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Abstract: Let G be a (molecular) graph with n vertices, and di be the degree of its i-th vertex. Then,
the inverse sum indeg matrix of G is the n× n matrix C(G) with entries cij =

didj
di+dj

, if the i-th and the
j-th vertices are adjacent and 0 otherwise. Let µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of C arranged
in order. The inverse sum indeg energy of G, εisi(G) can be represented as ∑n

j=1 |µi|. In this paper,
we establish several novel upper and lower sharp bounds on µ1 and εisi(G) via some other graph
parameters, and describe the structures of the extremal graphs.

Keywords: inverse sum indeg index; energy; ISI matrix; ISI energy

1. Introduction

In the whole article, let G be an undirected simple finite graph with the collection
of vertex V(G) = {u1, u2, . . . , un} and edge E(G). We use ui ∼ uj to represent two ad-
jacent vertices ui and uj, and uiuj to indicate the edge in E(G) with two end vertices ui
and uj. The degree of vertex ui is represented by di, and a j-vertex denotes a vertex of
degree j. An n-vertex graph denotes the graph of order n. We call δ = min1≤i≤n{di} and
∆ = max1≤i≤n{di} the minimum degree and the maximum degree of an n-vertex graph G,
respectively. Furthermore, (n, m)-graph denotes the graph of order n and size m. Analo-
gously, let (n, m, δ, ∆)-graph express the graph of order n, size m, minimum degree δ and
maximum degree ∆. Let tr(M) stand for the trace of matrix M. An independent set of G is a
subset S ⊂ V(G), so that in the induced subgraph G[S] exist no edges. Furthermore, α(G)
signifies the independence number of G [1].

A graph possessing only r-vertex is named as an r-regular graph. Let s 6= t be two
positive integers; a graph G is called an (s, t)-semiregular if it possesses either s-vertex or
t-vertex, and there exists no fewer than one s-vertex and one t-vertex.

Let A = A(G) stand for the adjacency matrix of graph G. We call set SpA(G) =
{λ1, λ2, . . . , λn} the A-spectrum of G. We list the eigenvalues of A(G) in order λ1 ≥ λ2 ≥
. . . ≥ λn, and call the maximum eigenvalue, λ1, the spectral radius of G.

Among the various utilizations of graph theory in chemistry, the close relationship
between the graph eigenvalues and the molecular orbital energy levels of π electrons in
conjugated hydrocarbons is the most significant. In theoretical chemistry, with the help of
the Hückel theory, the π-electron energy of conjugated carbon molecules is found to be
consistent with the energy [2–4]. Accordingly, graph energy has rich meanings, both in
theory and practice.

The energy [3,5,6] of the graph G is defined as

ε = ε(G) =
n

∑
i=1
|λi| . (1)

This concept was introduced by Gutman [5] and is frequently studied in chemistry.
The energy of chemically relevant molecular graphs was shown to be quantitatively related
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with the experimentally determined heats of formation and other measures of the thermo-
dynamic stability of underlying conjugated compounds. Following in-depth research, it
was found that this graph parameter can be successfully utilized in many fields, not only
in chemistry [3,7,8]. In consideration of the successful development of the mathematical
theory of graph energy, many extended graph energies have been gradually proposed
based on the eigenvalues of other graph matrices, such as the (first) Zagreb matrix [9],
the harmonic matrix [10], etc.; see [3,9,11–17] and some more recent results to be found
in [18–20].

In [21], Gutman et al. introduced the Randić matrix, R(G) = (rij)n×n, of a graph G,
where rij =

1√
didj

if vivj ∈ E(G) and is 0 otherwise. Denote its eigenvalues by ρ1 ≥ ρ2 ≥
. . . ≥ ρn. Then, in analogy to Equation (1), the Randić energy is defined as

RE = RE(G) =
n

∑
i=1
|ρi| . (2)

The extended adjacency matrix of graph G, denoted by Aex = Aex(G), was put forward

by Yang et al. [22] and is defined so that its (i, j) entry is equal to 1
2 (

di
dj
+

dj
di
) if vivj ∈ E(G)

and is 0 otherwise. The extended graph energy is defined as

εex = εex(G) =
n

∑
i=1
|ζi| . (3)

where ζ1 ≥ ζ2 ≥ . . . ≥ ζn are the ordered eigenvalues of Aex.
In [12], Das et al. gave lower and upper bounds on the extended spectral radius ζ1 and

the extended energy εex of graphs and the respective extremal graphs were characterized.
Topological indices are of great importance to mathematical chemistry. A great deal of

topological indices, such as the Randić index [23], atom–bond-connectivity index [24], sum-
connectivity index [25], augmented Zagreb index [26], the eccentric-connectivity index [27],
Zagreb indices [6,28], the general eccentric-connectivity index [29], the general degree-
eccentricity index [30], etc., were introduced to reveal the properties of organic compounds
from different aspects. One of those numerical descriptors, the inverse sum indeg index (ISI
index for short) is an especially interesting vertex-degree-based topological index, which is
defined as

ISI(G) = ∑
vivj∈E(G)

didj

di + dj
.

In 2010, Vukičević and Gašperov [31] proposed the ISI index, which can distinctively
forecast the overall surface area of octane isomers.

Similar to the Randić matrix and the extended adjacency matrix, Li et al. [32] and
Zangi et al. [33] defined the inverse sum indeg matrix (ISI matrix for short) C = C(G) of a
graph G as the matrix with entries:

cij :=

{ didj
di+dj

, i f vivj ∈ E(G)

0, otherwise,

respectively. Note that C is a modification of the classical adjacency matrix involving the
degrees of the vertices.

Denote by µ1 ≥ µ2 ≥ . . . ≥ µn the ordered eigenvalues of C. The multiset Spisi =
Spisi(G) = {µ1, µ2, . . . , µn} will be called the ISI spectrum of the graph G. We say µ1 is the
ISI spectral radius of G. Extending the energy concept to the ISI matrix, the ISI energy of a
graph G can be defined as follows

εisi = εisi(G) =
n

∑
i=1
|µi| . (4)
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In recent years, researchers have found that graph energy and its variants have diverse,
amazing and, to some extent, unanticipated utilizations in crystallography [34,35], the
analysis and comparison of protein sequences [36,37], the theory of macromolecules [38,39],
network analysis [40–45], and so on. It is noted that there is a very close relationship
between the ε(G) and εisi(G) of graphs. Therefore, we can use εisi(G) to obtain the ε(G) of
numerous kinds of graphs. Consequently, it has not only theoretical importance, but also
practical significance in εisi(G) research.

