
����������
�������

Citation: Yousef, F.; Amourah, A.;

Frasin, B.A.; Bulboacă, T. An
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Abstract: The zero-truncated Poisson distribution is an important and appropriate model for many
real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to
construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For
functions in the constructed class, we explore estimates of Taylor–Maclaurin coefficients |a2| and |a3|,
and next, we solve the Fekete–Szegő functional problem. A number of new interesting results are
presented to follow upon specializing the parameters involved in our main results.

Keywords: analytic bi-univalent functions; zero-truncated Poisson distribution; Gegenbauer polyno-
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1. Introduction

In discrete probability distributions, the Poisson distribution has found an extensive
and varied application in formulating probability models for a wide variety of real-life
phenomena dealing with counts of rare events, such as reliability theory, queueing systems,
epidemiology, medicine, industry, and many others. In some practical situations, only
positive counts would be available and the zero count is ignored or is impossible to be
observed at all. For instance: the length of stay in a hospital is recorded as a minimum of at
least one day, the number of journal articles published in different disciplines, the number
of occupants in passenger cars, etc. An appropriate Poisson distribution that applies to
such a case is called a zero-truncated Poisson distribution.

The probability density function of a discrete random variable X that follows a zero-
truncated Poisson distribution can be written as

Pm(X = s) =
ms

(em − 1)s!
, s = 1, 2, 3, . . . ,

where the parameter mean m > 0.
Now, we introduce a novel power series whose coefficients are probabilities of the

zero-truncated Poisson distribution

P(m, z) := z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
zn, z ∈ U,

where m > 0 and U := {z ∈ C : |z| < 1} is the open unit disk. By ratio test, it is clear that
the radius of convergence of the above series is infinity.
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Orthogonal polynomials have been extensively studied in recent years from various
perspectives due to their importance in mathematical statistics, probability theory, math-
ematical physics, approximation theory, and engineering. From a mathematical point
of view, orthogonal polynomials often arise from solutions of ordinary differential equa-
tions under certain conditions imposed by certain model. Orthogonal polynomials that
appear most commonly in applications are the classical orthogonal polynomials (Hermite
polynomials, Laguerre polynomials, and Jacobi polynomials). The general subclass of
Jacobi polynomials is the set of Gegenbauer polynomials, this class includes Legendre
polynomials and Chebyshev polynomials as subclasses. To study the basic definitions
and the most important properties of the classical orthogonal polynomials, we refer the
reader to [1–4]. For a recent connection between the classical orthogonal polynomials and
geometric function theory, we mention [5–10].

Gegenbauer polynomials Cα
n(x) for n = 2, 3, . . . , and α > − 1

2 are defined by the
following three-term recurrence formula

Cα
0 (x) = 1;

Cα
1 (x) = 2αx; (1)

Cα
n(x) =

1
n
[
2x(n + α− 1)Cα

n−1(x)− (n + 2α− 2)Cα
n−2(x)

]
.

It is worth mentioning that by setting α = 1
2 and α = 1 in Equation (1), we immediately

obtain Legendre polynomials Pn(x) = C
1
2
n (x) and Chebyshev polynomials of the second

kind Un(x) = C1
n(x), respectively.

The generating function of Gegenbauer polynomials is given as

Hα(x, z) =
1

(1− 2xz + z2)
α ,

where x ∈ [−1, 1] and z ∈ U. For fixed x, the function Hα is analytic in U, so it can be
expanded in a Taylor–Maclaurin series, as follows:

Hα(x, z) =
∞

∑
n=0

Cα
n(x)zn, z ∈ U. (2)

2. Preliminaries and Definitions

Let A denote the class of all normalized analytic functions f written as

f (z) = z +
∞

∑
n=2

anzn, z ∈ U. (3)

Differential subordination of analytic functions provides excellent tools for study in
geometric function theory. The earliest problem in differential subordination was intro-
duced by Miller and Mocanu [11], see also [12]. The book of Miller and Mocanu [13] sums
up most of the advancement in the field and the references to the date of its publication.

