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Abstract: We consider the phenomenon of concentration of measures, which is restricted to the case of
families of compact connected Lie groups. While in the literature, powerful general results regarding
the existence of concentration and its relations to extremal amenability of infinite dimensional groups
have been determined, there are few explicit examples, specially regarding the determination of
the region where the measure concentrates. Since they can be relevant for concrete applications, both
in mathematics and in physics, in the present paper, we provide a number of such examples, using
compact Lie groups as basic ingredients. In particular, our strategy is to employ the Macdonald’s
formula, giving the volume of compact simple Lie groups, and Ricci curvature of the bi-invariant
metric for analyzing a “concentration locus”, which is a tool to detect where a sequence of metric,
Borel measurable spaces concentrates its measure.
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1. Introduction

In the last fifty years, the study of concentration of measure phenomenon has become
a research field of powerful interest in different areas of mathematics. It is particularly
relevant in statistic description of probabilistic phenomena, where a large number of degrees
of freedom is involved and manifests itself as the “localization”, under the increasing of
the geometrical dimensions, of support of the measure around subregions which, strictly
speaking, are zero measure subset and may find also applications in physics, see e.g., [1,2].
Intuitively, it can be understood through the following toy example: suppose we are in Rn,
looking at a ball of radius R. For example, we can assume it is an orange, with a very thin
peel, having essentially the same specific weight of the pulp. We wonder which fraction of
weight is occupied by the peel. The answer is simple, since the volume of the orange is

VO =
π

n
2

Γ(n/2 + 1)
Rn, (1)

while the volume of the peel is

VP = 2
π

n
2

Γ(n/2)
Rn−1dR. (2)

We get that the fraction of weight occupied by the peel is

ε =
VP
VO

= n
dR
R

. (3)
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So, we see that if we fix the radius of the orange, as soon as n increases, most of
the mass of the orange is in a peel with thickness of the order

dR ≈ R√
N

. (4)

In other words, all the mass (measure) appears to concentrate on the peel, despite
the material being homogeneously distributed in the whole volume. If the specific weight
is replaced by a uniform probability distribution, the probability tends to concentrate
on the boundary of the ball, when the dimension becomes higher and higher. If in place
of in Rn we are in a spherical world Sn, we would see such a uniform probability to
concentrate in an equator (while we occupy one of the poles), see, e.g., [3]. Notice that in Rn,
homogeneity can be interpreted as invariance of the measure under translations. Similarly,
in Sn, it corresponds to invariance under the action of the isometry group SO(n+ 1). Indeed,
the invariant measure can be interpreted on these spaces as induced from the invariant
measure on the group itself by the action of the group on the set (for example, after fixing
a point x0 ∈ Sn, the measure of an open subset U of Sn can be defined by the Haar measure
of the set of all g ∈ SO(n + 1) such that gx0 ∈ U. Up to a normalization constant, this
gives exactly the Lebesgue measure on Sn, ref. [4]). These simple considerations lead to
the important problem of investigating the phenomenon of concentration of measure on
spaces endowed with the action of an infinite dimensional Lie group (thought as limits
of families of finite dimensional Lie groups) having an invariant normalized measure.
It is clear that the relevance of such a question goes beyond statistics: if the action of
the group on the space induces a measure that concentrates on a point, it is evident that
such point becomes a fixed point under the action of the group. Thus, the question is
strictly related to problems involving fixed point theorems under the action of infinite
dimensional Lie groups [5], such as, for example, the analysis of differential equation
systems. This problem has been tackled with a high level of abstraction by several authors.
Starting from the pioneering research of Levy in the 1950s [3], Milman’s work in the early
1970s, followed by Gromov’s later work [6], the notion of Levy Family has been used to
study concentration phenomenon (for an exhaustive survey on the subject, see [7–9] or
the most recent [10]).

However, one of our key observations to produce new explicit examples is that this
phenomenon is mostly an asymptotic effect that can be understood even in finite dimen-
sional spaces. Looking at the concentration of measure in finite spaces, such as in the above
toy example, suggests a way to understand in which way and where such concentration
tends to be concretized. Indeed, in [1], we introduced the notion of Concentration Locus,
which is a kind of “localized” version of concentration. In a sense, we detect in which part
of the spaces, along the process of concentration, the measure concentrates.

In the present paper, we will provide explicit examples showing how the localization
of invariant measures takes place for compact Lie groups. We will show different tech-
niques apt to do it. We will make use of a formula due to Macdonald [11] for computing
the volumes of compact simple Lie groups and their subgroups. The knowledge of the ex-
plicit expression for such volumes combined with the generalized Euler parametrizations
of groups developed in [12] will allow us to infer concentration properties of the classical
sequences of compact simple Lie groups and to calculate explicitly a concentration locus for
some of them. These will be subspaces of codimension one or two, but we will also show
that the concentration locus is not unique and, indeed, we are able to identify subspaces of
the codimension that grow indefinitely with the dimension of the group. We also compute
the Ricci curvature of such groups [13,14] and apply a Gromov–Milman’s theorem [6] to
deduce the Levy property for them. This method will allow us to show how to construct
infinitely many concrete examples. Finally, we show how to extend our results to families
of arbitrary compact connected Lie groups.

