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Abstract: This paper addresses a modified epidemic model with saturated incidence and incomplete
treatment. The existence of all equilibrium points is analyzed. A reproduction number R0 is
determined. Next, it is found that the non-endemic point P0 is stable in caseR0 < 1, but unstable
in caseR0 > 1. The special conditions to analyze the local and global stability of the non-endemic
and endemic points are investigated. Globally, the sensitivity analysis of the system is studied by
combining the Latin Hypercube Sampling and Partial Rating Correlation Coefficients methods. By
using the Pontryagins maximum principle, the optimal control problem is studied. Various numerical
results are given to support our analysis.

Keywords: epidemic model; reproduction number; stability; saturated incidence; incomplete treatment

1. Introduction

Population dynamics in the spread of infectious diseases can be studied through a
mathematical model. Mathematically, in epidemiological modeling, there is one determin-
istic model, namely, the SEIR model. A SEIR model is generalized of several epidemic
models (e.g., SI, SEI, and SIR) involving the relationships of several sub-classes in the
human population among the susceptible S, latent/exposed E, infectious I, and recov-
ered/healed R, for understanding the behavioral contagion for a disease. Related to the
SEIR model, several researchers have used it to solve their problems, including analyzing
disease behavior. For example: COVID-19 (see [1–3]), Malaria (see [4]), Hand Foot Mouth
Disease (see [5]), Measles (see [6]), Influenza A (H1N1) (see [7]), Zika Fever (see [8,9]), as
well as Tuberculosis (TB) (see [10]). It is not just limited to the spread of disease in the
human population; the SEIR model has been implemented to study virus mutation of
wireless sensor networks [11] and also the propagation of computer viruses [12].

Because of the limited resources available to eradicate a disease, treatment is not
only carried out in the hospitals. However, treatment also can be performed at home,
providing an adequate service was established [13] for effective home treatment based
on the behavior of the disease to accelerate recovery and prevent the hospitalization of
patients. This process would have significant impacts on the patients and also the health
system [14]. Implementing the proposed outpatient treatment during the mild phase of the
disease reduced the incidence of subsequent hospitalization and related costs [15]. Through
the mathematical models, this aspect is considered in work regarding a specific disease by
some researchers (see [16,17]). In conditions where the proportion of infections increases,
hospitalization policies may be needed to deal with the number of infection cases [18].

On the other hand, researchers have analyzed the impact of incomplete treatment on
disease transmission, and when incomplete treatment occurs, an infectious individual can
be fitted into latent again [19]. Relapse may occur, where a recovered human can be fitted
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back into latent due to the reactivation of the infectious agents. For example, Herpes [20]
and Tuberculosis [21–25] are of this type. This relates to an infected individual that may
disappear after treatment, but infectious agents may remain in the person’s body after
being treated. Thus the person being treated can possibly still be a carrier of the disease and
return to the latent/exposed class [19,22]. It shows that incomplete treatment for patients
may lead to a complicated situation.

From the various studies conducted above, researchers have used a bilinear form
for the incidence rate. However, in reality, related to epidemic cases, the form of the
bilinear incidence rate is only effective in the early stages. There are many studies that have
discussed nonlinear incidence rates for epidemic problems; this includes models with the
saturated infection rate [26–33]. Occasionally, the saturated function, also named Holling
type-II function [34], has been used by some researchers for analyzing the population
dynamics because of a specific disease model (see [35–41]).

Here, we propose an epidemic model for disease outbreaks with a saturated incidence
rate and incomplete treatment. Our model is extended from the epidemic model by Huo
and Zou in [16]. The novelty in our work is the consideration of the saturated infection of
humans who come into contact with infectious humans who are undergoing treatment at
home and treatment in hospital. This work is clearly different from previous studies that
have also used saturated infection, see [26–41]. We also consider an aspect of incomplete
treatment, which makes our work relatively new for the epidemic model. Despite the lack
of data, this does not detract from the essence of analyzing and simulating the model. The
paper is organized as follows. In Section 2 we construct our model. We determine the
special conditions to analyze the existence and the local and global stability of equilibrium
in Section 3. In Section 4, we perform some numerical results to confirm our analysis,
including the sensitivity analysis and the optimal control strategy. Finally, we give some
remarks to conclude our work in Section 5.

2. Model Formulation

We constructed an epidemic model of disease outbreak by considering saturated
infection and incomplete treatment. The total population is Π(t), which is classified into
five classes, namely, susceptible humans (S), latent/exposed humans (E), infectious humans
treated at home (IS), infectious humans treated in the hospital (IH), and healed/recovered
humans (H), where:

Π(t) = S(t) + E(t) + IS(t) + IH(t) + H(t)

The assumptions used in the formation of mathematical models for disease spread are
whether the individual infected will receive hospitalization or outpatient treatment. Next,
the individuals with incomplete treatment may become reinfected, thus reenter the latent
class because of incomplete treatment experienced by patients. Hence, that individual
could be infection and reenter to latent again. Furthermore, the following assumptions are
taken in deriving the model (1):

Assumption 1. There are constant recruitments to the system for class S, which are denoted by
r > 0. and the natural mortality for each class in the population has a constant rate of µ > 0.

