



# Article On *r*-Ideals and *m*-*k*-Ideals in *BN*-Algebras

Sri Gemawati<sup>1,\*</sup>, Musnis Musraini<sup>1</sup>, Abdul Hadi<sup>1</sup>, La Zakaria<sup>2</sup> and Elsi Fitria<sup>1</sup>

- <sup>1</sup> Department of Mathematics, Faculty of Mathematics and Sciences, University of Riau, Pekanbaru 28293, Indonesia; musraini@lecturer.unri.ac.id (M.M.); abdul.hadi@unri.ac.id (A.H.); elsi.fitria8244@grad.unri.ac.id (E.F.)
- <sup>2</sup> Department of Mathematics, Faculty of Mathematics and Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia; lazakaria.1969@fmipa.unila.ac.id

\* Correspondence: sri.gemawati@lecturer.unri.ac.id

**Abstract:** A *BN*-algebra is a non-empty set *X* with a binary operation "\*" and a constant 0 that satisfies the following axioms: (*B*1) x \* x = 0, (*B*2) x \* 0 = x, and (*BN*) (x \* y) \* z = (0 \* z) \* (y \* x) for all  $x, y, z \in X$ . A non-empty subset *I* of *X* is called an ideal in *BN*-algebra *X* if it satisfies  $0 \in X$  and if  $y \in I$  and  $x * y \in I$ , then  $x \in I$  for all  $x, y \in X$ . In this paper, we define several new ideal types in *BN*-algebras, namely, *r*-ideal, *k*-ideal, and *m*-*k*-ideal. Furthermore, some of their properties are constructed. Then, the relationships between ideals in *BN*-algebra with *r*-ideal, *k*-ideal, and *m*-*k*-ideal properties are investigated. Finally, the concept of *r*-ideal homomorphisms is discussed in *BN*-algebra.

Keywords: ideal; r-ideal; k-ideal; m-k-ideal; BN-algebra; homomorphism



Citation: Gemawati, S.; Musraini, M.; Hadi, A.; Zakaria, L.; Fitria, E. On *r*-Ideals and *m*-*k*-Ideals in *BN*-Algebras. *Axioms* **2022**, *11*, 268. https://doi.org/10.3390/ axioms11060268

Academic Editors: Eunsuk Yang and Xiaohong Zhang

Received: 10 April 2022 Accepted: 26 May 2022 Published: 2 June 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

# 1. Introduction

J. Neggers and H.S. Kim introduced the *B*-algebra, which is a non-empty set *X* with a binary operation \* and a constant 0, denoted by (X; \*, 0), that fulfills the axioms (*B*1) x \* x = 0, (*B*2) x \* 0 = x, and (*B*3) (x \* y) \* z = x \* (z \* (0 \* y)) for all  $x, y, z \in X$  (see [1]). H.S. Kim and H.G. Park discuss a special form of *B*-algebra, called 0-commutative *B*-algebra, which also satisfies a further axiom, namely, x \* (0 \* y) = y \* (0 \* x) for all  $x, y \in X$  (see [2]). Furthermore, C. B. Kim constructed the related *BN*-algebra, which is an algebra (X; \*, 0) that satisfies axioms (*B*1) and (*B*2), as well as (*BN*) (x \* y) \* z = (0 \* z) \* (y \* x) for all  $x, y, z \in X$  (see [3]). For example, let  $X = \{0, 1, 2\}$  be a set with a binary operation "\*" on *X* as shown in Table 1.

**Table 1.** Cayley's table for (X; \*, 0).

| * | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 1 | 2 |
| 1 | 1 | 0 | 1 |
| 2 | 2 | 1 | 0 |

Then, (X; \*, 0) is a *BN*-algebra.

A *BN*-algebra (X; \*,0) that satisfies (x \* y) \* z = x \* (z \* y) for all  $x, y, z \in X$  is said to be a *BN*-algebra with condition *D*. A. Walendziak introduced another special form of *BN*-algebra, namely, a *BN*<sub>1</sub>-algebra, which is a *BN*-algebra (X; \*,0) that satisfies x = (x \* y) \* y for all  $x, y \in X$  (see [4]). Furthermore, the new *QM*-*BZ*-algebras were proposed by Y. Du and X. Zhang (see [5]). The relationship between *B*-algebra and *BN*-algebra is that every 0-commutative *B*-algebra is a *BN*-algebra, and a *BN*-algebra with condition *D* is a *B*-algebra. The relationship between a *BN*-algebra and other algebras can be seen in Figure 1.