The material is organized as follows. In Section 2, we recall the background material
necessary to understand the rest of the paper, including the notion of Levy Family, the no-
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tion of Concentration Locus, and the Macdonald’s formula. In Section 3, we show how to
compute the Ricci tensor of a compact simple Lie group endowed with the natural Killing
metric and then specify the results to the cases of all classical series of compact Lie groups
in order to deduce the Levy property for all of them, according to Gromov–Milman’s
theorem. In Section 4, we study the concentration loci for all the aforementioned classical
series. In particular, we make the calculations for the SU(n) series very explicit, showing
that it is not unique, but it can happen on subspaces of indefinitely increasing codimension.
Moreover, we show that around the concentration loci, the localization of the measure is
Gaussian. The analogue results for the other series are stated with the proof just sketched,
being exactly a repetition of the one for SU(n). At the end of the section, we show a strategy
for constructing an infinite number of examples, basing once again on Gromov–Milman’s
theorem. In Section 5, we present our concluding remarks and perspectives.

2. Background and Statements
2.1. Levy Family and Concentration Locus

Definition 1. For a set A in a metric space X, we denote by Nε(A), ε > 0, its e-neighborhood.
Consider a family (Xn, µn) with n = 1, 2, . . . of metric spaces Xn with normalized borel measures
µn. We call such a family Levy if for any sequence of Borel sets An ⊂ Xn, n = 1, 2, . . . , such that
lim infn→∞ µn(An) > 0, and for every ε > 0, we have limn→∞ µn(Nε(A)) = 1.

Definition 2. Let {Xn, µn}n∈N be a family of connected metric spaces with metrics gn, and µn
be measures with respect to which open sets are measurable of non-vanishing measure. Assume
the measures to be normalized, µn(Xn) = 1. Let {Sn}n∈N be a family of proper closed subsets,
Sn ⊂ Xn. Fix a sequence {εn}n∈N such that εn > 0, limn→∞ εn = 0, and let {Uεn

n }n∈N be
the sequence of tubular neighbourhoods of Sn of radius εn. We say that the measure concentrates
on the family {Sn} at least at a rate of εn if

lim
n→∞

µn(Xn −Uεn
n ) = 0. (5)

We will shortly say that the measure concentrates on Sn and will call it metric concentration.
In particular, when Xn are manifold, we call Sn a concentration locus if it is contained in a sub-
manifold of strictly positive codimension for any n. Moreover, if such a sequence εn converges to
0 at rate k (so that limn→∞ nkεn = c for some constant c), we say that the measure concentrates
on the family {Sn} at least at rate k.

Notice that in general, we may have µn(Sn) = 0. Moreover, with these definitions,
we do not need any notion of convergence of Sn to a final subset. Sn just gives a “direction
of concentration”. In addition, our definitions do not pretend to provide any optimality
in concentration: it can happen that for a given sequence of Sn, there exists a sequence
of proper subsets S′n ⊂ Sn on which we still have concentration. A special example of
Definition 2 consists in the case Xn = X and Sn = S where X is a metric space, {µn}n∈N is
a sequence of normalized measures on X, compatible with the metric of X, and S ⊂ X is
a proper closed subset of X.

2.2. The Macdonald’s Formula

Let us consider an arbitrary simple compact Lie algebra of dimension d and rank r.
It is characterized by p = (d− r)/2 positive roots αi, i = 1, . . . , p from which one can pick
out a fundamental set of simple roots, say αi, i = 1, . . . , r. To each non-vanishing root αi,
a coroot is associated

α̌ =
2α

(α|α) , (6)

where (|) is the scalar product induced by the Killing form on the real form H∗R of the dual
H∗ of the Cartan subalgebra H. The simple coroots define a lattice, whose fundamental
cell represents the fundamental torus Tr. The polynomial invariants of the algebra (and
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groups) are generated by r homogeneous polynomials of degree di, i = 1, . . . , r, which are
called fundamental invariants and depend on the algebra.

For such a Lie algebra, there can be several compact Lie groups. Each of them is
obtained by taking the quotient of the unique compact simply connected Lie group G with
respect to a subgroup Γ of the center Z of G: GΓ = G/Γ. Γ is isomorphic to π1(GΓ).

Theorem 1 (Hopf). The cohomology of a connected compact Lie group G of rank r over a field of
characteristic 0 is that of a product of r odd-dimensional spheres.

See [15]. Indeed, such spheres have dimension Di = 2di − 1, i = 1, . . . , r, where di
represents the degrees of the fundamental invariants. The Killing form induces on a simple
Lie group a unique (up to normalization) bi-invariant metric that gives to the compact
group a Riemannian structure. In particular, the corresponding Riemannian volume form
gives the Haar measure on the group. Normalizing the metric by fixing the length of any
given simple root completely fixes, by rigidity, the entire volume of the group, which can
then be computed by means of the Macdonald’s formula [11,16,17]:

V(GΓ) =
1
|Γ|V(Tr)

r

∏
i=1

V(S2di−1)
p

∏
i=1

(α̌i|α̌i), (7)

where |Γ| is the cardinality of Γ,

V(Tr) = |α̌1 ∧ . . . ∧ α̌r| (8)

and

V(S2di−1) = 2
πdi

(di − 1)!
. (9)

3. Levy Property from the Ricci Tensor

We can change the property of being Levy or not, simply by rescaling the distances
by i-dependent constants. In particular, if Xi, or better (Xi, gi), are compact Riemannian
manifolds, and µgi is the measure naturally associated to gi, we can then consider the family