Assumption 2. The first type of contact with IS is the transfer from S to E by contact; according
to the saturated incidence rate c1β1 IS

α+IS
with maximum contact rate c1 > 0, the probability of transfer

of the disease is given by 0 < β1 < 1 and the intervention level α > 0 (half saturated constant).
While the second type of contact with IH is the transfer from S to E by contact, according to the
saturated incidence rate c2β2 IH

α+IH
with a maximum contact rate c2 > 0, and a probability of transfer of

the disease given by 0 < β2 < 1.
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Assumption 3. The humans with symptoms will be transferred from E to IS with a rate θ > 0
and E to IH denoted by ε > 0. Next, ω1 > 0 is the rate of progression from IS to IH , while ω2 > 0,
conversely, is IH to IH .

Assumption 4. Humans leave class IS at a rate of k1, a fraction ηk1 IS of which enter the recovered
class due to efficient treatment and (1− η)k1 IS reenter class E due to incomplete treatment. The
parameter η(0 < η ≤ 1) reflects the part of efficient treatment. While k2 > 0 shows the successful
treatment for humans in class IH .

Assumption 5. Regarding the mortality caused by the same disease for both IS and IH , respectively,
there is the mortality rate denoted by δ > 0.

Next, the scheme of disease transmission is illustrated in Figure 1; for the description
of notations see Table 1.

Figure 1. Diagram of Population Interations.

Table 1. Parameters Description.

Notation Description

r Recruitment rate of susceptible humans
β1 Probability of transmission rate due to contact with IS
β2 Probability of transmission rate due to contact with IH
c1 Coefficient of maximum contact rate with IS
c2 Coefficient of maximum contact rate with IH
α A positive constant that represents the intervention levels
µ Natural mortality rate
δ Mortality rate induced by disease in the IS and IH classes
ε Progression from E to IH
θ Progression from E to IS
k1 Rate of successful treatment in IS
k2 Rate of successful treatment in IH
ω1 Progression from IS to IH
ω2 Progression from IH to IS
η Coefficient of efficient treatment in IS

Therefore, based on the interaction diagram in Figure 1, the mathematic model of
disease transmission can be constructed:
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dS
dt

= r−
(

c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S− µS

dE
dt

=

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS − (θ + ε + µ)E

dIS
dt

= θE + ω2 IH − (ω1 + k1 + δ + µ)IS (1)

dIH
dt

= εE + ω1 IS − (ω2 + k2 + δ + µ)IH

dH
dt

= ηk1 IS + k2 IH − µH

3. Mathematical Analysis
3.1. Positivity and Boundedness of Solutions

Theorem 1. If the initial values S(0) > 0, E(0) > 0, IS(0) > 0, IH(0) > 0, and H(0) > 0, the
solution of

S(t), E(t), IS(t), IH(t), H(t)

of system (1) are positive for all time t > 0.

Proof. Refer to positive proving by Huo and Zou in [16], as well as Omame and Okuonghae
in [42]. If S(0) ≥ 0, E(0) ≥ 0, IS(0) ≥ 0, IH(0) ≥ 0, H(0) ≥ 0, then from the first equation
in (1) viz:

dS(t)
dt

= r− āS(t)− µS(t), where ā =
c1β1 IS
α + IS

+
c2β2 IH
α + IH

.

It can be re-written as:

dS(t)
dt

exp
{∫ t

0
(ā(τ))dτ + µt

}
+ S(t)(ā(τ) + µ) exp

{∫ t

0
(ā(τ))dτ + µt

}
=r exp

{∫ t

0
(ā(τ))dτ + µt

}
.

Therefore,

d
dt

(
S(t) exp

{∫ t

0
(ā(τ))dτ + µt

})
= r exp

{∫ t

0
(ā(τ))dτ + µt

}
.

Hence,

S(t) exp
{∫ t

0
(ā(τ))dτ + µt

}
− S(0) =

∫ t

0
r exp

{∫ τ

0
(ā(v))dv + µτ

}
dτ.

Therefore,

S(t) =S(0) exp
{
−
∫ t

0
(ā(τ))dτ − µt

}
+ exp

{
−
∫ t

0
(ā(τ))dτ − µt

}
×
∫ t

0
r exp

{∫ τ

0
(ā(v))dv + µτ

}
dτ > 0.

