^2)/ length ( actual_gbm ) )

}

################# Vi o l in P l o t s #################

x1 <− RMSE.DL x2 <− RMSE.NN x3 <− RMSE. DL_k x4 <− RMSE. gbm x5 <−
RMSE. POI x6 <− RMSE. zeroPOI x7 <−~RMSE.NB

l i b r a r y ( v i o p l o t ) v i o p l o t ( x1 , x2 , x3 , x4 , x5 , x6 , x7 ,
names=c ( "DL" , "NN" , "DLk" , "GBM" , " POI " , " ZIP " , "NB"
) ,
ylab = "RMSE" , c o l =" gold " )

t i t l e ( "RMSE f o r Speeding T i c k e t s " )

# t i t l e ( "RMSE f o r Singapore Automobile Claims " )

# t i t l e ( "RMSE f o r Simulated M u l t i v a r i a t e Normal Data " )

# t i t l e ( " Normal , Binary and Clayton Copula Data " )
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