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Abstract: This paper studies a Markov model of a queuing-inventory system with primary, retrial,
and feedback customers. Primary customers form a Poisson flow, and if an inventory level is positive
upon their arrival, they instantly receive the items. If the inventory level is equal to zero upon arrival
of a primary customer, then this customer, according to the Bernoulli scheme, either leaves the system
or goes into an infinite buffer to repeat their request in the future. The rate of retrial customers is
constant, and if the inventory level is zero upon arrival of a retrial customer, then this customer,
according to the Bernoulli scheme, either leaves orbit or remains in orbit to repeat its request in the
future. According to the Bernoulli scheme, each served primary or retrial customer either leaves the
system or feedbacks into orbit to repeat their request. Destructive customers that form a Poisson flow
cause damage to items. Unlike primary, retrial, and feedback customers, destructive customers do not
require items, since, upon arrival of such customers, the inventory level instantly decreases by one.
The system adopted one of two replenishment policies: (s, Q) or (s, S). In both policies, the lead time
is a random variable that has an exponential distribution. It is shown that the mathematical model of
the system under study was a two-dimensional Markov chain with an infinite state space. Algorithms
for calculating the elements of the generating matrices of the constructed chains were developed, and
the ergodicity conditions for both policies were found. To calculate the steady-state probabilities,
a matrix-geometric method was used. Formulas were found for calculating the main performance
measures of the system. The results of the numerical experiments, including the minimization of the
total cost, are demonstrated.

Keywords: inventory system; feedback; primary customers; retrial customers; feedback customers;
destructive customers; matrix-geometric method; calculations
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1. Introduction

Queues in which primary customers find all of the servers busy and/or the waiting
room occupied and either go to orbit to try again to obtain a service after a random period
of time or leave the system forever are called retrial queues (RQs). RQ models have been
studied in detail in a large number of works. For a comprehensive survey and a list of
references in this field, see [1,2].

Another frequently caused phenomenon in queuing systems is feedback. Queues
in which each a serviced customer joins the system either with a certain probability or
leaves forever with complementary probability are called queues with feedback (QFB).
If the feedback customers return to the system immediately after the completion of the
service, then this system is called a queue with instantaneous feedback (QwIFB); otherwise,
if feedback customers return to the system after a certain delay, then this system is called a
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queue with delayed feedback (QwDFB). Note that in practice, there are queues with both
kinds of feedback. In other words, in some queues, some of the feedback customers join
the system immediately after completion of the service and some of the other feedback
customers join the system after a certain delay, i.e., after completion of the service, some
customers go to virtual orbit for “thinking” before coming back to obtain additional service.
Some QFBs might impose restrictions on the number of feedbacks, i.e., there are queues
with single and multiple feedbacks. A QFB is often caused in computer systems with
a round-robin discipline, in communication networks with retransmission of erroneous
data (packets), in manufacturing with the rework of defectively produced items, etc. For
state-of-the-art theory on QFB, see [3–13] and their references.

Over the last decade, many researchers investigated models of retrial queues with
delayed feedback (RQwDFB), i.e., queues in which both retrial and feedback phenomena
are combined, see [14–20]. For a detailed review of works devoted to RQwDFB, see [21]
and its reference list.

Note that feedback is also a common issue in queuing-inventory systems (QIS), as
customers will return to purchase inventory after consuming items that were previously
purchased. In other words, the period of time that the customer uses to consume the items
might be considered as the sojourn time of the customer in orbit.

A recent detailed review of works in which models of QIS were investigated can be
found in [22]. From the indicated review, we can conclude that even though the application
of a QIS with delayed feedback (QISwDFB) is very relevant, these models were considered
in only a few papers.

It seems that the first time the feedback phenomenon in QIS was introduced was
in [23,24]. In [23], the model QISwDFR M/M/1/N/(s, Q)/∞/M with a finite capacity
for orbit by feedback customers was considered. Hereinafter, we used modified Kendall
notations for symbolical representation of QIS models, which was proposed in [25]. New
components were added to the classical Kendall notations to indicate the replenishment
policy (RP) in use, the type of cumulative distribution function (CDF) of the inventory’s life-
time (the symbol ∞ in the corresponding position means that items are non-perishable) and
the type of CDF of the inventory delivery time (0 in the corresponding position means that
the inventory delivery time is zero). The retrial rate of the feedback customers from orbit is
a linear function of the number of customers in orbit. A recursive algorithm for calculating
the joint probability distribution of the inventory level, the number of customers in orbit,
the number of customers in the waiting room, and the status of the server was developed.
The main performance measures in the steady-state were derived, and the long-run total
expected cost rate was also calculated. The authors derived the Laplace–Stieljes transforms
of the waiting time distribution of both the primary as well as the feedback customers.
A more complex model of perishable QISwDFB MAP/M/1/N/(s, Q)+(s, S)/M/PH was
considered in [24]; here, the symbol “+” indicates that, depending on the state of the system,
either the (s, Q) or (s, S) policy was used. To study this system, the MGM was employed,
formulas for calculating the performance measures of the system were obtained, and the
total cost (TC) minimization problem was solved. A similar model was considered in [26].
Two main differences from the model in [23] are that the orbit capacity is infinite and
retrial rate is constant. Here, Neuts’ matrix-geometric method (MGM) [27] was used to
analyze the model and both the busy period distribution and the waiting time distribution
of primary and feedback customers. In all of these models, the authors assumed that
the retrial customer required only the service, and they joined the server if there were no
primary customers in the system or if the inventory level was zero, or both.