In 2018, Das et al. [13] normalized almost all kinds of degree-based graph energies into
a unified form, and they derived some bounds on these energies of graphs. In this paper,
novel bounds for µ1 and εisi(G) were acquired, and these bounds can not be deduced from
the results in [13].

In this paper, we also need the general Randić index

R 1
2
(G) = ∑

vivj∈E(G)

√
didj ,

which was introduced by Bollobás and Erdős [46], and the Zagreb indices introduced by
Gutman and Trinajstic [6] in 1972. The first and second Zagreb indices of a graph G are
denoted by M1(G) and M2(G), respectively, and defined as

M1(G) = ∑
vi∈V(G)

d2
i , M2(G) = ∑

vivj∈E(G)

didj .

We structure this paper in four parts. Some subsequently used definitions, notations
and results are offered in Section 2. Section 3 gives some bounds for µ1 and characterizes
the corresponding graphs. Several novel bounds on εisi(G) are established in Section 4.

2. Preliminaries

In this part, we give some lemmas which will come in handy in later parts.

Lemma 1 ([32]). For any connected graph G and every edge vivj ∈ E(G), we have

δ

2
≤

didj

di + dj
≤ ∆

2
. (5)

the equality in left and right hands are both attained iff G is regular.

Lemma 2 ((Cauchy–Schwarz inequality) [47]). Let W and Z be two n-dimension vectors with
elements wi ∈ R and zi ∈ R(1 ≤ i ≤ n), respectively. Then(

n

∑
i=1

wizi

)2

≤
n

∑
i=1

w2
i

n

∑
i=1

z2
i , (6)

with equality iff there is a real number d satisfying that wj = dzj (1 ≤ j ≤ n).

Lemma 3 ((Chebyshev’s inequality) [48]). For two sequences of wi ∈ R and zi ∈ R(1 ≤ i ≤ n),
such that w1 ≤ w2 ≤ . . . ≤ wn and z1 ≤ z2 ≤ . . . ≤ zn, we have(

n

∑
i=1

wi

)(
n

∑
i=1

zi

)
≤ n

n

∑
i=1

wizi , (7)

the equality is obtained iff w1 = w2 = . . . = wn or z1 = z2 = . . . = zn.
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Lemma 4 ([49]). Let wi(1 ≤ i ≤ n) be real numbers satisfying wn ≤ wn−1 ≤ . . . ≤ w1. Then

∑n
i=1 wi

n
+

√√√√ 1
n(n− 1)

n

∑
i=1

(
wi −

∑n
i=1 wi

n

)2

≤ w1. (8)

Lemma 5 ([50]). Let G be a connected (n, m, δ, ∆)-graph, for any vivj ∈ E(G), we have

2
√

δ∆
∆ + δ

≤
2
√

didj

di + dj
≤ 1.

The equality in the left hand is attained iff G is (∆, δ)-semiregular or regular; the equality in the
right hand is achieved iff G is regular.

Recall that for any n-order square matrices M = (sjk) and N = (tjk), if sjk ≥ tjk holds
for any j, k, then M ≥ N.

Lemma 6 ([51]). If M ≥ N for any two symmetric, non-negative n-order square matrices M and
N, then ρ1(M) ≥ ρ1(N), where ρ1 is the maximum eigenvalue.

Lemma 7 ((Interlacing Lemma) [52]). If M is a symmetric n-order square matrix, and Mj is the
j× j submatrix of M, then, for any integer k, 1 ≤ k ≤ j,

ρn−k+j(M) ≤ ρi(Mj) ≤ ρk(M), (9)

where ρk(Mj), ρk(M) are the k-th greatest eigenvalue of M and Mj, respectively.

Lemma 8 ([53]). If G is an n-vertex graph having degree collection di(1 ≤ j ≤ n), then

λ1 ≥

√
∑n

i=1 d2
i

n
, (10)

the equality is achieved iff G is regular or semiregular.

Lemma 9 ((Rayleigh–Ritz) [54]). Let M be a real symmetric n-order square matrix having
eigenvalues ρ1 ≥ ρ2 ≥ . . . ≥ ρn, then, for a nonzero vector y,

ρ1 ≥
yT My

yTy
, (11)

the equality holds iff y is an eigenvector for ρ1 of M.

Lemma 10 ([55]). For any n-vertex graph G, εisi(G) = 0 iff G ∼= Kn .

Lemma 11 ([56]). For any (n, m, δ, ∆)-graph G such that δ ≥ 1,

λ1 ≤
√

2m− δ(n− 1) + (δ− 1)∆ , (12)

the equality is acquired iff G is regular, or the union of K1,n−3 and K2, or the union of a regular
graph possessing smaller vertex degree and a complete graph.

Lemma 12. Let G be an n-vertex connected graph. Then µ1 > µ2 .

Proof. Suppose the result is false. Let u and v be eigenvectors corresponding to µ1 and
µ2, respectively. Note that the fact that G is connected. If µ1 = µ2, by Perron–Frobenius
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theorem, all elements of u are positive. Since µ1 = µ2, any linear combination of u and v
has to be an eigenvector for µ1. In this way, one element of the vector can be adjusted to
zero easily, a contradiction.

Lemma 13. Let G be an n-vertex graph.Then, |µ1| = |µ2| = . . . = |µn| if and only if G ∼= Kn or
G ∼= n

2 K2.

Proof. For convenience, we use I to stand for the collection of isolated vertices of G. First,
we assume |µ1| = |µ2| = . . . = |µn|. Let k = |I|. If k ≥ 1, then µ1 = µ2 = . . . = µn = 0,
i.e., G ∼= Kn. Otherwise, k = 0. If ∆ = 1, then di = 1(1 ≤ i ≤ n) and therefore G ∼= n

2 K2.
Otherwise, ∆ ≥ 2, then G includes a connected component H such that |V(H)| ≥ 3. If

H ∼= Kp (p ≥ 3), then µ1(H) = (p−1)2

2 > p−1
2 = µ2(H), a contradiction. Otherwise,

H � Kp (p ≥ 3), then diam(H) ≥ 2. We suppose that G contain an induced shortest path
Pm, m ≥ 2. Let B be the principal submatrix of C indexed by the vertices of Pm and then
by the interlacing theorem 7 we obtain µ2(H) ≥ µ2(B) ≥ 0. Moreover, by Lemma 12, we
know that µ1(H) > µ2(H), a contradiction.