Consistently, we can apply the similar method to prove that E(t) > 0, IS(t) > 0,
IH(t) > 0, H(t) > 0. Hence, the solution (S(t), E(t), IS(t), IH(t), H(t)) in system (1) is
positive for all time t > 0.
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Theorem 2. The solution (S, E, IS, IH , H) of system (1) is bounded for all t ∈ [0, t0]

Proof. If Π(t) = S(t) + E(t) + IS(t) + IH(t) + H(t), then adding the equations of (1) yields

dΠ
dt

= r− µ(S + E + IS + IH + H)− δ(IS + IH) ≤ r− µΠ

.
Next:

dΠ
dt

= r− µΠ

.
Thus, we have

0 ≤ lim
x→∞

sup Π(t) ≤ r
µ

,

so every solution of system (1) is ultimately bounded for all t ∈ [0, t0]

3.2. Non-Endemic Equilibrium Point

By setting the derivatives of each equation in system (1) to zero, i.e., dS
dt = 0, dE

dt = 0,
dIS
dt = 0, dIH

dt = 0, dH
dt = 0, and next substituting IS = 0, IH = 0, E = 0, we get the

non-endemic point (P0) as:

P0 = (S0, E0, I0
S, I0

H , H0)

=
( r

µ
, 0, 0, 0, 0, 0, 0

)
, (2)

3.3. Basic Reproduction Number

The Basic Reproduction Number (R0) is the average number of newly generated
infected humans by a single positively patient. Next, from system (1), we get:

F =


(

c1β1 IS
α+IS

+ c2β2 IH
α+IH

)
S

0
0

,

V =

 −(1− η)k1 IS + (θ + ε + µ)E
−(θE + ω2 IH) + (ω1 + k1 + δ + µ)IS
−(εE + ω1 IS) + (ω2 + k2 + δ + µ)IH

.

Next,

F =

0 f1 f2
0 0 0
0 0 0

 and V =

 v1 −(1− η)k1 0
−θ v2 −ω2
−ε −ω1 v3

,

where

f1 =
c1β1αr

α2µ
,

f2 =
c2β2αr

α2µ
,

v1 =θ + ε + µ,

v2 =ω1 + k1 + δ + µ,

v3 =ω2 + k2 + δ + µ.
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Next, the eigenvalues of FV−1 are:

λ1 =
ε( f1ω2 + f2v2) + θ( f1v3 + ω1 f2)

v1(v2v3 −ω1ω2)− (1− η)k1(εω2 − θω1)
, λ2,3 = 0.

The spectral radius of matrix FV−1 is ρ(FV−1) = R0, where:

R0 =
ε( f1ω2 + f2v2) + θ( f1v3 + ω1 f2)

v1(v2v3 −ω1ω2)− (1− η)k1(εω2 − θω1)
.

For η = 1, this means there is no incomplete treatment. Even farther, if we replaceR0
withR0C, then

R0C =
ε( f1ω2 + f2v2) + θ( f1v3 + ω1 f2)

v1(v2v3 −ω1ω2)
.

Obviously,R0C < R0 thus the high level of incomplete treatment led toR0 increases.
This means that the spread of the disease within the population may increase due to
incomplete treatment.

3.4. Endemic Equilibrium Points

To determine the endemic point, we consistently set all derivatives in all equations
in (1) to zero. Next, from the calculations for these all equations, except the third equation,
we get:

S∗ =
r(

c1β1 I∗S
α+I∗S

+
c2β2 I∗H
α+I∗H

)
+ µ

E∗ =

(
c1β1 I∗S
α+I∗S

+
c2β2 I∗H
α+I∗H

)
S∗ + (1− η)k1 I∗S

θ + ε + µ

I∗H =
εE∗ + ω1 I∗S

(ω2 + k2 + δ + µ)

H∗ =
ηk1 I∗S + k2 I∗H

µ
.

By substituting S∗, E∗, I∗H , H∗ to the third equation of (1) and set dIS
dt = 0, we get:

A2 I2
S + A1 IS + A0 = 0, (3)

where:

A2 =(c1β1 + c2β2 + µ)
[
k1(η − 1)(ε2ω2v2 + θ2ω1v3 + εθ(ω1ω2 + v2v3))

]
+ (c1β1 + c2β2 + µ)

[
v1v2(εω1ω2 + θω1v3 + εv2v3)− θv1ω2

1ω2

]
,

A1 =(c1β1 + µ)(η − 1)αk1(ε
2ω2

2 + θ2v2
3 + 2εθω2v3)

+ (c2β2 + µ)(η − 1)αk1

[
εv2ω2 + εθ(ω1ω2 + v2v3) + θ2ω1v3

]
+ αv1(εv2 + θω1)(v2v3 −ω1ω2)[(c1β1 + µ) + (c2β2 + µ)]

−
[
εrθ(ω1ω2 + v2v3) + r(ε2ω2v2 + θ2ω1v3)