An important subclass of QIS are systems with perishable inventories in which the
lifetime of the items is a finite random variable. For a detailed review of works devoted to
QIS with perishable inventories, see review paper [28] and its reference list. Among recent
works along this direction, References [29–36] should be noted. For brevity, we did not
consider here the results obtained in the indicated papers (for this purpose, see [25]). In a
more relevant paper [37], two models of perishable QISwDFB M/M/1/N/(s, Q)/M/M and
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M/M/1/∞/(s, Q)/M/M were considered. There are three options after the completion of
service to the primary customer: (1) the customer leaves the system without purchasing an
inventory item; (2) the customer purchases the item and leaves the system; (3) the customer
does not purchase the item and joins the orbit for feedback. Probabilities were introduced
to evaluate the three indicated options. To calculate the joint probability distribution of
the inventory level, the number of customers in orbit, and the number of customers in the
queue, the space merging method was developed. The authors assumed that there were
several sources for executing the order with different costs and lead times. The problem of
minimizing the total cost by choosing a pair of sources and the reorder level was solved.

It is worthy to note that all papers [28–37] assumed that inventory deteriorates after
some random (positive) time. At the same time, in real life, stocks in systems can be
instantly destroyed (for example, due to the negligence of warehouse workers or because
of technical accidents). In addition, new customers are repeated if there are no stocks
at the time of their arrival, and already serviced customers are returned to the system
after spending purchased stocks. In other words, models of retrial QISwDFB (RQISwDFB)
with instantly damaged items adequately describe many QIS in real life. However, to
the best of our knowledge, these models have not been studied in the available literature.
Based on these facts, in this paper, the first attempt was made to develop a method for
calculating and optimizing the performance measures of such systems under various
replenishment policies.

To be more specific, we note that the main differences between the model studied here
and the models considered in the literature are as follows:

1. In all the known models of QISwDFB, the authors assumed that orbit for repeated
customers can be formed only by feedback customers but not by primary customers.
We considered a model in which some of the primary customers in some situations
(for instance, when an inventory level is zero) might also be going to orbit to repeat
their request in the future;

2. We propose a model of RQISwDFB in which items might be damaged (destroyed)
instantaneously due to the fact of technical reasons;

3. We developed a unify method to calculate the performance measures of the proposed
models under various replenishment policies.

The paper is organized as follows. In Section 2, we describe the models and formulate
the problem. In Section 3, an analysis of the models is carried out using the matrix-
geometric method, and the stability conditions under different replenishment policies are
derived. Formulas for calculations of the main performance measures are presented in
Section 4. A numerical illustration, including the minimization of the total cost, is provided
in Section 5. Section 6 concludes the study.

2. Description of Models and Formulation of the Problem

A general block diagram of the studied systems is shown in Figure 1. The proposed
model was considered under the following assumptions.
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1. We considered QIS with a storage with the maximum capacity S, S < ∞;
2. The flow of primary customers (p-customers) was considered to be Poisson with

the parameter λ. For simplicity of presentation, without loss of generality, it was assumed
that each p-customer required an item of one size. This means that if at the moment of
receipt of the p-customer the inventory level is positive, then they instantly receive the item
(i.e., service time is zero) and the inventory level of the system decreases by one. If at the
moment of receipt of a p-customer the inventory level is equal to zero, then this customer,
according to the Bernoulli scheme, either leaves the system with probability (w.p.) α, or
with a complementary probability of 1 – α, it goes to the orbit to repeat its request. The
customers in the orbit are called retrial customers (r-customers). The orbit is assumed to be
infinite in size;