On the contrary, when G ∼= Kn or G ∼= n
2 K2, we have |µ1| = |µ2| = . . . = |µn| .

Lemma 14 ([32]). For any n-vertex graph G having vertices vj(1 ≤ j ≤ n), we have

(1) tr(C) = 0 ;
(2)

tr(C2) = 2 ∑
vivj∈E(G)

d2
i d2

j

(di + dj)2 ;

(3)

tr(C4) = ∑
vi∈V(G)

(
∑

vj∼vi

d2
i d2

j

(di + dj)2

)2

+ ∑
vi ,vj∈V(G)

vi 6=vj

d2
i d2

j

 ∑
vk∈V(G)

vk∼vi ,vk∼vj

d2
k

(di + dk)(dk + dj)


2

.

Lemma 15 ( [9]). For integers zi ≥ 0(1 ≤ i ≤ n) and s ≥ 2, we get

n

∑
i=1

(zi)
s ≤

(
n

∑
i=1

z2
i

) s
2

, (13)

the equality is obtained iff z1 = z2 = . . . = zn.

Lemma 16 ([57]). Let G be an n-vertex connected graph. Then there exists just one positive
eigenvalue in SpA(G) iff G is isomorphic to Kl1,l2,...,ls , n = l1 + l2 + . . . + ls .

Lemma 17 ([9]). Let yi > 0(1 ≤ i ≤ p) in R. Then

p
1
y1

+ 1
y2

+ . . . + 1
yp

≤ p
√

y1y2 . . . yp . (14)

The nullity n0(G) of a graph G is the multiplicity of eigenvalue 0 in its adjacency
spectrum.

Lemma 18 ([48]). For any n(n ≥ 2)-vertex graph G, n0(G) = n− 2 iff G ∼= Ks,t ∪ (n− s− t)K1,
s + t ≤ n.
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Lemma 19 ([55]). For any graph G with components Gi, (1 ≤ i ≤ k), we have

εisi(G) =
k

∑
i=1

εisi(Gi) .

3. Bounds for the ISI Spectral Radius

In this part, we establish several bounds for the ISI spectral radius µ1 of graphs.
We first present an upper bound on µ1 in terms of the maximum degree ∆, minimum

degree δ, order n and size m.

Theorem 1. If G is an (n, m, δ, ∆)-graph so that ∆ ≥ δ ≥ 1, then

µ1 ≤
∆
2

√
2m− δ(n− 1) + (δ− 1)∆ , (15)

the equality is acquired iff G is a regular graph.

Proof. Lemma 1 deduce that C ≤ ∆
2 A(G). Furthermore, by Lemmas 6 and 11, we have

µ1 ≤
∆
2

λ1 ≤
∆
2

√
∆(δ− 1) + 2m− (n− 1)δ.

If µ1 = ∆
2

√
∆(δ− 1) + 2m− (n− 1)δ, from C = ∆

2 A(G), we have
didj

di+dj
= ∆

2 i.e., d1 = d2 =

. . . = dn = ∆. Therefore, G must be regular.
On the contrary, it is obvious that the equality in (15) holds when G is regular.
This completes the proof.

Theorem 2. For any (n, δ)-graph G,

µ1 ≥
δ

2

√
M1

n
, (16)

the equality is acquired iff G is regular.

Proof. From Lemma 1, we know that
didj

di+dj
≥ δ

2 . Then, C ≥ δ
2 A. Furthermore, by Lemmas 6

and 8,

µ1 ≥
δ

2
λ1 ≥

δ

2

√
∑n

i=1 d2
i

n
=

δ

2

√
M1

n
.

Now, let’s assume that the equation holds in (16). Then aforementioned inequalities

must be equalities. From C = δ
2 A, we have

didj
di+dj

= δ
2 i.e., d1 = d2 = . . . = dn = δ. Thus, G

must be regular.

On the contrary, when G is regular, it can be easily proved that µ1 = δ
2

√
M1
n .

Theorem 3. For any (n, ∆)-graph G,

µ1 ≥
M2

n∆
, (17)

the equality is acquired iff G is regular.

Proof. Let x = (x1, x2, . . . , xn)T be a unit vector, xi ∈ R (1 ≤ i ≤ n). Then,

xTCx = 2 ∑
vivj∈E(G)

didj

di + dj
xixj ≥ 2 ∑

vivj∈E(G)

didj

2∆
xixj . (18)
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Set x = ( 1√
n , 1√

n , . . . , 1√
n )

T . Then, from Lemma 9, we have

µ1 ≥ xTCx ≥
∑vivj∈E(G) didj

n∆
=

M2

n∆
.

If µ1 = M2
n∆ , from (17), we have d1 = d2 = . . . = dn = ∆. Furthermore, from µ1 = xTCx,

we have that the vector x = ( 1√
n , 1√

n , . . . , 1√
n )

T is an eigenvector for µ1. Thus, G is certainly
to be a regular graph.

On the contrary, the equality in (17) is achieved if G is regular.

Resembling the method in Theorem 3, an upper bound of µ1 can be gained on the
basis of ∆, δ and R 1

2
(G).

Theorem 4. If G is an (n, m, δ, ∆)-graph, we obtain

µ1 ≥
2
√

δ∆
n(∆ + δ)

R 1
2

, (19)

the equality is acquired iff G is certainly to be a regular graph.

Proof. Assume that x = (x1, x2, . . . , xn)T is a unit vector, xi ∈ R, 1 ≤ i ≤ n.

xTCx = 2 ∑
vivj∈E(G)

didj

di + dj
xixj

= 2 ∑
vivj∈E(G)

2
√

didj

di + dj

√
didj

2
xixj

≥ 2
√

δ∆
∆ + δ ∑

vivj∈E(G)

√
didjxixj . (20)

Set x = ( 1√
n , 1√

n , . . . , 1√
n )

T . Then, from Lemma 9, we deduce

µ1 ≥ xTCx ≥ 2
√

δ∆
n(∆ + δ) ∑

vivj∈E(G)

√
didj =

2
√

δ∆
n(∆ + δ)

R 1
2

. (21)

If the equality holds in (19), we take it for granted that all above-mentioned inequalities
must be equalities. We are aware of that G is a (∆, δ)-biregular or regular graph by (19).
Furthermore, µ1 = xTCx deduce that vector x = ( 1√

n , 1√
n , . . . , 1√

n )
T must be an eigenvector

for µ1. Hence, G is certainly to be a regular graph.
Conversely, it is easily inspected that µ1 = 2

√
δ∆

n(∆+δ)
R 1

2
under the condition that G is a

regular.