Definition 1. Let f and g be two analytic functions in U. The function f is said to be subordinate
to g, written as f (z) ≺ g(z), if there is an analytic function ω in U with the properties

ω(0) = 0 and |ω(z)| < 1, z ∈ U,

such that
f (z) = g(ω(z)), z ∈ U.

Definition 2. A single-valued one-to-one function f defined in a simply connected domain is said
to be a univalent function.
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Let S denote the class of all functions f ∈ A, given by (3), that are univalent in U.
Hence, every function f ∈ S has an inverse given by

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . . (4)

Definition 3. A univalent function f is said to be bi-univalent in U if its inverse function f−1(w)
has an analytic univalent extension in U.

Let Σ denote the class of all functions f ∈ A that are bi-univalent in U given by (3).
For interesting subclasses of functions in the class Σ, see [14–24].

The coefficient functional

∆η( f ) = a3 − ηa2
2 =

1
6

(
f ′′′(0)− 3η

2
(

f ′′(0)
)2
)

(5)

of the analytic function f given by (3) is very important in the theory of analytic and univa-
lent functions. Thus, it is quite natural to ask about inequalities for ∆η( f ) corresponding to
subclasses of bi-univalent functions in the open unit disk U. The problem of maximizing
the absolute value of the functional ∆η( f ) is called the Fekete–Szegö problem [25]. There
are now several results of this type in the literature, each of them dealing with |a3 − ηa2

2|
for various classes of functions defined in terms of subordination (see, e.g., [26–31]).

Now, let us define the linear operator

χ : A → A

by

χm f (z) := P(m, z) ∗ f (z) = z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
anzn, z ∈ U,

where the symbol “∗” denotes the Hadamard product of the two series.
To obtain our results we need the following lemma:

Lemma 1 ([32], p. 172). Assume that ω(z) =
∞
∑

n=1
ωnzn, z ∈ U, is an analytic function in U such

that |ω(z)| < 1 for all z ∈ U. Then, |ω1| ≤ 1, |ωn| ≤ 1− |ω1|2, n = 2, 3, . . . .

Motivated essentially by the earlier work of Amourah et al. [33], we construct, in
the next section, a new subclass of bi-univalent functions governed by the zero-truncated
Poisson distribution series and Gegenbauer polynomials. Then, we investigate the optimal
bounds for the Taylor–Maclaurin coefficients |a2| and |a3| and solve the Fekete–Szegő
functional problem for functions in our new subclass.

3. The Class ζΣ(x, α, δ, µ)

Consider the function f ∈ Σ given by (3), the function g = f−1 given by (4), and Hα

is the generating function of Gegenbauer polynomials given by (2). Now, we are ready to
define our new subclass of bi-univalent functions ζΣ(x, α, δ, µ) as follows.

Definition 4. A function f is said to be in the class ζΣ(x, α, δ, µ), if the following subordinations
are fulfilled:

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′ ≺ Hα(x, z),

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′ ≺ Hα(x, w),

where α > 0, µ, δ ≥ 0, and x ∈
(

1
2 , 1
]
.
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Upon allocating the parameters µ and δ, one can obtain several new subclasses of Σ,
as illustrated in the following two examples.

Example 1. A function f is said to be in the class ζΣ(x, α, µ) := ζΣ(x, α, 0, µ), if the following
subordinations are fulfilled:

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ ≺ Hα(x, z),

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ ≺ Hα(x, w),

where α > 0, µ ≥ 0, and x ∈
(

1
2 , 1
]
.

Example 2. A function f is said to be in the class ζΣ(x, α) := ζΣ(x, α, 0, 1), if the following
subordinations are fulfilled:

(χm f (z))′ ≺ Hα(x, z),

and
(χmg(w))′ ≺ Hα(x, w),

where α > 0 and x ∈
(

1
2 , 1
]
.

4. Main Results

Theorem 1. If the function f belongs to the class ζΣ(x, α, δ, µ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(1 + 2µ + 6δ)(em − 1)− 2(1 + α)(1 + µ + 2δ)2

]
x2 + (1 + µ + 2δ)2

∣∣∣ , (6)

and

|a3| ≤
4α2x2(em − 1)2

m2(1 + µ + 2δ)2 +
4αx(em − 1)

m2(1 + 2µ + 6δ)
.