3. A p-customer that has already received an inventory can demand additional
inventory after a positive random time (delayed feedback). More specifically, each served
p-customer, according to the Bernoulli scheme, either leaves the system w.p. β permanently,
or with a complementary probability of 1 – β, goes to the orbit to repeat its request.
Customers that require re-servicing are called feedback customers (f-customers). It is
considered that the orbit for r-customers and f-customers is common, and in the orbit,
these customers are considered identical. Therefore, further customers in orbit, regardless
of their type, are simply called retrial customers. Customers from the orbit arrive with
a constant intensity, i.e., the intensity of the arrival of r-customers does not depend on
their number in the orbit. This means that only the r-customer at the head of the orbit can
repeat the request to obtain the inventory. The time between arrivals of r-customers has an
exponential d.f. with parameter η. It is believed that r-customers can repeat their requests
many times, i.e., if at the moment of arrival of the r-customers the inventory level is equal
to zero, then according to the Bernoulli scheme, they either leave the orbit w.p. γ, or with a
complementary probability of 1 – γ, remain in the orbit to repeat their request;

4. A distinctive feature of the studied models is that in addition to p-customers,
r-customers, and f-customers, they also contain a flow of destructive customers (d-customers).
Unlike p-customers and r-customers, d-customers do not require inventory, but they destroy
them, i.e., at the moment d-customers arrive, the inventory level decreases by one. It was
assumed that the flow of d-customers is Poisson with the parameter κ. If at the moment of
receipt of a d-customer the inventory level is equal to zero, then this customer does not affect
the operation of the system;
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5. Systems that use one of two replenishment policies (RPs) were studied here: (s, Q)
or (s, S) policies. When using the (s, Q) policy, it was assumed that if the inventory level
decreases, then an order is made to a higher-level storage to replenish the inventory, while
the order volume is constant and equal to Q = S − s; in order to avoid multiple orders,
it was considered that s < (S/2). When using the (s, S) policy, it was assumed that if the
inventory level drops to s, 0 ≤ s < (S/2), then an order is made to a higher-level storage to
replenish the inventory, while at the time of the order’s execution, the stock level of the
system reaches the maximal value of S. When both policies are used, the order is completed
with a random delay, i.e., the lead time is a random variable having an exponential d.f.
with an average value of ν−1.

Our problem has two parts: (1) find the joint distribution of the number of r-customers
in the orbit and the inventory level of the system; (2) find the following performance
measures of the system: (i) average inventory level; (ii) average order size (if using the
(s, S) policy); (iii) average number of r-customers in the orbit; (iv) average reorder rate;
(v) average damaging rate of inventory; (vi) loss probability of p-customers; (vii) loss
probability of r-customers.

In Sections 3 and 4, we consider solving problems 1 and 2, respectively.

3. The Proposed Method for Solving the Problem

Let us first consider a case when using the (s, Q) policy. Based on the above assump-
tions regarding the form of d.f. of random variables participating in the formation of the
model, we concluded that the studied QIS is described by a two-dimensional Markov
chain (2D MC). At an arbitrary moment in time, the state of this 2D MC is given by the
two-dimensional vector (n, m), where the component n indicates the number of r-customers
in the orbit, n = 0, 1, . . .; component m determines the inventory level, m = 0, 1, . . . , S.
This means that the state space of a given 2D MC is defined as follows:

E =
∞
∪

n=0
L(n), (1)

where L(n) = {(n, 0), (n, 1), . . . , (n, S)} is called the level n, n = 0, 1, 2, . . ..
The elements of the generator of the studied 2D MC are indicated by q((n1, m1), (n2, m2)),

i.e., these values determine the transition rates from state (n1, m1) ∈ E to state (n2, m2) ∈ E.
These values are determined based on the following arguments. Let the initial state of the
system be (n1, m1) ∈ E.

• If in the initial state (n1, m1) the inventory level is positive (i.e., m1 > 0), then
when a p-customer arrives that does not require repeated servicing and also when a
d-customer arrives, the transition to the state (n1, m1 − 1) is made. In other words,
there is a transition from the state (n1, m1) to state (n1, m1 − 1). In this case, the total
rate of such transitions is equal to λβ + κ;

• If in the initial state (n1, m1) the inventory level is positive (i.e., m1 > 0), then when a
p-customer that requires repeated servicing arrives, a transition is made to the state
(n1 + 1, m1 − 1); the rate of such transitions is equal to λ(1− β);

• If in the initial state (n1, m1) the inventory level is equal to zero (i.e., m1 = 0), then
when a p-customer w.p. 1− α arrives, a transition is made to the state (n1 + 1, 0); the
rate of such transitions is equal to λ(1− α);

• If in the initial state (n1, m1) the inventory level is positive (i.e., m1 > 0) and there is
at least one r-customer in the orbit (i.e., n1 > 0), then when an r-customer arrives, a
transition is made to the state (n1− 1, m1− 1); the rate of such transitions is equal to η;

• If in the initial state (n1, m1) the inventory level is equal to zero (i.e., m1 = 0) and
there is at least one r-customer in the orbit (i.e., n1 > 0), then when an r-customer w.p.
γ arrives, a transition is made to the state (n1 − 1, 0); the rate of such transitions is
equal to ηγ;
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• If in the initial state (n1, m1) the inventory level is less or equal to s (i.e., m1 ≤ s), then
when the order is executed, a transition is made to the state (n1, m1 + S− s); the rate
of such transitions is equal to ν.