]
,

A0 =α2µk1(η − 1)(ε2ω2
2 + θ2v2

3 + 2εθω2v3) + α2µv1(v2v3 −ω1ω2)(εω2 + θv3)

− αrθ2v3(v3c1β1 + ω1c2β2)− αrω2ε2(ω2c1β1 + v2c2β2)

− αrθε[2c1β1v3ω2 + c2β2(ω1ω2 + v2v3)].
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3.5. Local Stability of Equilibrium Points

To investigate the local stability around each equilibrium point, we determined the
Jacobian matrix and analyzed their eigenvalues for all points, which the Jacobian matrix
for system (1) is

J =


−
(

c1β1 IS
α+IS

+
c2β2 IH
α+IH

)
−µ 0 − αc1β1

(α+IS)
2 S − αc2β2

(α+IH)2 S 0

0 −v1
αc1β1

(α+IS)
2 S+(1−η)k1

αc2β2
(α+IH)2 S 0

0 θ −v2 ω2 0
0 ε ω1 −v3 0
0 0 ηk1 k2 −µ

. (4)

Theorem 3. A non-endemic point (P0) of the system (1) is locally asymptotically stable forR0 < 1,
and it is unstable forR0 > 1.

Proof. At P0, we get that the Jacobian matrix for system (1), which has eigenvalues
λ1,2 = −µ.

Next, we have a characteristic polynomial

Q1(λ) = c0λ3 + c1λ2 + c2λ + c3, (5)

where:

c0 =1,

c1 =v1 + v2 + v3,

c2 =v1(v2 + v3) + (v2v3 −ω1ω2)− θ(k1(1− η) + f1),

c3 =(1−R0)(v1(v2v3 −ω1ω2)− k1(1− η)(εω2 + θv3)).

From the polynomial (Q1(λ)), the real part of λ3,4,5 will be negative if cj > 0,
j = 0, 1, 2, 3, and c1c2 > c0c3. Since R0 < 1, θ(k1(1− η) + f1) < v1(v2 + v3) + (v2v3 −
ω1ω2), and k1(1− η)(εω2 + θv3) < v1(v2v3 − ω1ω2) are fulfilled, cj > 0 for every pa-
rameter in system (1). Thus, if R0 < 1 and Routh-Hurwitz’s criteria holds, then the
non-endemic point (P0) is locally asymptotically stable.

Theorem 4. An endemic point (P∗) of the system (1) is locally asymptotically stable whenever it
is exists.

Proof. At P∗, the Jacobian matrix for the system (1) has eigenvalues λ1 = −µ and

λ2 = −
(

µ +
c1β1 I∗S
α+I∗S

+
c2β2 I∗H
α+I∗H

)
. Next, we have a characteristic polynomial

Q2(λ) = c0λ3 + c1λ2 + c2λ + c3, (6)

where:

c0 =1,

c1 =v1 + v2 + v3,

c2 =v1(v2 + v3) + (v2v3 −ω1ω2)− θ(k1(1− η) + j1)− εj2,

c3 =v1(v2v3 −ω1ω2)− (k1(1− η) + j1)(εω2 + θv3)− j2(εv2 + θω1),

j1 =
αc1β1(

α + I∗S
)2 S∗,

j2 =
αc2β2(

α + I∗H
)2 S∗.
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From the polynomial (Q2(λ)), the real part of λ3,4,5 will be negative if cj > 0, j =
0, 1, 2, 3, and c1c2 > c0c3. Since v1(v2 + v3) + (v2v3 − ω1ω2) > θ(k1(1− η) + j1) + εj2
and v1(v2v3 −ω1ω2) > (k1(1− η) + j1)(εω2 + θv3) + j2(εv2 + θω1) are fulfilled, cj > 0 for
every parameter in system (1). Thus, whenever P∗ exists and the Routh-Hurwitz’s criteria
holds, it leads to endemic point (P∗) being locally asymptotically stable.

3.6. Global Stability of Equilibrium Points

Theorem 5. A non-endemic point (P0) of the system (1) is globally asymptotically stable for
R0C < 1 and it is unstable forR0C > 1.

Proof. To prove the global stability of (P0), we refer to work by Ullah et al. in [21] as well
as Huo and Zou in [16], and define the Lyapunov function

L0(t) = n1E + n2 IS + n3 IH ,

where

n1 =R0, n3 =S0

(
c1β1

α ω2 +
c2β2

α v2

)
n∗

,

n2 =S0

(
c1β1

α v3 +
c2β2

α ω1

)
n∗

, n∗ =(v2v3 −ω1ω2)−
k1

v1
(1− η)(εω− θω1).