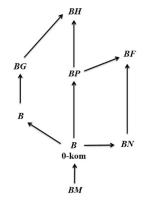


Figure 1. The relationship of BN-algebra with other algebras.

In 2017, E. Fitria et al. discussed the concept of prime ideals in *B*-algebras, which produces a definition and various prime ideals and their properties in *B*-algebras, including that a non-empty subset *I* is said to be ideal in a *B*-algebra *X* if it satisfies  $0 \in X$  and if  $y \in I$ ,  $x * y \in I$  applies to  $x \in I$  for all  $x, y \in X$  (see [6]). Moreover, *I* is called a prime ideal of *X* if it satisfies  $A \cap B \subseteq I$ ; then,  $A \subseteq I$  or  $B \subseteq I$  for all *A* and *B* are two ideals in *X*. The concept of the ideal was also discussed in *BN*-algebras by G. Dymek and A. Walendziak, and the resulting definition of an ideal in *BN*-algebras is the same as in *B*-algebras, but their properties differ (see [7]).

In [3], the definition of a homomorphism in *BN*-algebras was given: for two *BN*-algebras (X; \*, 0) and (Y; \*, 0), a mapping  $\varphi : X \to Y$  is called a homomorphism of X to Y if it satisfies  $\varphi(x * y) = \varphi(x) * \varphi(y)$  for all  $x, y \in X$ . In [7], G. Dymek and A. Walendziak stated that the kernel of  $\varphi$  is an ideal of X. In addition, G. Dymek and A. Walendziak also investigated the kernel by letting X and Y be a *BN*-algebra and a *BM*-algebra, respectively, such that the kernel  $\varphi$  is a normal ideal. The concepts of ideals are also discussed in [8].

In 2020, S. Gemawati et al. discussed the concept of a complete ideal (briefly, *c*-ideal) of *BN*-algebra and introduced the concept of an *n*-ideal in *BN*-algebra (see [9]). From this research, several interesting properties were obtained that showed the relationship between an ideal, *c*-ideal, and *n*-ideal, as well as the relationship between a subalgebra and a normal with a *c*-ideal and *n*-ideal in *BN*-algebras. The research also discussed the concepts of a *c*-ideal and *n*-ideal in a homomorphism of *BN*-algebra and *BM*-algebra. In 2016, M. A. Erbay et al. defined the concept of an *r*-ideal in commutative semigroups (see [10]). Furthermore, M. M. K. Rao defined the concept of an *r*-ideal and *m*-k-ideal in an incline (see [11]). An incline is a non-empty set *M* with two binary operations, addition (+) and multiplication (·), satisfying certain axioms. For example, let M = [0, 1] be subject to a binary operation "+" defined by  $a + b = \max\{a, b\}$  for all  $a, b \in M$ , and multiplication defined from the concepts of an *r*-ideal and *m*-k-ideal in an incline, such as a relationship between an ideal, *r*-ideal, and *m*-k-ideal in an incline, as well as properties of these ideals in a homomorphism of incline.

Based on this description, the concepts of an *r*-ideal, a *k*-ideal, and a *m*-*k*-ideal in *BN*-algebras are discussed and their properties determined, followed by the properties of homomorphism in *BN*-algebras.

# 2. Preliminaries

In this section, some definitions that are needed to construct the main results of the study are given. We start with some definitions and theories about *B*-algebra and *BN*-algebra. Then, we give the concepts of an *r*-ideal in a semigroup, and a *k*-ideal and *m*-*k*-ideal in an incline, as discussed in [1-4,6,10,11].

**Definition 1** ([1]). *A B*-algebra is a non-empty set *X* with a constant0 and a binary operation "\*" that satisfies the following axioms for all  $x, y, z \in X$ :

(B1) x \* x = 0;(B2) x \* 0 = x;(B3) (x \* y) \* z = x \* (z \* (0 \* y)).