Therefore, the positive elements of the generator of the studied 2D MC are calculated
from the following relations:

q((n1, m1), (n2, m2)) =



λβ + κ if m1 > 0 , (n2, m2) = (n1, m1 − 1) ,
η if n1m1 > 0 , (n2, m2) = (n1 − 1, m1 − 1) ,
ηγ if n1 > 0, (n2, 0) = (n1 − 1, 0) ,
λ(1− α) if (n2, 0) = (n1 + 1, 0) ,
ν if m1 ≤ s , (n2, m2) = (n1, m1 + S− s) ,
λ(1− β) if m1 > 0, (n2, m2) = (n1 + 1, m1 − 1) .

(2)

Next, we renumbered the states from (1) in lexicographic order, i.e., states we renum-
bered according to the order (0, 0), (0, 1), . . . , (0, S), (1, 0), (1, 1), . . . , (1, S), . . . Then,
from relations (2), we concluded that the studied 2D MC is a level-independent quasi-birth–
death (LIQBD) process with generator:

G =



B A0 O O O . . .
A2 A1 A0 O O . . .
O A2 A1 A0 O . . .
O O A2 A1 A0 . . .
O O O A2 A1 . . .
...

...
...

...
...

. . .


(3)

In (3), by O we denote a null square matrix with a dimension of S + 1, and B = ‖bij‖
and Ak = ‖a(k)ij ‖, i, j = 0, 1, . . . , S, are square matrices with the same dimension.
From relation (2), we concluded that the elements of the block matrices, B = ‖bij‖ and

Ak = ‖a(k)ij ‖, i, j = 0, 1, . . . , S, are determined by the following relations:

bij =



ν if i ≤ s, j = i + S− s ,
λβ + κ if i > 0, j = i− 1 ,
−(ν + λ(1− α)) if i = j = 0 ,
−(ν + κ + λ) if 0 < i ≤ s, i = j ,
−(κ + λ) if s < i ≤ S , i = j ,
0 in other cases;

(4)

a(0)ij =


λ(1− α) , i = j = 0 ,
λ(1− β) , i > 0 , j = i− 1 ,
0 in other cases;

(5)

a(1)ij =



ν if 0 ≤ i ≤ s, j = i + S− s ,
λβ + κ if i > 0, j = i− 1 ,
−(ν + λ(1− α) + ηγ) if i = j = 0 ,
−(ν + κ + λ + η) if 0 < i ≤ s, i = j ,
−(κ + λ + η) if i > s, i = j ,
0 in other cases ;

(6)

a(2)ij =


ηγ if i = j = 0 ,
η if i > 1 , j = i− 1 ,
0 in other cases.

(7)
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We denote the steady-state probabilities corresponding to the generator
A = A0 + A1 + A2 by π = (π(0), π(1), . . . , π(S)). In other words, the vector π is a
solution to the following system of equilibrium equations (SEEs):

πA = 0, πe = 1 (8)

where 0 denotes a null vector row of size S + 1, and e indicates the column vector of size
S + 1, all the components of which are equal to 1.

From (5)–(7), we find that the elements of the generator A = ‖aij‖, i, j = 0, 1, . . . , S,
are defined as follows:

aij =



−ν if i = j = 0 ,
ν if 0 ≤ i ≤ s , j = i + S− s ,
λ + κ + η if i > 0 , j = i− 1 ,
−(λ + κ + ν + η) if 0 < i ≤ s , j = i ,
−(λ + κ + η) if i > s , j = i ,
0 in other cases.

(9)

Theorem 1. When using the (s, Q) policy, the system is ergodic if and only if the following condition
is satisfied:

λ(π(0)(1− α) + (1− π(0))(1− β)) < η(1− (1− γ)π(0)), (10)

π(0) =
(

s
∑

i=0
χi + (S− 2s− 1)χs + θ

S
∑

m=S−s

s
∑

i=m−S+s
χi

)−1

;

θ = ν
λ+κ+η , χ0 = 1 , χm = θ(1 + θ)m−1, 1 ≤ m ≤ s + 1 .

Proof. From relation (9), we conclude that SEE (8) has the following form:
For the cases 0 ≤ m ≤ s :

(ν + (λ + κ + η)(1− δm,0))π(m) = (λ + κ + η)π(m + 1); (11)

For the cases s + 1 ≤ m ≤ S− s :

(λ + κ + η)π(m) = (λ + κ + η)π(m + 1); (12)

For the cases S− s ≤ m ≤ S :

(λ + κ + η)π(m) = (λ + κ + η)π(m + 1)ψ(s + 1 ≤ m ≤ S− 1) + νπ(m− S + s). (13)

Hereinafter, δx,y represents the Kronecker symbols, and ψ(A) is the indicator function
of the event A.