Yi = (Xi, gi, µi), µi =
µgi

µgi (Xi)
, (10)

and ask whether it is Levy or not. A simple answer is given by a Corollary of the Theorem in
Section 2.1 in [6]: let ρ(i) the Ricci tensor determined by gi and define

ri = inf ρ(i)(τ, τ) (11)

taken in the set of all tangent vectors of unit length. The theorem states that if

lim
i→∞

ri = +∞, (12)

then Yi is Levy.
We will now compute the Ricci tensor for the simple groups in order to prove that

the classical sequences of simple Lie groups are Levy. The Maurer–Cartan (Lie algebra
valued) 1-form jjj over a compact Lie group G is related to the bi-invariant metric ggg over G by

ggg = −κ2K(jjj⊗ jjj), (13)
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where κ is a real normalization constant (for example, chosen so that G has volume 1),
and K is the Killing form over Lie(G), which is negative definite, since G is compact. jjj does
satisfy the Maurer–Cartan equation [18]

djjj +
1
2
[jjj, jjj] = 0, (14)

where [, ] is the Lie product combined with the wedge product, as usual. If we fix a basis Ti,
i = 1, . . . , d, for g = Lie(G) and define the structure constants by

[Ti, Tj] =
d

∑
k=1

c k
ij Tk, (15)

then, we can set

jjj =
d

∑
j=1

jjTj (16)

and the Maurer–Cartan equation becomes

djk +
1
2 ∑

i,j
ji ∧ jjc k

ij = 0. (17)

If we look at the components of jjj as defining a vielbein ei, i = 1, . . . , d, associated to a metric

g̃ij = δijei ⊗ ej, (18)

we see that the Maurer–Cartan equation can be seen as the structure equation for the Levi–
Civita connection (in terms of the Ricci rotation coefficients):

dek + ∑
j

ωk
je

j = 0, (19)

which thus gives

ωk
j = ∑

i

1
2

c k
ij ei. (20)

The curvature two form is then

Ωk
j = dωk

j + ∑
l

ωk
l ∧ωl

j. (21)

Its components Rk
jlm with respect to the vielbein are thus

Rk
jlm =

1
4 ∑

s
C s

lmC k
js (22)

from which we see that the Ricci tensor has components

ρij ≡ Rm
imj = −

1
4

Kij, (23)

where K is the Killing form. Let us fix the compact simple Lie group G and fix any basis {Ti}
for the Lie algebra in the smallest faithful representation σ. A standard choice is to assume
that the basis is orthonormalized with respect to the condition (standard normalization, see
Section 3.2).

− 1
2

Tr(σ(Ti) ◦ σ(Tj)) = δij (24)
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which is natural since G is compact. This is also a bi-invariant metric; hence, there exists
a positive constant χG (independent from Γ) such that

Kij = −χGδij (25)

so that
ρij =

χG
4

δij, (26)

or, in coordinates,
ρij =

χG
4

g̃ij. (27)

The coefficients χG for the classical series of simple groups are computed below.
We have: χSU(n) = n + 2, χSO(n) = n− 2 and χUSp(2n) = 2n + 2.

Therefore, we get the following corollary of the Gromov–Milman theorem:

Corollary 1. Let
Zi = (Gi, g̃i, µi), (28)

where Gi is any one of the classical sequences of the compact simple Lie group, which is considered
in the previous section, g̃i is the corresponding standardly normalized biinvariant metric, and µi is
the Riemannian normalized measure. Then, {Zi}i is a Levy family.

Proof. From (27), we get

ri =
χG
4

. (29)

From the values of χG, we get

ri =


i+2

4 if G = SU(i),
i−2

4 if G = SO(i),
i+1

2 if G = USp(2i).

(30)

Then, limi→∞ ri = +∞.

3.1. Computation of χG

The strategy for computing the coefficient χG is very simple: after choosing an or-
thonormal basis Ti in the smallest faithful representation σ, we use it to compute one of
these matrices in the adjoint representation. Then

χg = −1
2

Tr(ad2
T1
). (31)

We will indicate with Ei,j the elementary matrix having as the only non-vanishing
element the one at line i and column j, which is 1.

The unitary case: The representation σ of su(n) is realized by the anti-hermitian
n × n matrices having a vanishing trace. A basis is given by (see [19,20]) Hk, Skj, Akj,
k = 1, . . . , n− 1, 1 ≤ k < j ≤ n, where

Hk = i
√

2√
k2+k

(E1,1 + . . . + Ek,k − kEk+1,k+1), k = 1, . . . , n− 1, (32)

Sk,j = i(Ei,j + Ej,i), k < j, (33)

Ak,j = Ek,j − Ej,k, k < j. (34)

Let us construct the adjoint matrix of H1. The only non-vanishing commutators of H1 are

[H1, A1,2] = 2S1,2, [H1, S1,2] = −2A1,2, (35)
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[H1, A1,j] = S1,j, [H1, S1,j] = −A1,2, j = 3, . . . , n. (36)

In order to compute (ad(H1))
2, we have to compute again the commutator, which gives

ad2
H1
(A1,2) = −4A1,2, ad2

H1
(S1,2) = −4S1,2, (37)

ad2
H1
(A1,j) = −A1,j, ad2

H1
(S1,j) = −S1,j, j = 3, . . . , n. (38)

Taking the trace, we get χSU(n) = n + 2.
The orthogonal case: The representation σ of so(n) is realized by the anti-symmetric

n× n matrices (see [19]). A basis is given by Akj, 1 ≤ k < j ≤ n, where

Ak,j = Ei,j − Ej,i, k < j. (39)

Let us consider ad(A1,2). The only non-vanishing commutators are

[A1,2, A1,j] = −A2,j, [A1,2, A2,j] = A1,j, j = 3, . . . , n. (40)

Iterating the commutators, we get

adA1,2(A1,j) = −A1,j, adA1,2(A2,j) = −A2,j, j = 3, . . . , n. (41)

After taking the trace, we get χSO(n) = n− 2.