**Definition 2** ([3]). A BN-algebra is a non-empty set X with a constant0 and a binary operation "\*" that satisfies axioms (B1) and (B2), as well as (BN) (x \* y) \* z = (0 \* z) \* (y \* x), for all x, y,  $z \in X$ .

**Theorem 1** ([3]). Let (X; \*, 0) be a BN-algebra, then for all  $x, y, z \in X$ :

- (*i*) 0 \* (0 \* x) = x;
- (*ii*) y \* x = (0 \* x) \* (0 \* y)
- (*iii*) (0 \* x) \* y = (0 \* y) \* x;
- (*iv*) If x \* y = 0, then y \* x = 0;
- (v) If 0 \* x = 0 \* y, then x = y;
- (vi) (x\*z)\*(y\*z) = (z\*y)\*(z\*x).

Let (X; \*, 0) be an algebra. A non-empty set *S* is called a subalgebra or *BN*-subalgebra of *X* if it satisfies  $x * y \in S$  for all  $x, y \in S$ , and a non-empty set *N* of *X* is called normal in *X* if it satisfies  $(x * a) * (y * b) \in N$  for all x \* y,  $a * b \in N$ . Let (X; \*, 0) and (Y; \*, 0) be *BN*-algebras. A map  $\varphi : X \to Y$  is called a homomorphism of *X* to *Y* if it satisfies  $\varphi(x * y) = \varphi(x) * \varphi(y)$  for all  $x, y \in X$ . A homomorphism of *X* to itself is called an endomorphism.

**Definition 3** ([7]). A non-empty subset I of BN-algebra X is called an ideal of X if satisfies (*i*)  $0 \in I$ ;

(*ii*)  $x * y \in I$  and  $y \in I$  implies  $x \in I$ , for all  $x, y \in X$ .

An ideal *I* of a *BN*-algebra *X* is called a closed ideal if  $a * b \in I$  for all  $a, b \in I$ . In the following, some properties of ideals in *BN*-algebra are as given in [7].

**Proposition 1.** If I is a normal ideal in BN-algebra A, then I is a subalgebra of A.

**Proposition 2.** Let A be a BN-algebra and  $S \subseteq A$ . S is a normal subalgebra of A if and only if S is a normal ideal.

**Definition 4** ([3]). An algebra (X; \*, 0) is called 0-commutative if, for all  $x, y \in X$ ,

$$x * (0 * y) = y * (0 * x).$$

A semigroup is a non-empty set *G*, together with an associative binary operation, we can write  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$  for all *x*, *y*, *z*  $\in$  *G*. An ideal of semigroup *G* is a subset *A* of *G* such that *A*  $\cdot$  *G* and *G*  $\cdot$  *A* is contained in *G*. Any element *x* of *G* is a zero divisor if  $ann(x) = \{g \in G : g \cdot x = 0\} \neq 0$ .

**Definition 5** ([10]). Let *G* be a semigroup. A proper ideal *A* of *G* is said to be an *r*-ideal of *G* if when  $x \cdot y \in A$  with ann(x) = 0, then  $y \in A$  for all  $x, y \in G$ .

**Definition 6** ([11]). *An incline is a non-empty set* M *with two binary operations, namely, addition* (+) *and multiplication* (·), *satisfying the following axioms for all*  $x, y, z \in X$ :

- (*i*) x + y = y + x;
- (*ii*) x + x = x;
- (*iii*) x + xy = x;
- $(iv) \quad y + xy = y;$
- (v) x + (y + z) = (x + y) + z;

(x) x + 0 = 0 + x = x.

A subincline of an incline *M* is a non-empty subset *I* of *M* that is closed under addition and multiplication. Note that  $x \le y$  iff x + y = y for all  $x, y \in M$ .

**Definition 7** ([11]). *Let* M *be an incline and* I *a subincline of* M. I *is called an ideal of* M *if when*  $x \in I, y \in M$ , and  $y \leq x$ , then  $y \in I$ .

**Definition 8** ([11]). Let M be an incline and I a subincline of M. I is said to be a left r-ideal of M if  $MI \subseteq I$  and I is said to be a right r-ideal of M if  $IM \subseteq I$ . If I is a left and right r-ideal of M, then I is called an r-ideal of M.