We note that R 1
2
(G) = ∑vivj∈E(G)

√
didj ≥ mδ. So, the following corollary can be

easily got.

Corollary 1. Let G be an (n, m, δ, ∆)-graph. Then

µ1 ≥
2δm
√

∆δ

n(δ + ∆)
,

the equality is acquired iff G is a regular graph.
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4. Bounds for the ISI Energy of Graphs

For convenience, we let γ1 ≥ γ2 ≥ . . . ≥ γn as the absolute values of eigenvalues
µi, 1 ≤ i ≤ n, which are arranged in decreasing order. It is obvious that

εisi(G) =
n

∑
i=1
|µi| =

n

∑
i=1

γi

and

tr(C2) =
n

∑
i=1

µ2
i =

n

∑
i=1

γ2
i .

Theorem 5. Let G be a graph of order n and size m, with minimum degree δ and maximum degree
∆. Then

εisi(G) ≤ ∆
2

√
2mn . (22)

The equality holds if and only if G ∼= Kn or G ∼= n
2 K2 .

Proof. Bear in mind that γ2
1, γ2

2, . . . , γ2
n form the eigenvalues of C2. Combined this fact with

Lemma 2 we obtain

εisi(G) =
n

∑
i=1

γi ≤
√

n

∑
i=1

1

√
n

∑
i=1

γ2
i =

√
ntr(C2) . (23)

Lemma 13 implies that

tr(C2) = 2 ∑
vivj∈E(G)

(didj)
2

(di + dj)2 ≤
m∆2

2
.

Hence, we have

εisi(G) ≤ ∆
2

√
2mn .

The equality in (23) is clearly attained when G ∼= Kn or G ∼= n
2 K2.

If the equality in (22) is achived, then equality must hold in (23). So we have that
γ1 = γ2 = . . . = γn. Hence, G ∼= n

2 K2 or G ∼= Kn.

Theorem 6. Let G be an n-vertex graph, we have

εisi(G) ≥ (n− 1)γ1 +
√

tr(C2)− (n− 1)γ2
1 , (24)

and the equality is obtained iff G ∼= Kn or G ∼= n
2 K2 .

Proof. Setting wi = γi, (i = 1, 2, . . . , n), inequality (8) becomes

1
n

n

∑
i=1

γi +

√√√√ 1
n(n− 1)

n

∑
i=1

(
γi −

1
n

n

∑
i=1

γi

)2

=
εisi(G)

n
+

√√√√ 1
n(n− 1)

n

∑
i=1

(
γi −

εisi(G)

n

)2

=
εisi(G)

n
+

√√√√ 1
n(n− 1)

(
n

∑
i=1

γ2
i −

2εisi(G)

n

n

∑
i=1

γi +
n

∑
i=1

(εisi(G))2

n2

)
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=
εisi(G)

n
+

√
1

n(n− 1)

(
tr(C2)− (εisi(G))2

n

)
≤ γ1.

Inequality (23) implies that tr(C2) ≥ (εisi(G))2

n . Hence,

(εisi(G))2 − 2(n− 1)γ1εisi(G) ≥ tr(C2)− n(n− 1)γ2
1 .

Assume that equality in (24) is achieved.Then γ2
i = 1

n ∑n
i=1 γ2

i for any 1 ≤ i ≤ n. So,
we have γ1 = γ2 = . . . = γn. By Lemma 13, we know that G ∼= Kn or G ∼= n

2 K2.
Conversely, the equality in (24) holds obviously for G ∼= n

2 K2 or G ∼= Kn.
This completes the proof.

As a generalisation of the Shisha–Mond inequality, the Klamkin–McLenaghan inequal-
ity can be stated as follows.

Lemma 20 ((Klamkin–McLenaghan inequality) [58]). Let X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , yn) be n-tuples of non-negative real numbers satisfying 0 ≤ m ≤ xi

yi
≤ M for each

i ∈ {1, 2, . . . , n}, and wi ≥ 0. Then,

∑n
i=1 wix2

i
∑n

i=1 wixiyi
− ∑n

i=1 wixiyi

∑n
i=1 wiy2

i
≤ (
√

M−
√

m)2 . (25)

Theorem 7. Let G be a graph of order n. Then, the following inequality is valid:

εisi(G) ≥ 1
2

(√
4ntr(C2) + n2(

√
γ1 −

√
γn)2 − n(

√
γ1 −

√
γn)

2
)

. (26)

Equality is attained if and only if G ∼= Kn or G ∼= n
2 K2.

Proof. Setting xi = γi, yi = 1, and wi = 1, (i = 1, 2, . . . , n), then 0 ≤ γn ≤ xi
yi
≤ γ1 for each

i ∈ {1, 2, . . . , n}. Hence, inequality (25) becomes

∑n
i=1 γ2

i
∑n

i=1 γi
− ∑n

i=1 γi

n
=

tr(C2)

εisi(G)
− εisi(G)

n
≤ (
√

γ1 −
√

γn)
2.

Simplifying the above inequality, we obtain

(εisi(G))2 + n(
√

γ1 −
√

γn)
2εisi(G) ≥ ntr(C2).

Solving this quadratic inequality, we have

εisi(G) ≥ 1
2

(√
4ntr(C2) + n2(

√
γ1 −

√
γn)2 − n(

√
γ1 −

√
γn)

2
)

.

If G ∼= Kn or G ∼= n
2 K2, the equality in (26) is clearly attained.

Conversely, suppose that equality holds in (26). Then, we have that γ1 = γ2 = . . . =
γn. Therefore, G ∼= n

2 K2 or G ∼= Kn.
This completes the proof.

In 1950, Biernacki, Pidek and Ryll-Nardzewski [59] proved the following Grüss-type
discrete inequality.

Lemma 21 ([59]). Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers for which there exist real
constants a, b, A and B, so that for each i, i = 1, 2, . . . , n; a ≤ xi ≤ A and b ≤ yi ≤ B. Then,

|n
n

∑
i=1

xiyi −
n

∑
i=1

xi

n

∑
i=1

yi| ≤ θ(n)(A− a)(B− b), (27)
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where θ(n) = n[ n
2 ](1−

1
n [

n
2 ]), while [x] denotes the integer part of a real number x. Equality in

Equation (27) holds if and only if x1 = x2 = . . . = xn and y1 = y2 = . . . = yn .