The symplectic case: The representation σ of usp(n) is realized by the anti-hermitian
2n× 2n matrices having the form (

A B
C −At

)
, (42)

where B and C are symmetric (see [19]). A basis is given by

Ha = i(Ea,a − Ea+n,a+n), a = 1, . . . , n; (43)

Sd
ij = i√

2
(Ei,j + Ej,i − Ei+n,j+n − Ej+n,i+n), i < j; (44)

Ad
ij = 1√

2
(Ei,j − Ej,i + Ei+n,j+n − Ej+n,i+n), i < j; (45)

Ta = i(Ea,a+n + Ea+n,a), a = 1, . . . , n; (46)

Sa
ij = i√

2
(Ei,j+n + Ej,i+n + Ei+n,j + Ej+n,i), i < j; (47)

Ua = (Ea,a+n − Ea+n,a), a = 1, . . . , n; (48)

Aa
ij = 1√

2
(Ei,j+n + Ej,i+n − Ei+n,j − Ej+n,i), i < j. (49)

We consider the adjoint representation of H1. The non-vanishing commutators are

[H1, Sd
1,j] = −Ad

1j, [H1, Ad
1,j] = Sd

1j, j = 2, . . . , n, (50)

[H1, T1] = −2U1, [H1, U1] = 2T1, (51)

[H1, Sa
1,j] = −Aa

1j, [H1, Aa
1,j] = Sa

1j, j = 2, . . . , n. (52)

Iterating the commutators, we get

ad2
H1
(Sd

1,j) = −Sd
1j, ad2

H1
(Ad

1,j) = −Ad
1j, j = 2, . . . , n, (53)

ad2
H1
(T1) = −4T1, ad2

H1
(U1) = −4U1, (54)

ad2
H1
(Sa

1,j) = −Sa
1j, ad2

H1
(Aa

1,j) = −Aa
1j, j = 2, . . . , n. (55)
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Finally, by taking the trace, we get χUSp(2n) = 2n + 2.

3.2. On the Standard Normalization

The standard normalization of the metric has a clear meaning if referred to the two-
plane rotations, which are the rotations leaving fixed a codimension 2 space. These are
contained in each group, and are, for example, the one generated by each of the generators
Ak,j of SU(n), each of the generators of SO(n), or each of the Ua in the symplectic case.
In order to understand its meaning, let us fix for example Ak,j and consider the one
parameter subgroup defined by

R ≡ R(θ) ≡ Rk,j(θ) = exp(θAk,j). (56)

It represents rotations of the k–j plane by θ and has a periodicity of 2π. Let us consider
the normalized metric restricted to that orbit O ≡ Ojk = R([0, 2π]). A simple calculation gives

g|O = −1
2

Tr(R−1dR⊗ R−1dR) = dθ2. (57)

Thus, the total length of the whole orbit, correspondent to a continuous rotation of
a round angle, is exactly 2π.

4. Concentration Locus on Compact Lie Groups

We will start by considering the concentration of measure on compact Lie group
families by direct inspection of their geometries invariant measures. Let us consider
the cases of the classical series. In this case, we will prove not only that one gets Levy
families, but we will also individuate at least a concentration locus.

4.1. Concentration Locus on Simple Compact Lie Groups

We consider the classical series of simple Lie groups. We will always mean the simply
connected compact form of the groups and will consider the standard normalization for
the matrices. By Corollary 1, any sequence of them is a levy family. In this section, we make
a concrete calculation of a concentration locus for each of them.

4.1.1. Special Unitary Groups

The group SU(n) of unitary n × n matrices with unitary determinant is a simply
connected group of rank n− 1, and its Lie algebra is the compact form of An−1, that is,
su(n). The center is Zn, generated by the n-th roots of 1. The degrees of the fundamental
invariant are di = i + 1, i = 1, . . . , n− 1. The spheres generating the cohomology have
dimension Di = 2i + 1. With the standard normalization, a fundamental system of the
simple root can be represented as follows:

One identifies isometrically H∗R with a hyperplane of Rn as

H∗R ' {(x1, . . . , xn) ∈ Rn|x1 + . . . + xn = 0}. (58)

In this representation, if eeei, i = 1, . . . , n is the canonical (orthonormal) basis of Rn, and
the simple roots are

αi = eeei − eeei+1, i = 1, . . . , n− 1. (59)

All roots have square length 2 and coincide with the coroots. The dimension of
the group is n2 − 1, so that there are p = n(n − 1)/2 positive coroots. The volume of
the torus is

V(Tn−1) = |(eee1 − eee2) ∧ . . . ∧ (eeen−1 − eeen)| =
√

n. (60)
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Thus, Macdonald’s formula (7) gives

V(SU(n)) =
√

n(2π)
n(n+1)

2 −1

∏n−1
i=1 i!