The derivative of L0 with respect to t is

dL0

dt
=n1

dE
dt

+ n2
dIS
dt

+ n3
dIH
dt

=n1

[(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS − v1E

]
+ n2[θE + ω2 IH − v2 IS]

+ n3[εE + ω1 IS − v3 IH ]

=R0

[(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS

]
+

S0

n∗

[(
c1β1 IS

α
+

c2β2 IH
α

)
(ω1ω2 − v2v3)

]
≤R0

[(
c1β1 IS

α
+

c2β2 IH
α

)
S + (1− η)k1 IS

]
− S0

n∗

[(
c1β1 IS

α
+

c2β2 IH
α

)
(v2v3 −ω1ω2)

]
Based on Theorem 2, if the solution of system (1) is bounded by r

µ as t→ ∞ then the
non-endemic point is bounded by r

µ = S. Next, choosing η = 1 we get:

dL0

dt
≤ r

µ
(R0C − 1)

(
c1β1 IS

α
+

c2β2 IH
α

)
.

Clearly, ifR0C ≤ 1, then dL0
dt ≤ 0. It led to the non-endemic point (P0) being globally

asymptotically stable. This completes the proof.

Theorem 6. Since an endemic point (P∗) of the system (1) exists, it is globally asymptotically stable.

Proof. Refering to the various studies in [43–45], we define the Lyapunov function

L∗ =m1

(
S− S∗ − S∗

ln S
S∗

)
+ m2

(
E− E∗ − E∗

ln E
E∗

)
+ m3

(
IS − I∗S − I∗S

ln IS
I∗S

)
+ m4

(
IH − I∗H − I∗H

ln IH
I∗H

)
+ m5

(
H − H∗ − H∗

ln H
H∗

)
,
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where mi = 1, i = 1, . . . , 5. Furthermore, the derivative of L∗ with respect to t is

dL∗
dt

=m1

(
1− S∗

S

)
dS
dt

+ m2

(
1− H∗

H

)
dE
dt

+ m3

(
1−

I∗S
IS

)
dIS
dt

+ m4

(
1−

I∗H
IH

)
dIH
dt

+ m5

(
1− H∗

H

)
dH
dt

By setting mi = 1, next, dL∗1
dt , dL∗2

dt , dL∗3
dt , dL∗4

dt , and dL∗5
dt are used to compute dL∗

dt
as follows:

• For dL∗1
dt , we get

dL∗1
dt

=

(
1− S∗

S

)(
r−

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S− µS

)
=2µS∗ +

(
c1β1 I∗S
α + I∗S

+
c2β2 I∗H
α + I∗H

)
S∗ +

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S∗ − µS

−
(

c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S− S∗

S

[(
c1β1 I∗S
α + I∗S

+
c2β2 I∗H
α + I∗H

)
S∗ + µS∗

]
.

• For dL∗2
dt , we get

dL∗2
dt

=

(
1− E∗

E

)((
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS − v1E

)
=(1− η)k1(IS + I∗S) +

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S +

(
c1β1 I∗S
α + I∗S

+
c2β2 I∗H
α + I∗H

)
S∗

− E∗

E

[(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS

]
− E

E∗

[(
c1β1 I∗S
α + I∗S

+
c2β2 I∗H
α + I∗H

)
S∗ + (1− η)k1 I∗S

]
.

• For dL∗3
dt , we get

dL∗3
dt

=

(
1−

I∗S
IS

)
(θE + ω2 IH − v2 IS)

=θ(E + E∗) + ω2(IH + I∗H)−
[

I∗S
IS
(θE + ω2 IH) +

IS
I∗S
(θE∗ + ω2 I∗H)

]
.

• For dL∗4
dt , we get

dL∗4
dt

=

(
1−

I∗H
IH

)
(εE + ω1 IS − v3 IH)

=ε(E + E∗) + ω1(IS + I∗S)−
[

I∗H
IH

(εE + ω1 IS) +
IH
I∗H

(εE∗ + ω1 I∗S)
]

.

• For dL∗5
dt , we get

dL∗5
dt

=

(
1− H∗

H

)
(ηk1 IS + k2 IH − µH)

=ηk1(IS + I∗S) + k2(IH + I∗H)−
[

H∗

H
(ηk1 IS + k2 IH) +

H
H∗

(ηk1 I∗S + k2 I∗H)
]

.
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Now, we have

dL∗
dt

=µS∗
(

2− S∗

S
− S

S∗

)
+

c1β1 I∗S S∗

α + I∗S

(
2− S∗

S
− E

E∗
− E∗ ISS

EI∗S S∗
α + I∗S
α + IS

)
+

c2β2 I∗HS∗

α + I∗H

(
2− S∗

S
− E

E∗
− E∗ IHS

EI∗HS∗
α + I∗H
α + IH

)
+ L1 −L2.

where

L1 =(1− η)k1(IS + I∗S) +
(

c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S∗ + θ(E + E∗) + ω2(IH + I∗H) + ε(E + E∗)

+ ω1(IS + I∗S) + ηk1(IS + I∗S) + k2(IH + I∗H),

L2 =(1− η)k1

(
E∗ IS

E
+

EI∗S
E∗

)
+ θ

(
EI∗S
IS

+
E∗ IS

I∗S

)
+ ω2

(
I∗S IH

IS
+

IS I∗H
I∗S

)
+ ε

(
EI∗H
IH

+
E∗ IH

I∗H

)
+ ω1

(
IS I∗H
IH

+
I∗S IH

I∗H

)
+ ηk1

(
IS H∗

H
+

I∗S H
H∗

)
+ k2

(
IH H∗

H
+

I∗H H
H∗

)
.