Theorem 8. For any graph G of order n, the following inequality is valid

εisi(G) ≥
√

ntr(C2)− θ(n)(γ1 − γn)2 . (28)

The equality holds if and only if G ∼= Kn or G ∼= n
2 K2 .

Proof. Applying inequality (27) by letting xi = γi, yi = γi, a = b = γn and A = B = γ1,
we obtain ∣∣∣∣∣∣n

n

∑
i=1

γ2
i −

(
n

∑
i=1

γi

)2
∣∣∣∣∣∣ ≤ θ(n)(γ1 − γn)

2 . (29)

It implies that
|ntr(C2)− (εisi(G))2| ≤ θ(n)(γ1 − γn)

2 .

From (23), we know that εisi(G) ≤
√

ntr(C2). Hence, we obtain

εisi(G) ≥
√

ntr(C2)− θ(n)(γ1 − γn)2 .

Since equality in (27) holds if and only if x1 = x2 = . . . = xn and y1 = y2 = . . . = yn,
equality in (29) holds if and only if γ1 = γ2 = . . . = γn. So, G ∼= n

2 K2 or G ∼= Kn .
Conversely, when G ∼= n

2 K2 or G ∼= Kn the equality is attained.
This completes the proof.

Theorem 9. Let G be a graph of order n with minimum degree δ. Then,

εisi(G) ≥ δ

√
M1

n
. (30)

The equality holds if and only if G ∼= Kn1,n2,...,nt , where |n1| = |n2| = . . . = |nt| and
n = n1 + n2 + . . . + nt.

Proof. By Theorem 2, we have

εisi(G) =
n

∑
i=1
|µi| = 2

n

∑
i=1,µi≥0

µi ≥ 2µ1 ≥ δ

√
M1

n
,

where the second equality holds if and only if G is a regular graph. Therefore, µi =
δ
2 λi for

any 1 ≤ i ≤ n. The first equality holds if and only if G has only one positive eigenvalue
in its adjacency spectrum. Therefore, from Lemma 16, the equality holds if and only if
G ∼= Kn1,n2,...,nt , where |n1| = |n2| = . . . = |nt|.

This completes the proof.

Given a graph G, if all the eigenvalues in its adjacency spectrum are nonzero, then G is
said to be nonsingular. Similarly, if all eigenvalues of the ISI matrix of G are nonzero, then
G is called ISI nonsingular. Next, we give a lower bound on εisi(G) for an ISI nonsingular
connected graph G.

Lemma 22 ([60]). For any graph G of order n and size m, we have

M1(G) ≥ 4m2

n
,

and equality is attained if and only if G is regular.
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Theorem 10. Let G be an ISI nonsingular connected graph of order n with δ ≥ 2. Then, the
following inequality holds

εisi(G) ≥ n− 1 +
δ

2

√
M1

n
+ ln|detC| − ln

δ

2

√
M1

n
.

Proof. Since x ≥ 1 + lnx for any x > 0, we have

εisi(G) =
n

∑
i=1
|µi| = µ1 +

n

∑
i=2
|µi|

≥ µ1 +
n

∑
i=2

(1 + ln|µi|)

= n− 1 + µ1 + ln
n

∏
i=2
|µi|

= n− 1 + µ1 + ln
n

∏
i=1
|µi| − lnµ1

= n− 1 + µ1 + ln|detC| − lnµ1.

Let f (x) = n− 1 + x + ln|detC| − lnx. It is easily seen that f (x) is increasing in the

variable x ∈ [1,+∞). By Theorem 3 and Lemma 22, we know that µ1 ≥ δ
2

√
M1
n ≥

δm
n ≥ 1.

Hence, we have

f (x) ≥ f (
δ

2

√
M1

n
) = n− 1 +

δ

2

√
M1

n
+ ln|detC| − ln

δ

2

√
M1

n
.

This completes the proof.

Theorem 11. Let G be a graph of order n with minimum degree δ ≥ 2. Then, the following
inequality is valid

e−
√

tr(C2) ≤ εisi(G) ≤ e
√

tr(C2) .

Proof. Since x < ex for any real number x, it follows that

εisi(G) =
n

∑
i=1
|µi| <

n

∑
i=1

e|µi | =
n

∑
i=1

∑
k≥0

(|µi|)k

k!
= ∑

k≥0

1
k!

n

∑
i=1

(|µi|)k .

From Lemma 15, we have

εisi(G) < ∑
k≥0

1
k!

n

∑
i=1

(|µi|)k

≤ ∑
k≥0

1
k!

(
n

∑
i=1

(|µi|2)
) k

2

= ∑
k≥0

1
k!

(√
tr(C2)

)k
= e
√

tr(C2) .

Let l be the number of nonzero eigenvalues of the matrix C, and let θ1, θ2, . . . , θl be
the absolute values of all these nonzero eigenvalues, given in a non-increasing order. By
Lemmas 1 and 7,

µn ≤ ρ2[C2] ≤ −
didj

di + dj
≤ − δ

2
,
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where [C2] is the leading 2× 2 submatrix of C. Therefore, |µn| ≥ 1. Hence,

l

∑
i=1

θi =
n

∑
i=1
|µi| ≥ |µn| ≥ 1 . (31)

Using the arithmetic–geometric mean inequality, we have

εisi(G) =
n

∑
i=1
|µi| =

l

∑
i=1

θi = l

(
l

∑
i=1

1
l

θi

)
≥ l
(

l
√

θ1θ2 . . . θl

)
.

It follows from Lemmas 3 and 17 and Equation (30) that

l
(

l
√

θ1θ2 . . . θl

)
≥ l

(
l

∑l
i=1

1
θi

)

≥ l

(
l

∑l
i=1

1
θi

∑l
i=1 θi

)

≥ l

(
l

l ∑l
i=1

1
θi

θi

)
.

Applying the power series expansion of ex, we obtain

l

(
l

l ∑l
i=1

1
θi

θi

)
≥ l

(
l

l2 ∑l
i=1 θj

)
>

1

∑l
i=1 eθi

=
1

∑l
i=1 ∑k≥0

(θi)k

k!

=
1

∑k≥0
1
k! ∑l

i=1(θi)k
.

It follows from Lemma 15 that

1

∑k≥0
1
k! ∑l

i=1(θi)k
≥ 1

∑k≥0
1
k! ∑l

i=1((θi)2)
k
2

=
1

∑k≥0
1
k! (
√

tr(C2))k
= e−

√
tr(C2) .