**Definition 9** ([11]). *Let* M *be an incline and* I *be a subincline of* M. I *is said to be a* k*-ideal of* M *if when*  $x + y \in I$  *and*  $y \in I$ , *then*  $x \in I$ .

**Definition 10** ([11]). *Let* M *be an incline and* I *be an ideal of* M. I *is said to be an* m*-k-ideal of* M *if*  $xy \in I$ ,  $x \in I$ , and  $1 \neq y \in M$ , then  $y \in I$ .

#### 3. *r*-Ideal in *BN*-Algebra

In this section, the main results of the study are given. Starting from the definition of an *r*-ideal in *BN*-algebras, which was constructed based on the concept of *r*-ideal in a semigroup. Then, some properties of *r*-ideals in *BN*-algebras are investigated.

**Definition 11.** Let (X; \*, 0) be a BN-algebra and I be a proper ideal of X. I is called an r-ideal of X if when  $x * y \in I$  and 0 \* x = 0, then  $y \in I$  for all  $x, y \in X$ .

**Example 1.** Let  $A = \{0, 1, 2, 3\}$  be a set. Define a binary operation " \*" with the Table 2.

**Table 2.** Cayley's table for (A; \*, 0).

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 0 | 1 | 1 |
| 2 | 2 | 1 | 0 | 1 |
| 3 | 3 | 1 | 1 | 0 |

Then, (A; \*, 0) is a *BN*-algebra. We obtain that  $I_1 = \{0, 2\}$ ,  $I_2 = \{0, 3\}$ , and  $I_3 = \{0, 2, 3\}$  are *r*-ideals in *A*.

In the following, the properties of an *r*-ideal in *BN*-algebras are given.

**Theorem 2.** Let (X; \*, 0) be a BN-algebra. If I is a closed ideal of X, then I is an r-ideal of X.

**Proof.** Since *I* is an ideal of *X*, then  $0 \in I$ ; furthermore, if  $y \in I$  and  $x * y \in I$ , then  $x \in I$  for all  $x, y \in X$ . Let  $x * y \in I$  and 0 \* x = 0 for all  $x, y \in X$ . Since *I* is closed, if we can prove that  $x \in I$ , then it shows that  $y \in I$ . By Theorem 1 (ii) and Axiom B2, we obtain

$$x * y = (0 * y) * (0 * x) = (0 * y) * 0 = 0 * y$$
(1)

Furthermore, by (1), Theorem 1 (i), and by all axioms of BN-algebra, we obtain

$$y * x = (y * x) * 0 = (0 * 0) * (x * y) = 0 * (0 * y) = y$$
<sup>(2)</sup>

By (1) and (2), we obtain  $x = 0 \in I$ . Thus, we obtain  $y \in I$ . Therefore, *I* is an *r*-ideal of *X*.  $\Box$ 

The converse of Theorem 2 does not hold in general. In Example 1,  $I_1$  and  $I_2$  are two closed ideals in A, and thus,  $I_1$  and  $I_2$  are clearly r-ideals. Meanwhile,  $I_3 = \{0, 2, 3\}$  is an ideal in A, but it is not a closed ideal. However,  $I_3$  is an r-ideal in A. It should be noted that not all ideals are r-ideals. To be clear, consider the following example.

**Example 2.** Let  $X = (\mathbb{Z}; -, 0)$  be a set of integers  $\mathbb{Z}$  with a subtraction operation. Then, X is a BN-algebra. Let subset  $\mathbb{Z}^+$  of X be positive integers, then  $I = \mathbb{Z}^+ \cup \{0\}$  is an ideal of X, but I is not a closed ideal and it is not an r-ideal of X.

**Theorem 3.** Let (X; \*, 0) be a BN-algebra. If I is a normal ideal of X, then I is a normal r-ideal of X.

**Proof.** Since *I* is a normal ideal of *X*, then, by Proposition 1, we have that *I* is a *BN*-subalgebra of *X*, which for all  $x, y \in I, x * y \in I$  implies that *I* is closed. Furthermore, by Theorem 2, we obtain that *I* is an *r*-ideal of *X*. Since *I* is normal, then *I* is a normal *r*-ideal of *X*.  $\Box$ 

**Theorem 4.** Let (X; \*, 0) be a BN-algebra and f be an endomorphism of X. If I is an r-ideal of X, then f(I) is an r-ideal of X.