The SEEs (11)–(13) can be solved analytically using the recursive method. Thus,
taking into account the above notation from Equation (11), we find that
π(m) = χmπ(0) for 1 ≤ m ≤ s + 1. On the other hand, from Equation (12), we find
that π(m) = π(m + 1) for s + 1 ≤ m < S− s, i.e., π(m) = χsπ(0) for s + 1 ≤ m < S− s. In
Equation (13), recurrent procedures are performed starting with the equation for m = S, e.g.,
the equation for the case m = S is taken into account in the equation for the case m = S− 1.
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Then, we obtain that π(m) = θ
s
∑

i=m−S+s
χiπ(0) for S − s ≤ m ≤ S. In other words, the

desired probabilities π(m), m = 1, . . . , S, are expressed through π(0) as follows:

π(m) =


χmπ(0) , if 1 ≤ m ≤ s ,
χsπ(0) , if s + 1 ≤ m < S− s ,

θ
s
∑

i=m−S+s
χiπ(0) , if S− s ≤ m ≤ S ,

(14)

where the unknown probability, π(0), is determined from the normalization condition,
i.e., π(0) + π(1) + . . . π(S) = 1. From (14), we conclude that π(0) is determined using
relation (10).

Further, according to [27] (pp. 81–83), we conclude that the studied LIQBD is ergodic
if and only if the following condition is satisfied:

πA0e < πA2e. (15)

Taking into account (5), (7), and (14), after certain transformations from (15), we obtain
that relation (10) is true. The theorem is proved. �

Remark 1. It is important to note that the found ergodicity condition (10) has an exact proba-
bilistic meaning. Indeed, in inequality (10), the left-hand side is the weighted rate of arrival of
p-customers and f-customers into the orbit, and its right-hand side determines the weighted rate
of arrival of requests from the orbit. Thus, condition (10) means the following: the weighted total
intensity of p-customers and f-customers for the orbit must be less than the weighted intensity of
r-customers. Note that condition (10) can be replaced by a rough but, at the same time, easy-to-check
condition λmax{1− α , 1− β} < ηγ. The last condition is obtained by taking into account
λ(π(0)(1− α) + (1− π(0))(1− β)) ≤ λmax{1− α , 1− β},η(1− (1− γ)π(0)) > ηγ. In
other words, the rough condition also has a probabilistic meaning: the left side is the reachable upper
bound of the rate of arrival of p-customers and f-customers into the orbit, and the right side is the
unreachable lower bound of the rate of loss of r-customers from the orbit. It is important to note that
the resulting rough ergodicity condition does not depend on either the intensity of d-customers or
the lead time (we will see later that this condition also does not depend on the accepted RP).

If the ergodicity condition (10) is satisfied, then the steady-state probabilities
pn = (p(n, 0), p(n, 1), . . . , p(n, S)), n = 0, 1, . . . ., corresponding to the generator,
G, are calculated from the following equations:

pn = p0Rn, n ≥ 1, (16)

where R is the minimal non-negative solution to the following matrix-quadratic equation:

R2 A2 + RA1 + A0 = 0.

Boundary probabilities, p0, are found from the following systems of equations with a
normalizing condition:

p0(B + RA2) = 0 .

p0(I − R)−1e = 1 ,
(17)

where I is the unit matrix of size S + 1.
Now let us consider the system when using the (s, S) policy. In this model, a 2D MC

with a state space (1) also describes the system under study. The generator elements of this
2D MC are defined similarly to (2), with the only difference being the sixth line on the right
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side of the specified formula, i.e., here the positive values of the indicated quantities are
calculated from the following relations:

q̃((n1, m1), (n2, m2)) =



λβ + κ if m1 > 0 , (n2, m2) = (n1, m1 − 1) ,
η if n1m1 > 0 , (n2, m2) = (n1 − 1, m1 − 1) ,
ηγ if n1 > 0, (n2, 0) = (n1 − 1, 0) ,
λ(1− α) if (n2, 0) = (n1 + 1, 0) ,
ν if m1 ≤ s , (n2, m2) = (n1, S) ,
λ(1− β) if m1 > 0, (n2, m2) = (n1 + 1, m1 − 1) .

(18)

From (18), we conclude that this 2D MC is an LIQBD with generator:

G̃ =



B̃ A0 O O O . . .
A2 Ã1 A0 O O . . .
O A2 Ã1 A0 O . . .
O O A2 Ã1 A0 . . .
O O O A2 Ã1 . . .
...