This completes the proof.

Theorem 12. Let G be a connected graph of order n > 1 with m edges and minimum degree δ.
Then,

εisi(G) ≥ δ
√

m , (32)

and the equality holds if and only if G ∼= K n
2 , n

2
.

Proof. For n = 2, G = K1,1 and, hence, the equality holds. Otherwise, n ≥ 3. From
Lemma 14, we know that the sum of the eigenvalues of C is zero, and we can deduce that

0 =

(
n

∑
i=1

µi

)2

=
n

∑
i=1

µ2
i + 2 ∑

1≤i<j≤n
µiµj.

Therefore, we have
n

∑
i=1

µ2
i = 2

∣∣∣∣∣ ∑
1≤i<j≤n

µi · µj

∣∣∣∣∣.
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Combining the definition of ISI energy and Lemmas 1 and 14, we obtain

(εisi(G))2 =

(
n

∑
i=1
|µi|
)2

=
n

∑
i=1
|µi|2 + 2 ∑

1≤i<j≤n
|µi| · |µj|

≥
n

∑
i=1
|µi|2 + 2

∣∣∣∣∣ ∑
1≤i<j≤n

µi · µj

∣∣∣∣∣ (33)

= 2
n

∑
i=1

µ2
i = 4 ∑

vivj∈E(G)

d2
i d2

j

(di + dj)2 ≥ mδ2, (34)

and inequality (32) follows. This concludes the first part of the proof.
Suppose now that the equality holds in (32). Then, all the above inequalities must

be equalities. Equality in (34) implies that d2
i d2

i
(di+dj)2 = δ2

4 for each edge vivj ∈ E(G); that is,

di = dj for each edge vivj ∈ E(G). As G is assumed to be connected, it is regular.
From equality in (33), we see that there are two nonzero eigenvalues and all the

remaining eigenvalues are zero; that is, µ1 = −µn and µi = 0 for 2 ≤ i ≤ n− 1. Since G
is regular, δ

2 λi = µi for all 1 ≤ i ≤ n. Therefore, λ1 = −λn and λi = 0 for 2 ≤ i ≤ n− 1.
Since G is connected, by Lemma 18, it must be G ∼= K n

2 , n
2
.

Conversely, by direct checking, we verify that equality holds in (31) for G ∼= K n
2 , n

2
.

This completes the proof.

Theorem 13. Let G be a graph of order n > 1 and size m. Then,

εisi(G) ≥ δ(G′)
√

m , (35)

where G′ is the graph obtained from G by deleting all isolated vertices. The equality holds if and
only if G ∼= Kn or G ∼= Kp,p ∪ (n− 2p)K1 and p = 1, 2, . . . , b n

2 c.

Proof. For m = 0, we have G = Kn and, hence, the equality holds. Otherwise, m ≥ 1. Let
p be the number of isolated vertices and let k be the number of connected components in G.
In addition, let Gi be the i-th connected component of G with order ni ≥ 2, mi ≥ 1 edges
and minimum degree δi. Hence, we have n = p + ∑k

i=1 ni, m = ∑k
i=1 mi and δi ≥ δ(G′).

Without loss of generality, we may assume that m1 ≥ m2 ≥ . . . ≥ mk ≥ 1. By Theorem 12,
we have

εisi(Gi) ≥ δi
√

mi ≥ δ(G′)
√

mi . (36)

Notice that, for positive real numbers a and b, (a ≥ b),

√
a +
√

b ≥
√

a + b , (37)

with equality if and only if b = 0. Applying this result to (36) and by Lemma 19, we obtain

εisi(G) =
k

∑
i=1

εisi(Gi)

≥ δ(G′)
√

m1 + δ(G′)
√

m2 + . . . + δ(G′)
√

mk

≥ δ(G′)
√

m1 + m2 + δ(G′)
√

m3 + . . . + δ(G′)
√

mk

≥ δ(G′)
√

m1 + m2 + m3 + δ(G′)
√

m4 + . . . + δ(G′)
√

mk

. . . . . .
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≥ δ(G′)
√

m1 + m2 + . . . + mk = δ(G′)
√

m .

This concludes the first part of the proof.
Suppose that the equality holds in (35) for m ≥ 1. Then, all the above inequalities

must be equalities. Since mi ≥ 1, 1 ≤ i ≤ k, we must have k = 1. By Theorem 12, we then
have G1

∼= K n1
2 , n1

2
. Hence, G ∼= Kp,p ∪ (n− 2p)K1 for n1 = p = 1, 2, . . . , b n

2 c.
Conversely, one can easily see that the equality holds in (35) for G ∼= Kp,p ∪ (n− 2p)K1,

p = 1, 2, . . . , b n
2 c.

This completes the proof.

Theorem 14. Let G be a connected graph of order n > 1 with m edges and minimum degree δ.
Then,

εisi(G) ≥ |µn|+
√

mδ2 − 3µ2
n , (38)

and the equality holds if and only if G ∼= K n
2 , n

2
.

Proof. From Lemma 14, we know that the sum of the eigenvalues of C is zero. We can
deduce (

n−1

∑
i=1

µi

)2

=
n−1

∑
i=1

µ2
i + 2 ∑

1≤i<j≤n
µi · µj = µ2

n

and (
n−1

∑
i=1
|µi|
)2

=
n−1

∑
i=1
|µi|2 + 2 ∑

1≤i<j≤n
|µi| · |µj|.

Bearing these identities in mind, we obtain

(εisi(G)− |µn|)2 =
n−1

∑
i=1
|µi|2 + 2 ∑

1≤i<j≤n
|µi| · |µj|

≥
n−1

∑
i=1
|µi|2 + 2

∣∣∣∣∣ ∑
1≤i<j≤n

µi · µj

∣∣∣∣∣ (39)

=
n−1

∑
i=1
|µi|2 +

∣∣∣∣∣µ2
n −

n−1

∑
i=1

µ2
i

∣∣∣∣∣.
One can easily see that µ2

n ≤ 1
2 ∑n

i=1 |µi|2. In view of this, we have

(εisi(G)− |µn|)2 ≥ 2
n

∑
i=1

µ2
i − 3µ2

n .

Therefore, we have

εisi(G) ≥ |µn|+
√

2tr(C2)− 3µ2
n .