**Proof.** Let *I* be an *r*-ideal of *X*, *then* clearly  $I \subset X$  and *I* is a proper ideal of *X* such that  $0 \in I$  and  $f(I) \subset X$ . Since *f* is an endomorphism of *X* and by Axiom *B1*, for all  $x \in I$ , we obtain

$$f(0) = f(x * x) = f(x) * f(x) = 0 \in I.$$

Let  $f(y) \in f(I)$  and  $f(x * y) \in f(I)$ . Since *I* is an ideal of *X*, then  $x \in I$ ; consequently,  $f(x) \in f(I)$ . Thus, f(I) is an ideal of *X*. Let  $f(x * y) \in f(I)$  and 0 \* f(x) = 0. Since *I* is an *r*-ideal of *X*, then  $y \in I$  implies  $f(y) \in f(I)$ . Therefore, f(I) is an *r*-ideal of *X*.  $\Box$ 

The converse of Theorem 4 does hold in general.

**Corollary 1.** Let (X; \*, 0) be a BN-algebra and f be an endomorphism of X. If I is a closed r-ideal of X, then f(I) is a closed r-ideal of X.

**Proof.** Follows directly from Theorem 4.  $\Box$ 

**Example 3.** Let  $A = \{0, 1, 2, 3\}$  be aBN-algebra in Example 1. Define a map  $f : A \to A$  by

$$f(x) = \begin{cases} 0 \text{ if } x = 0\\ 1 \text{ if } x = 1\\ 3 \text{ if } x = 2\\ 2 \text{ if } x = 3 \end{cases}$$

Then, *f* is an endomorphism. By Example 1, we obtain that  $I_1 = \{0, 2\}$ ,  $I_2 = \{0, 3\}$ , and  $I_3 = \{0, 2, 3\}$  are *r*-ideals in *A*. It easy to check that  $f(I_1) = \{0, 3\}$  and  $f(I_2) = \{0, 2\}$  are two closed *r*-ideals of *A*. However,  $f(I_3) = \{0, 2, 3\}$  is an *r*-ideal of *A*, but it is not closed.

## 4. *m-k*-Ideals in *BN*-Algebras

This section gives the main results of the study. We start by defining the concepts of *k*-ideal and *m*-*k*-ideal in a *BN*-algebra, which is constructed based on the concept of a

*k*-ideal and *m*-*k*-ideal in an incline. The properties of *k*-ideals and *m*-*k*-ideals in a *BN*-algebra are given.

**Definition 12.** Let (X; \*, 0) be a BN-algebra and I be a BN-subalgebra of X. I is called a k-ideal in X if when  $y \in I$ ,  $x \in X$ , and  $x * y \in I$ , then  $x \in I$ .

**Example 4.** Let  $B = \{0, 1, 2, 3, 4, 5, 6, 7\}$  be a set. Define a binary operation " \*" with the Table 3.

| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 |
| 2 | 2 | 3 | 0 | 1 | 6 | 7 | 4 | 5 |
| 3 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 4 | 7 | 6 | 1 | 0 | 3 | 2 |
| 6 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
| 7 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|   |   |   |   |   |   |   |   |   |

**Table 3.** Cayley's table for (*B*; \*, 0).

Then (B; \*, 0) is a *BN*-algebra. It is easy to check that  $I_1 = \{0, 1\}$ ,  $I_2 = \{0, 2\}$ ,  $I_3 = \{0, 3\}$ ,  $I_4 = \{0, 4\}$ ,  $I_5 = \{0, 5\}$ ,  $I_6 = \{0, 6\}$ ,  $I_7 = \{0, 7\}$ , and  $I_8 = \{0, 1, 2, 3\}$  are closed ideals in *B* and also *BN*-subalgebras in *B*. Thus, we can prove that they are *k*-ideals in *B*.

Some properties of a *k*-ideal in *BN*-algebras are given.