...
...

...
...

. . .


(19)

Here, the elements of the matrices B̃ = ‖bij‖ and Ã1 = ‖ã(1)ij ‖, i, j = 0, 1, . . . , S, are
determined as follows:

b̃ij =



ν if i ≤ s, j = S ,
λβ + κ if i > 0, j = i− 1 ,
−(ν + λ(1− α)) if i = j = 0 ,
−(ν + κ + λ) if 0 < i ≤ s, i = j ,
−(κ + λ) if s < i ≤ S , i = j ,
0 in other cases;

(20)

ã(1)ij =



ν if 0 ≤ i ≤ s, j = S ,
λβ + κ if i > 0, j = i− 1 ,
−(ν + λ(1− α) + ηγ) if i = j = 0 ,
−(ν + κ + λ + η) if 0 < i ≤ s, i = j ,
−(κ + λ + η) if i > s, i = j ,
0 in other caes ;

(21)

Let π̃ = (π̃(0), π̃(1), . . . , π̃(S)) be the steady-state probability vector of the generator
Ã = A0 + Ã1 + A2, i.e.,

π̃ Ã = 0, π̃e = 1 (22)

From relations (5), (7), and (21), we conclude that the elements of the generator Ã are
determined as follows:

ãij =



−ν if i = j = 0 ,
ν if 0 ≤ i ≤ s , j = S ,
λ + κ + η if i > 0 , j = i− 1 ,
−(λ + κ + ν + η) if 0 < i ≤ s , j = i ,
−(λ + κ + η) if i > s , j = i ,
0 in other cases.

(23)

Theorem 2. When using the (s, S) policy, the system is ergodic if and only if condition (10) is
satisfied, where π(0) is replaced by the following value:

π̃(0) =

(
s

∑
m=0

χm + (S− s)χs+1

)−1

. (24)
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Proof. From relation (23), we conclude that SEE (22) has the following explicit form:
For the cases 0 ≤ m ≤ s :

(ν + (λ + κ + η)(1− δm,0))π(m) = (λ + κ + η)π(m + 1) ; (25)

For the cases s + 1 ≤ m ≤ S :

(λ + κ + η)π(m) = (λ + κ + η)π(m + 1)ψ(s + 1 ≤ m ≤ S− 1) + ν
s

∑
m=0

π(m)δm,S. (26)

As above (see the solution to the SEEs (11)–(13)), the obtained SEEs (25) and (26)
can also be solved in a recursive manner. Thus, from Equation (25), we find that
π̃(m) = χmπ̃(0) для 1 ≤ m ≤ s + 1. On the other hand, from Equation (26) at
m = s + 1, . . . , S − 1, we find that π̃(m) = π̃(m + 1) . In other words, in this case
the desired probabilities π̃(m), m = 1, . . . , S, are expressed through π̃(0) as follows:

π̃(m) =

{
χmπ̃(0) , if 1 ≤ m ≤ s,
χs+1π̃(0) , if s + 1 ≤ m ≤ S,

(27)

where the probability π̃(0) is determined from the normalization condition, i.e., π̃(0) is
determined from relation (24).

As above, the studied LIQBD is ergodic if and only if condition (15) is satisfied for the
vector π̃. Then, taking into account (5), (7), and (27), after certain transformations from (15),
we obtain that Theorem 2 is true. �

Further, the steady-state probabilities p̃n = ( p̃(n, 0), p̃(n, 1), . . . , p̃(n, S)), n =

0, 1, . . . ., corresponding to the generator G̃ are determined similarly to relations (16)
and (17).

Calculating the steady-state probabilities of the constructed 2D MCs allows us to
determinate the main performance measures of the system when using both replenishment
policies. Next, in Section 4, we propose formulas to calculate the indicated measures.

4. Performance Measures

Note that when using the (s, Q) policy, the required quantities are calculated as
follows (when using the (s, S) policy, in all formulas the quantities p(n, m) are substituted
by p̃(n, m)).

• Average inventory level (Sav):

Sav =
S

∑
m=1

m
∞

∑
n=0

p(n, m) ; (28)

• Average number of r-customers in orbit (Lo):

Lo =
∞

∑
n=1

n
S

∑
m=0

p(n, m) ; (29)

• Average reorder rate (RR):

RR = (λ + (s + 1)γ)
∞

∑
n=0

p(n, s + 1) + η
∞

∑
n=1

p(n, s + 1) ; (30)

• Average damaging rate of stocks (DRS):

DRS = κ

(
1−

∞

∑
n=0

p(n, 0)

)
; (31)
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• Loss probability of p-customers (Pp):

Pp = α
∞

∑
n=0

p(n, 0) ; (32)

• Loss probability of r-customers (Pr):

Pr = γ
∞

∑
n=1

p(n, 0). (33)

Note that when using the (s, S) policy, the order size is a variable magnitude, and for
this policy, we can calculate an average order size (Vav) as follows:

Vav =
S

∑
m=S−s

m
∞

∑
n=0

p̃(n, S−m). (34)

5. Numerical Results

Below, we demonstrate the results of numerical experiments that had two goals: one
was to study the behavior of performance measures (28)–(34) with respect to changes in the
values of the initial parameters, and the other goal was to solve the problem of minimizing
the total cost (TC).