Lemmas 1 and 14 imply that

tr(C2) = 2 ∑
vivj∈E(G)

d2
i d2

j

(di + dj)2 ≥
mδ2

2
. (40)

Hence, we have

εisi(G) ≥ |µn|+
√

mδ2 − 3µ2
n .
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Suppose now that the equality holds in (38). Then, all the above inequalities must

be equalities. Equality in (40) implies that
d2

i d2
j

(di+dj)2 = δ2

4 for each edge vivj ∈ E(G); that is,

di = dj, for each edge vivj ∈ E(G). As G is assumed to be connected, it is regular.
From equality in (39), we see that there are two nonzero eigenvalues and all the

remaining eigenvalues are zero; that is, µ1 = −µn and µi = 0 for 2 ≤ i ≤ n− 1. Since G
is regular, δ

2 λi = µi for all 1 ≤ i ≤ n. Therefore, λ1 = −λn and λi = 0 for 2 ≤ i ≤ n− 1.
Since G is connected, by Lemma 18, we conclude that G ∼= K n

2 , n
2
.

Conversely, by direct checking we verify that equality holds in (38) for G ∼= K n
2 , n

2
.

This completes the proof.

Before proving the next theorems, we need the following lemma.

Lemma 23. Let G be a graph with n vertices and let −b1 ≤ . . . ≤ −bn2 ≤ . . . ≤ an1 ≤ . . . ≤ a1
be the eigenvalues of the ISI matrix C of G, where an1 is non-negative and bn2 is positive. Then,

εisi(G) =

√√√√2tr(C2) + 4

(
∑

1≤i1<i2≤n1

ai1 ai2 + ∑
1≤j1<j2≤n2

bj1 bj2

)
.

Proof. From Lemma 14, we know that the sum of the eigenvalues of C is zero, so we
can deduce

n1

∑
i=1

ai =
n2

∑
j=1

bj.

Then,

(εisi(G))2 =

(
∑

i
ai + ∑

j
bj

)2

= 2

(
(∑

i
ai)

2 + (∑
j

bj)
2

)

= 2

(
∑

i
a2

i + ∑
j

b2
j + 2 ∑

1≤i1<i2≤n1

ai1 ai2 + 2 ∑
1≤j1<j2≤n2

bj1 bj2

)

= 2tr(C2) + 4

(
∑

1≤i1<i2≤n1

ai1 ai2 + ∑
1≤j1<j2≤n2

bj1 bj2

)
.

This completes the proof.

Theorem 15. Let G be a graph of order n, and let the absolute values of the eigenvalues of the ISI
matrix C of G be γ1 ≥ γ2 ≥ . . . ≥ γn. Then, the following inequality is valid:

εisi(G) ≥ 1
2

(
γn(n− 2) +

√
8tr(C2) + (γn)2(n− 2)2

)
. (41)

The equality holds if and only if G ∼= Kn or G ∼= n
2 K2.

Proof. We use the notations of Lemma 23. Let −b1 ≤ . . . ≤ −bn2 ≤ . . . ≤ an1 ≤ . . . ≤ a1
be the eigenvalues of the ISI matrix C of G, where an1 is non-negative and bn2 is positive.
Then, γn = min{a1, . . . , an1 , b1, . . . , bn2}.

It is obvious that ai1 , ai2 ≥ γn. Therefore, we have

(ai1 −
γn

2
)(ai2 −

γn

2
) ≥ γn

4
,

i.e.,
ai1 ai2 ≥

γn

2
(ai1 + ai2) . (42)
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By similar arguments, we can obtain

bj1 bj2 ≥
γn

2
(bj1 + bj2) . (43)

Combining Lemma 23 with the fact that ∑i ai = ∑j bj =
εisi(G)

2 , we can deduce

(εisi(G))2 ≥ 2tr(C2) + 2γn

(
∑

1≤i1<i2≤n1

(ai1 + ai2) + ∑
1≤j1<j2≤n2

(bj1 + bj2)

)

= 2tr(C2) + 2γn

(
(n1 − 1)∑

i
ai + (n2 − 1)∑

j
bj

)

= 2tr(C2) + (n− 2)γnεisi(G).

By solving this quadratic inequality, we obtain the result

εisi(G) ≥ 1
2

(
γn(n− 2) +

√
8tr(C2) + (γn)2(n− 2)2

)
.

Suppose that the equality holds in (41). Then, all the above inequalities (42) and (43)
must be equalities, and we have a1 = . . . = an1 = −b1 = . . . = −bn2 , i.e., γ1 = γ2 = . . . =
γn. Thus, by Lemma 13, G ∼= n

2 K2 or G ∼= Kn.
Conversely, one can easily see that the equality holds in (41) for G ∼= n

2 K2 or G ∼= Kn.
This completes the proof.

Consider a graph whose eigenvalues are not in the interval (−1, 1). In the next
theorem, we give a lower bound for the energy of such a graph.

Theorem 16. Let G be a graph of order n with n1 non-negative eigenvalues such that γ1 ≥ γ2 ≥
. . . ≥ γn ≥ 1. Then

εisi(G) ≥
√

2tr(C2) + 4γ1(n1 − 1) + (n− 1)(n− 3)(γn)2 .

Proof. We use the notations of Lemma 23. Let −b1 ≤ . . . ≤ −bn2 ≤ . . . ≤ an1 ≤ . . . ≤ a1
be the eigenvalues of the ISI matrix C of G, where an1 is non-negative and bn2 is positive.
Then, γ1 = max{a1, . . . , an1 , b1, . . . , bn2} and γn = min{a1, . . . , an1 , b1, . . . , bn2} ≥ 1. Since
G has no eigenvalue in the interval [0, 1), then

∑
i1<i2

ai1 ai2 ≥ γ1 ∑
i2<n1−1

ai2 +

(
n1 − 1

2

)
(γn)

2

≥ γ1(n1 − 1) +
(

n1 − 1
2

)
(γn)

2,

and

∑
j1<j2

bj1 bj2 ≥
(

n2

2

)
(γn)

2.

By Lemma 23, we know that

(εisi(G))2 = 2tr(C2) + 4

(
∑

i1<i2

ai1 ai2 + ∑
j1<j2

bj1 bj2

)

≥ 2tr(C2) + 4γ1(n1 − 1) + 4(γn)
2
((

n1 − 1
2

)
+

(
n2

2

))
.
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It is easy to prove that(
n1 − 1

2

)
+

(
n2

2

)
=

(n1 − 1)(n1 − 2)
2

+
n2(n2 − 1)

2

=
(n1 − 1)2 + (n2)

2

2
− n1 + n2 − 1

2

≥ (n1 + n2 − 1)2

4
− n− 1

2
=

(n− 1)2

4
− n− 1

2

=
(n− 1)(n− 3)

4
.