Proof. If f ∈ ζΣ(x, α, δ, µ), from the Definition 4 there exist two analytic functions in U that
are w and v, such that w(0) = v(0) = 0 and |ω(z)| < 1, |v(w)| < 1 for all z, w ∈ U, and

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′ = Hα(x, ω(z)), z ∈ U, (7)

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′ = Hα(x, v(w)), w ∈ U, (8)

From the equalities (7) and (8), we obtain

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′

= 1 + Cα
1 (x)c1z +

[
Cα

1 (x)c2 + Cα
2 (x)c2

1

]
z2 + . . . , z ∈ U, (9)

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′

= 1 + Cα
1 (x)d1w +

[
Cα

1 (x)d2 + Cα
2 (x)d2

1

]
w2 + . . . , w ∈ U, (10)
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where

ω(z) =
∞

∑
j=1

cjzj, z ∈ U, and v(w) =
∞

∑
j=1

djwj, w ∈ U. (11)

According to Lemma 1, if the above function ω and v has the form (11), then

|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (12)

Thus, upon comparing and equating the corresponding coefficients in (9) and (10),
we have

(1 + µ + 2δ)m
em − 1

a2 = Cα
1 (x)c1, (13)

(1 + 2µ + 6δ)m2

2(em − 1)
a3 = Cα

1 (x)c2 + Cα
2 (x)c2

1, (14)

− (1 + µ + 2δ)m
em − 1

a2 = Cα
1 (x)d1, (15)

and
(1 + 2µ + 6δ)m2

2(em − 1)

[
2a2

2 − a3

]
= Cα

1 (x)d2 + Cα
2 (x)d2

1. (16)

It follows from (13) and (15) that

c1 = −d1, (17)

and
2(1 + µ + 2δ)2m2

(em − 1)2 a2
2 = [Cα

1 (x)]2
(

c2
1 + d2

1

)
. (18)

If we add (14) and (16), we get

(1 + 2µ + 6δ)m2

(em − 1)
a2

2 = Cα
1 (x)(c2 + d2) + Cα

2 (x)
(

c2
1 + d2

1

)
. (19)

Substituting the value of
(
c2

1 + d2
1
)

from (18) in the right hand side of (19), we deduce that[
(1 + 2µ + 6δ)− 2(1 + µ + 2δ)2

(em − 1)
Cα

2 (x)[
Cα

1 (x)
]2
]

m2

(em − 1)
a2

2 = Cα
1 (x)(c2 + d2). (20)

Now, using (1), (12) and (20), we find that (6) holds.
Moreover, if we subtract (16) from (14), we obtain

(1 + 2µ + 6δ)m2

(em − 1)

(
a3 − a2

2

)
= Cα

1 (x)(c2 − d2) + Cα
2 (x)

(
c2

1 − d2
1

)
. (21)

Then, in view of (17) and (18), Equation (21) becomes

a3 =
(em − 1)2[Cα

1 (x)
]2

2m2(1 + µ + 2δ)2

(
c2

1 + d2
1

)
+

(em − 1)Cα
1 (x)

m2(1 + 2µ + 6δ)
(c2 − d2).

Thus, applying (1), we conclude that

|a3| ≤
4α2x2(em − 1)2

m2(1 + µ + 2δ)2 +
4αx(em − 1)

m2(1 + 2µ + 6δ)
,

and the proof of the theorem is complete.
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The following result addresses the Fekete–Szegő functional problem for functions in
the class ζΣ(x, α, δ, µ).