Regarding the first goal, we point to the results of the numerical experiments for a
hypothetical model, which are shown in Tables 1–7. In all experiments, it was assumed
that S = 20 and s = 5. In the respective columns of these tables, the top row corresponds to
the (s, S) policy and the bottom row to the (s, Q) policy. The values of the initial parameters
are indicated after the title of each table.

Table 1. Dependence of the performance measures on parameter λ; η = 15, κ = 8, ν = 10, α = 0.4, and
β = γ = 0.6.

λ Sav Vav Lo DRS Pp Pr RR

10
11.7522 2.1573 0.3797 7.8331 0.0083 0.0062 1.021
10.8955 0.3817 7.8122 0.0094 0.0069 1.1479

11
11.669 2.2882 0.4369 7.8076 0.0096 0.0076 1.0937

10.7737 0.4398 7.7826 0.0109 0.0086 1.2353

12
11.5862 2.418 0.4997 7.7809 0.0109 0.0091 1.1657
10.6535 0.5037 7.7513 0.0124 0.0104 1.3219

13
11.5037 2.5469 0.5689 7.7530 0.0123 0.0108 1.2367
10.5349 0.5744 7.7185 0.0141 0.0124 1.4077

14
11.4218 2.6747 0.6455 7.7240 0.0138 0.0127 1.3068
10.4180 0.6530 7.6843 0.0158 0.0145 1.4927

15
11.3403 2.8014 0.7308 7.694 0.0152 0.0147 1.3760
10.3027 0.7409 7.6488 0.0175 0.0169 1.5770

16
11.2595 2.9271 0.8263 7.6630 0.0168 0.0168 1.4444
10.1890 0.8396 7.6120 0.0193 0.0194 1.6604
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Table 2. Dependence of the performance measures on parameter η; λ = 20, κ = 8, ν = 10, α = 0.4, and
β = γ = 0.6.

η Sav Vav Lo DRS Pp Pr RR

10
10.9374 3.4280 5.6455 7.5341 0.02329 0.0322 1.7156
9.7368 4.0258 7.4577 0.02711 0.0376 1.9928

11
10.9381 3.4262 3.4532 7.5335 0.02332 0.0308 1.7143
9.7397 3.6180 7.4570 0.02714 0.0360 1.9913

12
10.939 3.4244 2.4883 7.533 0.02334 0.0296 1.7130
9.7424 2.5859 7.4563 0.02718 0.0346 1.9899

13
10.9400 3.4227 1.9454 7.5325 0.02337 0.0285 1.7118
9.7448 2.0124 7.4557 0.02721 0.0333 1.9885

14
10.9412 3.4211 1.5973 7.532 0.02339 0.0275 1.7106
9.7471 1.6474 7.4551 0.02724 0.0322 1.9872

15
10.9424 3.4195 1.3550 7.5316 0.02341 0.0266 1.7096
9.7493 1.3946 7.4546 0.02726 0.0311 1.9859

16
10.9437 3.4180 1.1766 7.5312 0.02343 0.0258 1.7085
9.7512 1.2091 7.4542 0.02728 0.0302 1.9847

Table 3. Dependence of performance measures on parameter κ; λ = 20, η = 15, ν = 10, α = 0.4,
β = γ = 0.6.

κ Sav Vav Lo DRS Pp Pr RR

3
11.2217 2.9860 1.3031 2.8680 0.0176 0.0202 1.7523
10.1356 1.3315 2.8476 0.0203 0.0234 2.0169

4
11.1650 3.0741 1.3138 3.8127 0.0187 0.0215 1.7435
10.0564 1.3436 3.7834 0.0216 0.0249 2.0109

5
11.1087 3.1615 1.3238 4.7515 0.01987 0.0227 1.7349
9.9782 1.3560 4.7121 0.0230 0.0264 2.0048

6
11.0528 3.3482 1.3341 5.6843 0.0210 0.0240 1.7264
9.9009 1.3686 5.6336 0.0244 0.0279 1.9986

7
10.9974 3.3342 1.3448 6.6111 0.0222 0.0253 1.7179
9.8246 1.3815 6.5479 0.0258 0.0295 1.9923

8
10.9424 3.4195 1.3550 7.5316 0.0234 0.0266 1.7096
9.7493 1.3946 7.5446 0.0272 0.0311 1.9859

9
10.8879 3.5041 1.3657 8.4459 0.0247 0.0279 1.7013
9.6748 1.4079 8.3538 0.0287 0.0327 1.9795
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Table 4. Dependence of the performance measures on parameter ν; λ = 20, η = 15, κ = 8, α = 0.4, and
β = γ = 0.6.