Next, applying the relationship from the geometric means and arithmetic means, we
affirm that dL∗

dt ≤ 0. It holds only at point P∗. Thus, the endemic point P∗ is globally
asymptotically stable.

3.7. Control Optimal Problem

In order to control the transmission of the disease, our goal was to reduce the amount
of the two infected populations through both home treatment and hospital treatment. How
we can reduce the infected population is through educational effort, both directly and
indirectly. Health workers can educate about the times to consume medicine that better
benefits the patients, follow up on the patient’s health activities, etc. To reduce the number
of infected people and optimize the educational effort to control cost, we remodeled the
dynamic model, adding a parameter for control v(t). Then, we obtain:

dS
dt

= r−
(

c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S− µS

dE
dt

=

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS − (θ + ε + µ)E

dIS
dt

= θE + ω2 IH − (ω1 + v(t)ηk1 + δ + µ)IS (7)

dIH
dt

= εE + ω1 IS − (ω2 + v(t)k2 + δ + µ)IH

dH
dt

= v(t)ηk1 IS + v(t)k2 IH − µH

We determine the educational effort with the objective function as follows:

J(v) = min
∫ t f

0
AIS + BIH + Cv(t)2dt (8)

Parameters A, B, and C are the weight of the infected population and educational
effort in the performance index that satisfies A, B, C ≥ 0. We solve the optimal control
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for model with the Pontryagin Maximum Principle. The control v with the variable state

y(t) =


S(t)
E(t)
IS(t)
IH(t)
H(t)

 and the constraint on (7).

The system ought to satisfy the conditions : 0 < t < t f , 0 ≤ v(t) ≤ Vp and S(t),
E(t), IS(t), IH(t), H(t) ≥ 0, where Vp is the control upper limit. Note that the control v
represents the percentage of the control. This parameter describes the maximum effort
related to control management, and then it is stated as v = 1. We build the function of
Hamiltonian as H = f (y, v, t) + λ′g(y, v, t), which is equal to

Ha =AIS + BIH + Cv(t)2 + λS

(
r−

(
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S− µS

)
+ λE

((
c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
S + (1− η)k1 IS − (θ + ε + µ)E

)
+ λIS(θE + ω2 IH − (ω1 + v(t)ηk1 + δ + µ)IS)

+ λIH (εE + ω1 IS − (ω2 + v(t)k2 + δ + µ)IH)

+ λH(v(t)ηk1 IS + v(t)k2 IH − µH)

where λS(t), λE(t), λIS(t), λIH (t), and λH(t) are the Lagrange multipliers of the optimiza-
tion problem or known as the co-state variables in optimal control theory. Next, related to
the necessary condition for the optimal control problems, noted that it should satisfy the
Pontryagin Maximum Principle as follows:

• State equations for this model rewriting with the condition
S(t) ≥ 0, E(t) ≥ 0, IS(t) ≥ 0, IH(t) ≥ 0, H(t) ≥ 0

• Co-state equation

dλS
dt

=− λS

(
−
(

c1β1 IS
α + IS

+
c2β2 IH
α + IH

)
− µ

)
− λEλE

((
c1β1 IS
α + IS

+
c2β2 IH
α + IH

))
dλE
dt

=− λE
(
−(θ + ε + µ)E− λIS θ − λIH ε

)
dλIS

dt
=− λS

(
c1β1 IS

(α + IS)
2

)
S− λE

(
c1β1 IS

(α + IS)
2 S + (1− η)k1

)
−λIS(−(ω1 + v(t)ηk1 + δ + µ))− λIH ω2 − λH(v(t)ηk1)

dλIH

dt
=− λS

(
c1β1 IH

(α + IH)
2

)
S− λE

(
c1β1 IH(
α + IJ

)2 S

)
− λIS ω1

−λIH (−(ω2 + v(t)k2 + δ + µ))− λH(v(t)k2)

dλH
dt

=λHµ

• Stationer condition ∂Ha
∂v = 0, with 0 ≤ v ≤ 1, then we get

v∗ = min

{
max

{
0,

λIS k1 IS + λIH k2 IH − λHk1 IS − λHk2 IH

2C

}
, 1

}

because ∂2 Ha
∂u2 = 2C > 0 satisfies the minimization problem of the optimal control with

v∗ as the optimal control of system.
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4. Numerical Simulation

In this section, we present a numerical simulation to show the behavior of an epidemic
model with a saturation incidence rate and incomplete treatment. It should support our
analysis in the earlier section. For numerical examples, we use some hypothetical values of
the parameters in Table 2. The results are summarized in the figures that follow.