. (61)

It follows that

V(SU(n + 1))
V(SU(n))

=

√
n + 1

n
(2π)n+1

n!
∼
√

2π

n

(
2πe

n

)n
, (62)

so that, since dimSU(n + 1)−dimSU(n) = 2n + 1, we have

(
V(SU(n + 1))

V(SU(n))

) 1
2n+1
∼
(

2πe
n

)1/2
. (63)

This is substantially the same behavior as for the spheres (of radius 1), [3], and it
implies the concentration of the measure. Indeed, it means that the volume of SU(n) ⊂
SU(n + 1) grows much faster with n than the volume of SU(n + 1). This means that if we
take the normal bundle of SU(n) in SU(n + 1) and take a neighborhood Tn of SU(n) of
radius ε in the normal directions, we get for the volume of this neighborhood

V(SU(n + 1))
Tn

∼
√

2π

n

(
2πe
nε2

)n 1
ε

, (64)

which for any given ε decreases to 0 when n → ∞. However, it does not give us direct
information on how the concentration sets move. A more precise result is the following.

Proposition 1. Consider the family of simple Lie groups SU(n + 1) endowed with the usual
biinvariant metric. Let us consider the Hopf structure of SU(n + 1), t.i. U(n) ↪→ SU(n + 1) −→
CPn. Let Sn be the hyperplane at infinity in CPn, and

ι : Sn ↪→ CPn (65)

the corresponding embedding. Finally, let µn be the normalized invariant measure on SU(n + 1).
Then, after looking at SU(n + 1) as a U(n)-fibration over CPn, the invariant measure concentrates
on the real codimension 2 subvariety

Σn = ι∗(SU(n + 1)), (66)

in the sense of Definition 2, with constant ε.

Proof. Recall that U(n) ⊂ SU(n + 1) is a maximal proper Lie subgroup and CPn =
SU(n + 1)/U(n) (and SU(n) ⊂ U(n)). Therefore, one expects for the measure µSU(n+1) to
factorize as

dµn = dµCPn × dµU(n). (67)

Now, CPn ' S2n+1/U(1) and the natural metric over it is the Fubini–Study metric that
is invariant under the action of the whole SU(n + 1) group. Thus, we expect the measure
dµCPn , inherited from the whole invariant measure, to be the Riemannian volume form
corresponding to the Fubini–Study metric. On the other hand, the relation between CPn

and S2n+1 suggests that the concentration of the measure of dµCPn should happen over
some codimension two submanifold S ⊂ CPn. This would imply that the whole invariant
measure of SU(n + 1) concentrates on a U(n) fibration over S. This is the strategy of
the proof that we will now make explicit. To this aim, we employ the explicit construction
of the invariant measure over Lie groups given in [12]. In particular, the analysis of
the geometry underlying the construction of the invariant measure for SU(n) has been
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performed in [17]. Fix a generalized Gell–Mann basis {λI}n2+2n
I=1 for the Lie algebra of

SU(n + 1) as in [17]. Thus, the first n2 matrices generate the maximal subgroup U(n),
the last one being the U(1) factor, and, in particular, the matrices {λ(a+1)2−1}n

a=1 generate
the Cartan torus Tn. Then, the parametrization of SU(n + 1) can be obtained inductively as

SU(n + 1) 3 g = h · u, (68)

where u ∈ U(n) is a parametrization of the maximal subgroup, and

h = eiθ1λ3 eiφ1λ2
n

∏
a=2

[ei(θa/εa)λa2−1 eiφaλa2+1 ], εa =

√
2

a(a− 1)
, (69)

parametrizes the quotient. From h, one can construct a vielbein for the quotient as follows.
Let Jh be the Maurer–Cartan one-form of SU(n + 1) restricted to h. Then, set

el =
1
2

Tr[jh · λn2+l−1], l = 1, . . . , 2n. (70)

They form a vielbein for SU(n + 1)/U(n) ' CPn so that

s2
CPn = δlmel ⊗ em, (71)

dµCPn = det e (72)

are the metric and invariant measure, respectively, induced on CPn. In particular, one gets

det e = 2dθndφn cos φn sin2n−1 φn

n−1

∏
a=1

[sin φa cos2a−1 φadθadφa]. (73)

One can also write down the metric. Indeed, it has been shown in [17] that it is exactly
the Fubini–Study metric for CPn written in unusual coordinates. Since this is relevant for
our analysis, let us summarize it. Let (ζ0 : · · · : ζn) be the homogeneous coordinates and

K =
1
2

log(|ζ0|2 + . . . + |ζn|2) (74)

be the Kähler potential. Fix a coordinate patch, say U0 = {ζ : ζ0 6= 0} with the relative
non-homogeneous coordinates zi = ζi/ζ0, i = 1, . . . , n. When z varies in Cn, the coordinate
patch covers the whole CPn with the exception of a real codimension two submanifolds
defined by the hyperplane

Sn ≡ CPn−1 = {0 : ζ1 : · · · : ζn}, (75)

the so-called hyperplane at infinity. In these local coordinates, the Fubini–Study metric has
components gi j̄ = ∂2K/∂zi∂z̄j:

ds2
F−S =

∑i dzidz̄i
1 + ∑j |zj|2

−
∑i,j z̄idzizjdz̄j

(1 + ∑j |zj|2)2 . (76)

Following [17], let us introduce the change of coordinates

zi = tan ξRi(ω)eiψi (77)
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where Rj(ω) is an arbitrary coordinatization of the unit sphere Sn−1, ψi ∈ [0, 2π), ξ ∈
[0, π/2). In these coordinates,

ds2
F−S = dξ2 + sin2 ξ

[
∑

i
dRidRi + ∑

i
R2

i dψidψi

]
− sin4 ξ

[
∑

i
R2

i dψi

]2

. (78)