**Theorem 5.** Let (X; \*, 0) be a BN-algebra. If I is a closed ideal of X, then I is a k-ideal of X.

**Proof.** Let (X; \*, 0) be a *BN*-algebra. Let *I* be a closed ideal of *X*. Then, *I* is a *BN*-subalgebra of *X*, and if  $y \in I$ ,  $x \in X$ , and  $x * y \in I$ , then  $x \in I$ . Therefore, *I* is a *k*-ideal of *X*.  $\Box$ 

**Theorem 6.** Let (X; \*, 0) be a BN-algebra. If I is a k-ideal of X, then I is a closed ideal of X.

**Proof.** Let (X; \*, 0) be a *BN*-algebra. Since *I* is a *k*-ideal of *X*, then *I* is a *BN*-subalgebra of *X*. Consequently, *I* is closed and for all  $x \in I$ ,  $x * x = 0 \in I$ . Moreover, since *I* is a *k*-ideal of *X* that is obtained when  $y \in I$ ,  $x \in X$ , and  $x * y \in I$ , then  $x \in I$ . Thus, *I* is a closed ideal of *X*.  $\Box$ 

**Corollary 2.** Let (X; \*, 0) be a BN-algebra. I is a closed ideal of X if and only if I is a k-ideal of X.

**Proof.** Follows directly from Theorems 5 and 6.  $\Box$ 

**Theorem 7.** Let (X; \*, 0) be a BN-algebra. If N is a normal BN-subalgebra of X, then N is a normal k-ideal of X.

**Proof.** Since *N* is a normal *BN*-subalgebra of *X*, then, by Proposition 2, it is obtained that *N* is a normal ideal of *X*. We know that *N* is a *BN*-subalgebra such that it is a closed ideal of *X*. Consequently, by Theorem 5, it is obtained that *N* is a *k*-ideal of *X*. Since *N* is normal, then *N* is a normal *k*-ideal of *X*.  $\Box$ 

**Definition 13.** Let (X; \*, 0) be a BN-algebra and I be an ideal of X. I is called an *m*-k-ideal of X if when  $x \in I$ ,  $0 \neq y \in X$ , and  $x * y \in I$ , then  $y \in I$ .

**Theorem 8.** Let (X; \*, 0) be a BN-algebra. If I is a k-ideal of X, then I is an m-k-ideal.

**Proof.** Let (X; \*, 0) be a *BN*-algebra. Since *I* is a *k*-ideal of *X*, then by Theorem 6, *I* is a closed ideal of *X* such that if  $y \in I$ ,  $x \in X$ , and  $x * y \in I$ , then  $x \in I$ . Furthermore, since *I* is closed, it must be the case that if  $x \in I$ ,  $0 \neq y \in X$ , and  $x * y \in I$ , then  $y \in I$ . Hence, we prove that *I* is an *m*-*k*-ideal of *X*.  $\Box$ 

The converse of Theorem 8 does not hold in general. Let  $A = \{0, 1, 2, 3\}$  be a *BN*-algebra in Example 1. It is easy to check that  $I_1 = \{0, 2\}$  and  $I_2 = \{0, 3\}$  are *k*-ideals and *m*-*k*-ideals of *A*. Meanwhile,  $I_3 = \{0, 2, 3\}$  is an *m*-*k*-ideal in *A*, but  $I_3$  is not *k*-ideal because it is not a *BN*-subalgebra of *A*.

**Theorem 9.** Let (X; \*, 0) be a BN-algebra. If I is a closed ideal of X, then I is an m-k-ideal.

**Proof.** Follows directly from Theorems 5 and 8.  $\Box$ 

**Theorem 10.** Let (X; \*, 0) be a BN-algebra. If I is a k-ideal of X, then I is an r-ideal.

**Proof.** Since *I* is a *k*-ideal of *X*, by Theorem 6, we obtain that *I* is a closed ideal of *X* such that by Theorem 2, we obtain that *I* is an *r*-ideal of *X*.  $\Box$ 

The converse of Theorem 10 does not hold in general since, in Example 1, we have  $I_3$  as an *r*-ideal in *A*, but it is not a *k*-ideal.

**Theorem 11.** Let (X; \*, 0) be a BN-algebra. If I is a closed r-ideal of X, then I is a k-ideal.

**Proof.** Since *I* is an *r*-ideal of *X*, clearly *I* is a proper ideal of *X*. Since *I* is closed, then by Theorem 5, we obtain that *I* is a *k*-ideal of *X*.  $\Box$ 

By Theorem 10, we know that the converse of Theorem 11 does hold in general. In Example 1,  $I_1$  and  $I_2$  are two closed *r*-ideals in *A* and also *k*-ideals.