Thus, we have

(εisi(G))2 ≥ 2tr(C2) + 4γ1(n1 − 1) + (n− 1)(n− 3)(γn)
2.

This completes the proof.

Lemma 24 ([61]). Let G be a graph where the number of eigenvalues greater than, less than, and
equal to zero are p, q and r, respectively. Then,

α ≤ r + min{p, q},

where α is the independence number of G.

Theorem 17. Let G be a graph of order n, where the number of eigenvalues of the ISI matrix C
greater than, less than, and equal to zero are n1, n2 and r, respectively. Let α denote the independence
number of G. Then, the following inequality is valid:

εisi(G) ≤
√

2(n− α)tr(C2) . (44)

The equality holds if and only if G ∼= Kn or G ∼= n
2 K2 .

Proof. Let an1 ≤ . . . ≤ a1 be the n1 positive eigenvalues, and let −b1 ≤ . . . ≤ −bn2 be the
n2 negative eigenvalues of the ISI matrix C of G. Then, C has r = n− n1 − n2 eigenvalues
which are equal to zero. By Lemma 24, we know that

α ≤ (n− n1 − n2) + min{n1, n2}.

Therefore, α ≤ (n− n1 − n2) + n1 and α ≤ (n− n1 − n2) + n2, i.e., n1 ≤ n− α and
n2 ≤ n− α. Since

n1

∑
i=1

ai −
n2

∑
j=1

bj = 0 ,

we have

εisi(G) = 2
n1

∑
i=1

ai = 2
n2

∑
j=1

bj.

Furthermore, by Lemma 2, we obtain

εisi(G) = 2
n1

∑
i=1

ai ≤ 2

√√√√n1

n1

∑
i=1

a2
i , (45)
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and

εisi(G) = 2
n2

∑
j=1

bj ≤ 2

√√√√n2

n2

∑
j=1

b2
j . (46)

Therefore,
(εisi(G))2

2
=

(εisi(G))2

4
+

(εisi(G))2

4

≤ n1

n1

∑
i=1

a2
i + n2

n2

∑
j=1

b2
j

≤ (n− α)
n1

∑
i=1

a2
i + (n− α)

n2

∑
j=1

b2
j

= (n− α)

(
n1

∑
i=1

a2
i +

n2

∑
j=1

b2
j

)

= (n− α)tr(C2) .

Hence, we have

εisi(G) ≤
√

2(n− α)tr(C2) .

If the equality holds, then equalities in both (45) and (46) hold. Therefore, we have
a1 = . . . = an1 = b1 = . . . = bn2 , Hence, G ∼= n

2 K2 or G ∼= Kn.
Conversely, when G ∼= n

2 K2 or G ∼= Kn the equality is attained.
This completes the proof.

5. Conclusions

In theoretical chemistry, topological indices are utilized for indicating the physical
and chemical properties of molecules. Among the considerable number of topological
indices, the ISI index has a great advantage in forecasting the overall superficial area of
octane isomers. Graph energy, a parameter found to be closely interrelated with topological
indices, has been comprehensively and deeply investigated, on account of the fact that it
approximates to the total π-electron energy of a molecule. The utilization of graph energies
is not only in chemistry, but also in unforeseen fields, including air transportation, satellite
communication, face recognition, crystallography, etc. It is noted that energy of many kinds
of graphs can be determined by their ISI energy εisi. Hence, we consider the εisi of graphs
and establish several new sharp bounds for εisi and µ1 in the light of C(G), M1(G) and
M2(G), α(G), and other graph parameters, and we give descriptions of the corresponding
extremal graphs.

Trees, chemical trees, and unicyclic and bicyclic graphs are common models of chemi-
cal structures. Therefore, studying the εisi of these graphs is interesting in future.

Let G1 and G2 be two n-vertex nonisomorphic graphs, we call G1 and G2 ISI-cospectral
if Spisi(G1) = Spisi(G2). G1 and G2 are said to be ISI-equienergetic if εisi(G1) = εisi(G2).
Hence, constructing ISI-noncospectral and ISI-equienergetic chemical trees, line graphs and
other useful graphs is also an interesting research direction.

Author Contributions: F.L., Q.Y. and H.B. contributed equally to conceptualization, methodology,
validation, formal analysis, writing-review and editing; project administration, F.L. All authors read
and approved the final manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Axioms 2022, 11, 243 19 of 20

Acknowledgments: The authors are very grateful to anonymous referees and editors for their con-
structive suggestions and insightful comments, which have considerably improved the presentation
of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK; Elsevier: New York, NY, USA, 1976.
2. Gutman, I. Comparative studies of graph energies. Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 2012, 144, 1–17.
3. Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2012.
4. Li, X.; Shi, Y.; Wei, M.; Li, J. On a conjecture about tricyclic graphs with maximal energy. MATCH Commun. Math. Comput. Chem.

2014, 72, 183–214.
5. Gutman, I. The energy of a graph. Ber. Math. Statist Sekt. Forschungsz. Graz 1978, 103, 1–22.
6. Gutman, I.; Trinajstic, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys.

Lett. 1972, 17, 535–538.
7. Gutman, I. The energy of a graph: Old and new results. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue,

R., Wassermann, A., Eds.; Springer: Berlin, Germany, 2001; pp. 196–211.
8. Gutman, I.; Li, X.; Zhang, J. Graph energy. In Analysis of Complex Networks. From Biology to Linguistics; Dehmer, M.; Emmert–Streib,

F., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 145–174.
9. Rad, N.J.; Jahanbani, A.; Gutman, I. Zagreb energy and Zagreb Estrada index of graphs. MATCH Commun. Math. Comput. Chem.

2018, 79, 371–386. [CrossRef]
10. Hosamani, S.M.; Kulkarni, B.B.; Boli, R.G.; Gadag, V.M. QSPR analysis of certain graph theoretical matrices and their correspond-

ing energy. Appl. Math. Nonlin. Sci. 2017, 2, 131–150.
11. Adiga, C.; Rakshith, B.R. Upper bounds for the extended energy of graphs and some extend equienergetic graphs. Opusc. Math.

2018, 38, 5–13.
12. Das, K.C.; Gutman, I.; Furtula, B. On spectral radius and energy of extended adjacency matrix of graphs. Appl. Math. Comput.

2017, 296, 116–123.
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