In [17], it has been proved that this metric coincides with (71) after a simple change of
variables, which, in particular, includes ξ = φn. On the other hand, from (73), using

∫ π/2−ε

0
cos φn sin2n−1 φndφn =

cos2n ε

2n
, (79)

we see that the measure over CPn concentrates around φn = ξ = π/2. Finally, since

(1 : tan ξR1(ω)eiψ1 : · · · : tan ξRn(ω)eiψn) = (1/ tan ξ : R1(ω)eiψ1 : · · · : Rn(ω)eiψn)

7→ (0 : R1(ω)eiψ1 : · · · : Rn(ω)eiψn)
(80)

when ξ → π/2, we see that the concentration is on the hyperplane Sn at infinity. Thus, if

ι : Sn ↪→ CPn (81)

is the embedding of the hyperplane and if we look at SU(n + 1) as a fibration over CPn,
we get that the whole measure concentrates on

Σ = ι∗(SU(n + 1)), (82)

which is what we had to prove.

Remark 1. It is worth remarking that we are not saying the sequence of manifolds we have selected
completely describes the concentration. Indeed, it is obvious that the concentration can take place on
proper subspaces of the sequence. For example, (79) shows that the volume of the region Bε defined
by |ξ − π/2| > ε, so in the complement of the concentration locus, it has volume vanishing as

∼ e−nε2
. (83)

Let us now take ε→ ε/
√

N and consider N regions Bk
ε/N , k = 1, . . . , N associated to N CPn

planes intersecting transversally in a point p of our concentration locus. Then,
⋃N

k=1 Bk
ε/N has a

volume of order Vn ∼ Ne−nε2/N . Its complement is a subset of codimension N of the concentration
locus. In order to have Vn → 0, it is sufficient that, for example,

Ne−nε2/N ∼ N
n

(84)

to that we can consider N ≡ Nn as dependent on n, with the condition that

Nn
log n

n
→ 0 (85)

when n→ ∞ with ε fixed. Therefore, the codimension in general can diverge, and we get concen-
tration loci of divergent codimension. This shows that it is not clear at all if a notion of optimal
concentration can be defined.

Remark 2. In order to get uniform concentration in the sense of Gromov and Milman, we have to
add a further hypothesis to our proposition, as already suggested by Formula (63). From Corollary 1,
we see that if one normalizes the size of SU(n + 1) so that its coroots have length 2 (the standard
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choice), then its scalar curvature is rn = n+3
4 . However, we can, in general, relax this condition

and leave the length |α̌| of the coroots free. In this case, the scalar curvature becomes

rn =
n + 2
|α̌n|2

. (86)

Following [6], we see that we have a Levy family if |α̌n| grows less than
√

n. It is interesting
to notice that if we approximate the shape of the group as the product of n spheres of radius |α̌n|,
then its diameter scales as |α̌n|

√
n. Thus, the uniform concentration is guaranteed if the diameter of

the group grows less than ∼ n. Since the dimension of SU(n + 1) is dn = n2 + 2n, we see that
the condition is such that the diameter must grow less than

√
dn, which is very similar to the case of

the spheres.
Finally, this can also be understood from (79). Indeed, keeping the diameter fixed, we see

that the ε dependence is dominated by the therm cos2n ε = (1− sin2 ε)n. In place of rescaling
the diameter, assume we rescale ε in a n-dependent way, so ε→ εn, and assume that εn → 0 when
n→ ∞. Therefore, for large n, we have

cos2n ε ∼ e−nε2
n , (87)

which converges to zero only if nε2
n → ∞. This means that εn must decrease to 0 slower than n−

1
2 ,

which is to say that ε/|α̌| must go to zero slower than n−
1
2 independently from how we allow ε and

|α̌| to vary separately with n.

Remark 3. The concentration metric in the form (78) becomes degenerate at the concentration
locus when ξ = π

2 , since one has to further fix one of the phases ψj. Nevertheless, if we consider a
region Vr of ξ-radius π/2− ξ = r around that locus, since the total measure is normalized to 1,
we see from (79) that its volume is

µ(Vr) = 1− cos2n r. (88)

As in [8], Section 2.1, we can use the inequality cos r ≤ e−
r2
2 for 0 ≤ r ≤ π

2 , so that

µ(Vr) ≥ 1− e−nr2
, (89)

which gives us an estimation of how much the measure concentrates around the singular locus: for
any fixed r > 0, the measure of Vr converges exponentially to the full measure when n increases.

It is worth mentioning that the limit topology depends not only on the topology of each
space of the chain but also from the embeddings defining the sequence of groups. For example,
we can replace the canonical embedding U(n) ⊂ U(n + 1) with the embeddings

U(n)
J
↪→ SU(n + 1) ⊂ U(n + 1) (90)

with

J(X) =

(
X ~0
~0t det X−1

)
.

These embeddings lead to the result SU(∞)J = U(∞)J for any limit topology we choose.
Observe that if we use canonical embeddings, it is unknown whether the inductive limit
SU(∞) is extremely amenable or not [21].