Theorem 2. If the function f belongs to the class ζΣ(x, α, δ, µ), then

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(1+2µ+6δ)

, if |η − 1| ≤ M,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ+6δ)(em−1)−2(1+α)(1+µ+2δ)2]x2+(1+µ+2δ)2

}∣∣∣∣ , if |η − 1| ≥ M,

where

M :=

∣∣∣∣∣1− (1 + µ + 2δ)2[2(1 + α)x2 − 1
]

2αx2(em − 1)(1 + 2µ + 6δ)

∣∣∣∣∣.
Proof. If f ∈ ζΣ(x, α, δ, µ), from (20) and (21) we get

a3 − ηa2
2 = (1− η)

(em − 1)2[Cα
1 (x)

]3
(c2 + d2)

m2
[
(em − 1)(1 + 2µ + 6δ)

[
Cα

1 (x)
]2 − 2(1 + µ + 2δ)2Cα

2 (x)
]

+
(em − 1)Cα

1 (x)
m2(1 + 2µ + 6δ)

(c2 − d2)

= Cα
1 (x)

[
h(η) +

(em − 1)
m2(1 + 2µ + 6δ)

]
c2 +

[
h(η)− (em − 1)

m2(1 + 2µ + 6δ)

]
d2,

where

h(η) =
(em − 1)2[Cα

1 (x)
]2
(1− η)

m2
[
(em − 1)(1 + 2µ + 6δ)

[
Cα

1 (x)
]2 − 2(1 + µ + 2δ)2Cα

2 (x)
] .

Then, in view of (1), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(1+2µ+6δ)

, if 0 ≤ |h(η)| ≤ (em−1)
m2(1+2µ+6δ)

,

4αx|h(η)|, if |h(η)| ≥ (em−1)
m2(1+2µ+6δ)

,

which completes the proof of Theorem 2.

5. Corollaries and Consequences

Corresponding essentially to the Example 1 (setting δ = 0) and Example 2 (setting
δ = 0 and µ = 1), from Theorems 1 and 2 we get the following consequences, respectively.

Corollary 1. If the function f belongs to the class ζΣ(x, α, µ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(1 + 2µ)(em − 1)− 2(1 + α)(1 + µ)2

]
x2 + (1 + µ)2

∣∣∣ ,
|a3| ≤

4α2x2(em − 1)2

m2(1 + µ)2 +
4αx(em − 1)
m2(1 + 2µ)

,
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and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(1+2µ)

, if |η − 1| ≤ N,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ)(em−1)−2(1+α)(1+µ)2]x2+(1+µ)2

}∣∣∣∣ , if |η − 1| ≥ N,

where

N :=

∣∣∣∣∣1− (1 + µ)2[2(1 + α)x2 − 1
]

2αx2(em − 1)(1 + 2µ)

∣∣∣∣∣.
Corollary 2. If the function f belongs to the class ζΣ(x, α), then

|a2| ≤
2αx(em − 1)

√
2x

m
√
|[6α(em − 1)− 8(1 + α)]x2 + 4|

,

|a3| ≤
α2x2(em − 1)2

m2 +
4αx(em − 1)

3m2 ,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
3m2 , if |η − 1| ≤ L,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[6α(em−1)−8(1+α)]x2+4

}∣∣∣∣ , if |η − 1| ≥ L,

where

L :=

∣∣∣∣∣1− 2
[
2(1 + α)x2 − 1

]
3αx2(em − 1)

∣∣∣∣∣.
6. Concluding Remarks

In the present work we have constructed a new subclass ζΣ(x, α, δ, µ) of normalized
analytic and bi-univalent functions governed with the zero-truncated Poisson distribution
series and Gegenbauer polynomials. For functions belonging to this class, we have made
estimates of Taylor–Maclaurin coefficients, |a2| and |a3|, and solved the Fekete–Szegő
functional problem. Furthermore, by suitably specializing the parameters δ and µ, one can
deduce the results for the subclasses ζΣ(x, α, µ) and ζΣ(x, α) which are defined, respectively,
in Examples 1 and 2.

The results offered in this paper would lead to other different new results for the classes
ζΣ(x, 1/2, δ, µ) for Legendre polynomials and ζΣ(x, 1, δ, µ) for Chebyshev polynomials.

It remains an open problem to derive estimates on the bounds of |an| for n ≥ 4, n ∈ N,
for the subclasses that have been introduced here.
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25. Fekete, M.; Szegő, G. Eine Bemerkung űber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [CrossRef]
26. Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete-Szegő Functional Inequalities for a Certain Subclass of
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