**Proposition 3.** Let (X; \*, 0) be a BN-algebra and f be an endomorphism of X. If I is a k-ideal of X, then f(I) is an r-ideal of X.

**Proof.** Follows directly from Theorems 4 and 10.  $\Box$ 

The converse of Proposition 3 does not hold in general.

**Proposition 4.** Let (X; \*, 0) be a BN-algebra and f be an endomorphism of X. If f(I) is a closed r-ideal of X, then I is a k-ideal of X.

**Proof.** Follows directly from Corollary 1 and Theorem 11.  $\Box$ 

### 5. Conclusions and Future Work

In this paper, we defined the concepts of an *r*-ideal, *k*-ideal, and *m*-*k*-ideal in *BN*-algebras and investigated several properties. We obtained the relationships between a closed ideal, *r*-ideal, *k*-ideal, and *m*-*k*-ideal in a *BN*-algebra. Some of its properties are every closed ideal in *BN*-algebras is an *r*-ideal, a *k*-ideal, and an *m*-*k*-ideal. Every *k*-ideal is an *r*-ideal and an *m*-*k*-ideal of *BN*-algebras. Moreover, if *I* is an *r*-ideal or *k*-ideal of a *BN*-algebra, then f(I) is an *r*-ideal, where *f* is an endomorphism of the *BN*-algebra.

We did this research to build complete concepts of an *r*-ideal, *k*-ideal, and *m*-*k*-ideal in *BN*-algebras. These results can be used by researchers in the field of abstract algebra to discuss more deeply about types of ideals in *BN*-algebras.

In future work, we will consider the concept of an *r*-ideal and *m*-*k*-ideal in *QM*-*BZ*-algebra and quasi-hyper *BZ*-algebra, investigating several properties and the relationship between an *r*-ideal and *m*-*k*-ideal in a *QM*-*BZ*-algebra and quasi-hyper *BZ*-algebra.

**Author Contributions:** Created and conceptualized ideas, S.G.; writing—original draft preparation, S.G., M.M. and A.H.; writing—review and editing, A.H., L.Z. and E.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by DIPA LPPM Universitas Riau, 699/UN.19.5.1.3/PT.01.03/2021.

Acknowledgments: The authors wish to thank the anonymous reviewers for their valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

# References

- 1. Neggers, J.; Kim, H.S. On B-algebras. Mat. Vesn. 2002, 54, 21–29.
- 2. Kim, H.S.; Park, H.G. On 0-commutative B-algebras. Sci. Math. Jpn. 2015, 18, 31–36.
- 3. Kim, C.B. On BN-algebras. *Kyungpook Math.* 2013, 53, 175–184. [CrossRef]
- 4. Walendziak, A. Some results on BN<sub>1</sub>-algebras. *Sci. Math. Jpn. 78* **2015**, *3*, 335–342.
- 5. Du, Y.; Zhang, X. QM-BZ-Algebras and quasi-hyper BZ-algebras. Axioms 2022, 11, 93. [CrossRef]
- 6. Fitria, E.; Gemawati, S.; Kartini. Prime ideals in B-algebras. Int. J. Algebr. 2017, 11, 301–309. [CrossRef]
- 7. Dymek, G.; Walendziak, A. (Fuzzy) Ideals of BN-algebras. Sci. World J. 2015, 2015, 925040. [CrossRef] [PubMed]
- Ozturk, M.A.; Yilmas, D.; Jun, Y.B. Semigroup structures and communitative ideals of BCK-algebra based on crossing cubic set structures. Axioms 2022, 11, 25. [CrossRef]
- 9. Gemawati, S.; Fitria, E.; Hadi, A.; Musraini, M. Complete ideal and n-ideal of BN-algebras. *Int. J. Math. Trends Technol.* 2020, 66, 52–59.
- 10. Erbay, M.A.; Tekir, U.; Koc, S. r-Ideals of commutative semigroups. Int. J. Algebr. 2016, 10, 525–533. [CrossRef]
- 11. Rao, M.M.K. r-Ideals and m-k-ideals in inclines. Gen. Algebr. Appl. 2020, 40, 297–309. [CrossRef]