4.1.2. Odd Special Orthogonal Groups

The second classical series of simple groups is given by the odd-dimensional special
orthogonal groups SO(2n + 1) of dimension n(2n + 1) and rank n. The center of the uni-
versal covering Spin(2n + 1) is Z2. The Lie algebra is the compact form of Bn, n ≥ 2.
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The invariant degrees are di = 2i, i = 1, . . . , n and the dimensions of the spheres generating
the cohomology are Di = 4i− 1. If we choose the standard normalization, a fundamental
system of simple roots in Rn ' H∗R is given by αi = eeei − eeei+1, i = 1, . . . , n− 1, and αn = eeen.
The corresponding coroots are α̌i = αi for i = 1, . . . , n − 1, and α̌n = 2αn. There are
p = n2 positive coroots, n of which have length 2 and the others have a square length of 2.
The volume of the torus is

V(Tn) = |(eee1 − eee2) ∧ (eeen−1 − eeen) ∧ 2eeen| = 2. (91)

The Macdonald’s formula thus gives

V(Spin(2n + 1)) =
2n(n+2)+1πn(n+1)

∏n
i=1(2i− 1)!

, (92)

so that
V(Spin(2n + 1))
V(Spin(2n− 1))

=
22n+1π2n

(2n− 1)!
∼
√

4π

n− 1
2

(
2πe

2n− 1

)2n−1
. (93)

Since dimSpin(2n + 1)−dimSpin(2n− 1) = 4n− 1, we have

(
V(Spin(2n + 1))
V(Spin(2n− 1))

) 1
4n−1
∼
(

2πe
2n

)1/2
, (94)

which shows the same behavior as for the unitary groups. Again, in order to understand
how concentration works, we have to do some geometry.

Proposition 2. Consider the sequence of simple groups Spin(2n + 1) endowed with the bi-
invariant metric. Set Bn = S2n × S2n−1 ≡ Spin(2n + 1)/Spin(2n− 1) so that Spin(2n + 1)
looks as a Spin(2n − 1)-fibration over Bn. Finally, let Sn be a bi-equator of Bn (the Cartesian
product of the equators of the two spheres), and

ι : Sn ↪→ Bn (95)

the corresponding embedding. Then, in the limit n→ ∞, the invariant measure µn of Spin(2n + 1)
concentrates on the codimension two subvariety

Σn = ι∗(Spin(2n + 1)), (96)

in the sense of Definition 2.

Proof. Since the proof is much simpler than in the previous case, we just sketch it, leaving
the details to the reader. By using the methods in [12], in a similar way as before, it is easy
to prove that the invariant measure dµn factorizes as

dµSpin(2n+1) = dµSpin(2n−1) × dmS2n × dmS2n−1 , (97)

where dm is the Lebesgue measure (an independent way to see it is to notice that the mea-
sure is invariant under translations, and the quotient of the fibration is completed exactly
through the action of translations under a subgroup). Therefore, since it is well known
that the Lebesgue measures on the spheres concentrate over the equators, again, the mea-
sure dµn concentrates on a Spin(2n− 1) fibration over a codimension two submanifold of
S2n × S2n−1.

4.1.3. Symplectic Groups

The compact form USp(2n) of the symplectic group of rank n has dimension 2n2 + 2.
Its center is Z2 and its Lie algebra is the compact form of Cn, n ≥ 2. The invariant degrees are
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the same as for SO(2n + 1), so they have the same sphere decomposition. In the standard
normalization, the roots of USp(2n) are the coroots of SO(2n + 1) and vice versa. Therefore,
we have n2 − n coroots of length

√
2 and n of length 1. The volume of the torus is

V(Tn) = |(eee1 − eee2) ∧ (eeen−1 − eeen) ∧ eeen| = 1, (98)

and the volume of the group is

V(Usp(2n)) =
2n2

πn(n+1)

∏n
i=1(2i− 1)!

. (99)

Again, we get (
V(USp(2n))

V(USp(2n− 2))

) 1
4n−1
∼
(

2πe
2n

)1/2
. (100)

Proposition 3. Consider the sequence of symplectic groups USp(2n) endowed with the bi-invariant
metric. Set S4n−1 ≡ USp(2n)/USp(2n− 2) so that USp(2n) looks as an USp(2n− 2)-fibration
over Bn = S4n−1. Finally, let Sn be an equator of Bn, and

ι : Sn ↪→ Bn (101)

be the corresponding embedding. Then, in the limit n → ∞, the invariant measure µn of
Spin(2n + 1) concentrates on the codimension one subvariety

Σn = ι∗(USp(2n)), (102)

in the sense of Definition 2.

The proof is the same as for the spin groups.

4.1.4. Even Special Orthogonal Groups

The last series is given by the even-dimensional special orthogonal groups SO(2n) of
dimension n(2n− 1) and rank n. The center of the universal covering Spin(2n) is Z2 ×Z2
if n = 2k and Z4 if n = 2k + 1. The Lie algebra is the compact form of Dn, n ≥ 4. The
invariant degrees are di = 2i, i = 1, . . . , n− 1, dn = n and the dimensions of the spheres
generating the cohomology are Di = 4i− 1, i = 1, . . . , n− 1, Dn = 2n− 1. If we choose
the standard normalization, a fundamental system of simple roots in Rn ' H∗R is given by
αi = eeei − eeei+1, i = 1, . . . , n− 1, and αn = eeen1 + eeen. The corresponding coroots are α̌i = αi
for i = 1, . . . , n, and all have length

√
2. There are p = n2 − n positive coroots. The volume

of the torus is
V(Tn) = |(eee1 − eee2) ∧ (eeen−1 − eeen) ∧ (eeen−1 + eeen)| = 2. (103)

Thus,

V(Spin(2n)) =
2n2+1πn2

(n− 1)! ∏n−1
i=1 (2i− 1)!