Table 2. Values of the parameter occurring in the model.

Notation Value Units

r 0.08 Humans× Time−1

β1 0.75 (Humans× Time)−1

β2 0.1 (Humans× Time)−1

c1 1 N/A
c2 0.5 N/A
α 0.5–3.0 Humans
µ 0.014 Time−1

δ 0.2 Time−1

ε 0.87 Time−1

θ 0.09 Time−1

k1 0.09 Time−1

k2 0.72 Time−1

ω1 0.92 Time−1

ω2 0.069 Time−1

η 0.10–1.00 N/A

4.1. Case forR0 > 1

In this subsection, we provide an example and numerical results to support our
theoretical results. We set α = 0.8 and η = 0.5, as well as consistently using the parameter
values in Table 2. By calculating, model (1) has the endemic point P∗ (2.9591, 0.0246, 0.0120,
0.0323, 2.0518). Based on Theorem 4 and also Theorem 6, point P∗ is asymptotically stable
becauseR0 = 1.571636789 > 1 and all of the eigenvalues are negative (see Appendix A).
The behavior of this case is depicted in Figure 2.
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I
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Figure 2. The dynamics of all classes when we set the parameters α = 0.8 and η = 0.5. The endemic
point P∗ is asymptotically stable.
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4.2. CaseR0 < 1

Next, consistently, the values of the parameter model in Table 2 are used, except
α = 3 and η = 1. The initial conditions are the same as those in the above case. From the
calculation results, model (1) has the non-endemic point P0(5.7142, 0, 0, 0, 0). In addition,
from Theorem 3 and also Theorem 5, the non-endemic point P0 is asymptotically stable
becauseR0 = 0.4601764076 < 1 and all of the eigenvalues are negative (see Appendix B).
The graph for this case is presented in Figure 3.
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3
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S

E

I
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H
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Figure 3. The dynamics of all classes when we set the parameters α = 3 and η = 1. The non-endemic
point P0 is asymptotically stable.

4.3. Effect of Parameters α and η onR0

In this sub-section, we simulate the sensitivity analysis for α and η, related to the
saturated incidence rate and incomplete treatment. The parameter values in Table 2 and
the same initial values as the previous cases are used to simulate.

(1) For the study the effect of saturated incidence rate, we choose the various of α, where
α = 0.5, 1.0, 2.0, and 3.0. The details of each change due to the value-change for the
rate of saturated incidence (α) on the E, IS, and IH classes can be seen in Figure 4.
Significantly, the value-changes of α have an impact on the humans of E, IS and IH .
Thus, the changes in the parameter value of the saturated incidence really influented
the numbers of exposed (E), infected humans with home treated (IS), and infected
humans with hospital treated (IH).

(2) Next, to study the effect of the rate of incomplete treatment, we choose the various of
η, where η = 0.10, 0.35, 0.75, and 1.00. The value-changes of incomplete treatment (η)
affect the population of each class: E, IS, and H are illustrated in Figure 5. When the
value of the incomplete treatment η is increased, the impact has reduced the number
of exposed (E), and infected humans with home treated (IS). Meanwhile, the number
of humans in the healed class (H) increases. Thus, the humans of E, IS, and IH classes
are relatively changed for every η.
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Figure 4. Dynamics of E, IS, and IH for α = 0.5, 1.0, 2.0 and 3.0 showing the impact of saturated
incidence rate.
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Figure 5. Dynamics of E, IS, and H for η = 0.10, 0.35, 0.75 and 1.00 showing the effect of incomplete
treatment at home.
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Furthermore, in Figure 6 a relationship among α, η, and R0 has been shown. If the
values of α and η increase measurably, then the number of R0 decreases sharply. This
illustrates that increasing the level of treatment and the rate of saturated incidence has an
immediate impact on reducing the number of infections in humans.

Figure 6. The relationship among α, η, andR0.

4.4. Partial Rank Correlation Coefficient

In this subsection, we study the global sensitivity analysis by applying a combination
of the Latin Hypercube Sampling (LHS) and the Partial Rank Correlation Coefficient
(PRCC). Latin Hypercube Sampling divides the sample interval into a few regions, then
takes the same amount of the sample from each part. Hence, the advantage of LHS is that
the sample will be distributed fairly in the interval. The data from LHS will be ranked. Then,
using PRCC, we can find out the correlation between the parameters and the compartment.
Investigating the very impactful and dominant parameters of the system is intended. Hence,
all of the parameters in the system were investigated against the increase in infections. For
this analysis, our results can be seen in Figures 7 and 8 as well as Figures 9 and 10.