, (104)

and
V(Spin(2n))

V(Spin(2n− 2))
=

2(2π)2n−1

(2n− 2)!
∼
√

4π

n− 1

(
2πe

2n− 2

)2n−2
. (105)

Since dimSpin(2n)−dimSpin(2n− 2) = 4n− 3, we have

(
V(Spin(2n))

V(Spin(2n− 2))

) 1
4n−3
∼
(

2πe
2n

)1/2
, (106)

which, again, shows concentration.
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Proposition 4. Consider the sequence of simple groups Spin(2n + 2) endowed with the bi-
invariant metric. Set Bn = S2n+1 × S2n ≡ Spin(2n + 2)/Spin(2n) so that Spin(2n + 2)
looks as a Spin(2n)-fibration over Bn. Finally, let Sn be a bi-equator of Bn, and

ι : Sn ↪→ Bn (107)

be the corresponding embedding. Then, in the limit n → ∞, the invariant measure µn of
Spin(2n + 2) concentrates on the codimension two subvariety

Σn = ι∗(Spin(2n + 2)) (108)

in the sense of Definition 2.

This exhausts the classical series. Further considerations can be made by using the Rieman-
nian structure analyzed in Section 3. Here, we limit ourselves to notice that in principle, we can
construct a huge number of Levy families as a consequence of the Theorem in Section 1.2, page
844 of [6]:

Corollary 2. Let Yi = (Xi, gi, µi) be a family of compact Riemannian spaces with natural nor-
malized Riemannian measures. Assume there is a positive constant c > 0 such that definitely
ri ≥ c, where

ri = inf ρ(i)(τ, τ) (109)

with the information taken in the set of all tangent vectors of unit length. Consider any sequence of
positive constants ci such that

lim
i→∞

ci = ∞. (110)

Then, the new family

Ỹi = (Xi, g̃i, µi), g̃i =
1
ci

gi (111)

is Levy.

Proof. Obviously, r̃i = ciri. Since definitely ri ≥ c, we have limi→∞ r̃i = +∞.

5. Further Comments and Conclusions

In a companion paper, [1], we have introduced the notion of “concentration locus” for
sequences of groups Gn, Gn ⊆ Gn+1, endowed with normalized invariant measures. Then,
we have shown in which sense the mapping of the concentration locus on a set, through
its action on that set, governs the concentration of the measure on the set and eventually
determines the presence of a fixed point. Here, we have seen how a concentration locus
can be determined for the classical series of compact Lie groups. This loci can have an
unboundedly increasing codimension and determine probes for analyzing the action of
some infinite dimensional Lie groups on (not necessarily) compact sets or manifolds.
We remark that the question about the extreme amenability of SU(∞), for example, is still
an open problem [21]. The result we obtained for the classical series can be easily extended
to more general sequences of compact Lie groups.

Proposition 5. Let {Gn} be a family of connected compact Lie groups of the form

Gn = G(1)
n × · · · × G(kn)

n × Tsn /ZGn , (112)

where Tsn is a torus of dimension sn, G(1)
n × · · · × G(kn)

n is the product of kn compact connected
simple Lie group, and ZGn is a finite subgroup. Suppose that among the factors of G(1)

n × · · ·×G(kn)
n ,

there exists a finite dimensional connected compact Lie group G0 common to all n. Alternatively,
assume that sn 6= 0 for n > n0. Then, there exists at least a finite dimensional compact manifold
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K admitting an equicontinuous action of G∞, which is taken with the inductive limit topology
without fixed points.

If at least one of the Gjn
n determines a classical sequence {Gjn

n }n∈N of compact Lie groups, then
a concentration locus of Gn is obtained restricting the factors Gjn

n to the corresponding concentration loci.

The proof is simple and is sketched in Appendix A. In the first part, obviously, K = G0
or K = S1. It generalizes the known result that U(∞) is not extremely amenable. The second
part is just a corollary of our results in the previous sections.

It would be interesting to relate the concentration of the measure around the concen-
tration loci to the phenomenon of optimal transport. We expect such a connection to be
governed by the way the process of concentration around concentration loci is realized
in our examples. We plan to investigate such connection in a future work.
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Appendix A. Proof of Proposition 5

In this section, we provide a sketch of the proof of Proposition 5. Let us first assume
that among the factors of G(1)

n × · · · × G(kn)
n , there exists a finite dimensional connected

compact Lie group G0 common to all n, say G(jn)
n for some given sequence jn, n = 1, 2, . . ..

The fact that these are common factors just means that there does exist a compact simple
Lie group G and a sequence of group isomorphisms

An : G(jn)
n −→ G. (A1)

These isomorphisms determine actions of Gn on G all equivalent to the natural action
of G on itself. This shows that K = G is a compact manifold on which all Gn act without
fixed points, and then, their inductive limits do the same.

In a similar way, if sn > 0 for n > n0, we can select in each Tsn at least a circle
isomorphic to S1. In this way, each Gn acts as U(1) on this S1, and we can identify K = S1

as the compact group on which the inductive limit of the family Gn acts without fixed points.
Finally, assume that at least one of the Gjn

n determines a classical sequence {Gjn
n }n∈N

of compact Lie groups. Therefore, Propositions 1– 4 ensure that the invariant measures on
{Gjn

n }n∈N concentrate on a suitable non-trivial invariant locus Σjn ⊂ Gjn
n . Since the measure

on Gn factorizes as the direct product of the measures on the factors, this implies that
the invariant measure on Gn concentrates at least on the product of Σjn times the remaining
factors, which are then quotiented with the discrete subgroups. This completes the proof of
the proposition.
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