Figures 7 and 8 show that the most sensitive parameter is the half saturated constant α,
which has a negative correlation. This finding indicates that since the value of α increases,
the infectious population with treated at home IS decreased. Meanwhile, the probability
of transmission due to contact with an infectious individual with outpatient treatment at
home β1 significantly increase on the number of infectious population IS.

Figures 9 and 10 show that the most sensitive parameter is the half saturated constant
α, which has a negative correlation. This finding indicates that since the value of α increases,
the infectious population treated in the hospital IH decreased. Meanwhile, the probability
of transmission due to contact with an infectious individual with care in hospital β2
significantly increase on the number of infectious population IH .
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Figure 7. PRCC of the infectious population treated at home.

Figure 8. The bar chart for PRCC of the infectious population treated at home at t = 10.

Figure 9. PRCC of the infectious population treated in the hospital.
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Figure 10. The bar chart for PRCC of the infectious population treated in the hospital at t = 10.

4.5. Optimal Control

Due to the objective function (8), our goal was to minimize the number of the infected
population and the educational effort given. A graph of the dynamical population with its
optimal function is shown in the following figure (see Figure 11). It seems that the optimal
function has decreased over time, which means that the control has not been occurring
all the time because the goal of optimization was achieved when the value of the optimal
function was zero.

Figure 11. The impact of optimal control.

Based on Figure 12, the dynamic population with optimal control shows that the
infected population, both home treatment and hospital treatment, decreased over time.
It means that the goal due to the educational effort as a control in the optimal control
problem was successful, which suppressed the infected population and minimized the
control. The graph of the dynamic home treatment population shows that at time 1, the
difference between the control graph and the without control graph can be seen. Indeed,
the graph of the dynamics of hospital treatment populations shows that at the start time,
the difference between the control graph and the without control graph can already be seen.
All the graphs in Figure 11 show that the educational effort as control has a significant
impact on achieving the goals of the optimal control problem.
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Figure 12. The impact of optimal control on the compartments IS and IH .

5. Conclusions

In this work, a deterministic model for disease outbreaks considering the saturated
incidence rate and incomplete treatment was discussed. The population was classified
into susceptible (S), latent/exposed (E), infected individuals with treatment at home
(IS), infected individuals with treatment in hospital (IA), and recovered/healed (H).
By applying a next-generation matrix method, we received the value of R0, which is a
threshold in disease transmission. The special conditions to analyze the existence and also
stability of all equilibriums were analyzed.

Our findings show that successful treatment of patients at home can lead to minimizing
the prevalence of the disease. In addition, our results also show that the rate of saturated
incidence has a crucial role in controlling disease transmission in the population, where the
high intervention given influences decreasing the infected population. Another significant
role was also influenced by the incomplete treatment received by patients. The high rate of
incomplete treatment may increase the population with infectious agents, and people may
reenter latent/exposed again. Moreover, we have used control in an educational effort form
for the home-treated and hospital-treated populations. The results show that the control
process plays an important role in reducing the number of infections significantly. As a
consequence of the lack of data for the simulation process of system (1), we hypothesized
the parameter values. Despite the unavailability of data to apply to this work, the various
assumed parameters used in our model have demonstrated behavior of disease spread.
Finally, this model can be applied to study the behavior of disease transmission as long as
it has similar behavior patterns.
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Appendix A. The Proof of Analysis for Endemic Point Numerically

The real part of eigenvalues for point P∗ are:

Re(λ1) =− 0.01400 (negative)

Re(λ2) =− 3.60009 (negative)

Re(λ3) =− 1.21020 (negative)

Re(λ4) =− 0.01887 (negative)

Re(λ5) =− 0.01887 (negative)

This is also confirmed by the fulfillment of the Routh-Hurwitz criteria as follows:

c0 =1 > 0

c1 =4.821 > 0

c2 =4.417485949 > 0

c3 =0.056872612 > 0

c1c2 − c0c3 =21.23982715 > 0

Appendix B. The Proof of Analysis for Non-Endemic Point Numerically

The real part of eigenvalues for point P0 are:

Re(λ1) =− 0.01400 (negative)

Re(λ2) =− 0.01400 (negative)

Re(λ3) =− 3.04974 (negative)

Re(λ4) =− 0.48542 (negative)

Re(λ5) =− 1.28583 (negative)

This is also confirmed by the fulfillment of the Routh-Hurwitz criteria as follows:

c0 =1 > 0

c1 =4.821 > 0

c2 =6.026058572 > 0

c3 =1.903576506 > 0

c1c2 − c0c3 =27.14805187 > 0
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