ν Sav Vav Lo DRS Pp Pr RR

6
9.7263 5.2923 1.7275 6.9079 0.0546 0.0646 1.5301
8.1746 1.8717 6.6997 0.0650 0.0777 1.8157

7
10.1369 4.6634 1.5793 7.1340 0.0433 0.0506 1.5894
8.6872 1.6788 6.9738 0.0513 0.0603 1.8779

8
10.4621 4.1631 1.4787 7.3029 0.0348 0.0402 1.6392
9.1066 1.5500 7.1785 0.0410 0.0477 1.9240

9
10.7254 3.7563 1.4073 7.4317 0.0284 0.0325 1.6765
9.4553 1.4599 7.3342 0.0332 0.0383 1.9590

10
10.9424 3.4195 1.3550 7.5316 0.0234 0.0266 1.7096
9.7493 1.3946 7.4546 0.0273 0.0311 1.9859

11
11.124 3.1364 1.3155 7.6103 0.0195 0.0220 1.7377

10.0001 1.3459 7.5490 0.0225 0.0260 2.0070

12
11.2779 2.8953 1.2852 7.6731 0.0163 0.0184 1.7620
10.0164 1.3089 7.6239 0.0188 0.0212 2.0236

Table 5. Dependence of the performance measures on parameter α; λ = 20, η = 15, κ = 8, ν = 10,
and β = γ = 0.6.

α Sav Vav Lo DRS Pp Pr RR

0
10.9088 3.4590 1.7259 7.5221 0 0.0302 1.7304
9.7106 1.8545 7.4403 0 0.0356 2.0160

0.2
10.9252 3.4388 1.5183 7.5271 0.0118 0.0286 1.7197
9.7305 1.5943 7.4478 0.0138 0.0336 2.0005

0.4
10.9424 3.4195 1.3550 7.5316 0.0234 0.0266 1.7096
9.7493 1.3946 7.4546 0.0273 0.0311 1.9859

0.6
10.9609 3.4013 1.2284 7.5356 0.0348 0.0241 1.7000
9.7668 1.2433 7.4606 0.0404 0.0280 1.9724

0.8
10.9807 3.3844 1.1321 7.5390 0.0461 0.0207 1.6912
9.7834 1.1304 7.4657 0.0534 0.0240 1.9601

1
11.0018 3.3692 1.0605 7.5418 0.0573 0.0164 1.6834
9.7991 1.0478 7.4760 0.0662 0.0188 1.9492

Table 6. Dependence of the performance measures on parameter β; λ = 20, η = 15, κ = 8, ν = 10,
α = 0.4, and γ = 0.6.

β Sav Vav Lo DRS Pp Pr RR

0.4
11.6434 2.3403 0.6862 7.7951 0.0102 0.0090 1.1224
9.4626 4.9466 7.3420 0.0328 0.0445 2.1992

0.6
11.7522 2.1573 0.3797 7.8331 0.0083 0.0061 1.0208
9.7493 1.3946 7.4546 0.0272 0.0311 1.9859

0.8
11.8572 1.9715 0.1658 7.8701 0.0065 0.0038 0.9172
10.0492 0.4890 7.5689 0.0216 0.0198 1.7630

1
11.9568 1.7830 0.0081 7.9056 0.0047 0.0019 0.8114
10.3624 0.0701 7.6833 0.0158 0.0106 1.5302
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Table 7. Dependence of the performance measures on parameter γ; λ = 20, η = 15, κ = 8, ν = 10,
α = 0.4, and β = 0.6.

γ Sav Vav Lo DRS Pp Pr RR

0
10.908 3.4569 1.6675 7.5230 0.0238 0 1.5353
9.7125 1.7853 7.4410 0.0279 0 1.7903

0.2
10.9200 3.4431 1.5410 7.5263 0.0237 0.0098 1.5927
9.7261 1.6247 7.4465 0.0276 0.0116 1.8544

0.4
10.9315 3.4306 1.4382 7.5291 0.0235 0.0187 1.6508
9.7384 1.4966 7.4508 0.0274 0.0219 1.9196

0.6
10.9424 3.4195 1.3550 7.5316 0.0234 0.0266 1.7096
9.7493 1.3946 7.4546 0.0272 0.0311 1.9859

0.8
10.9525 3.4097 1.2877 7.5337 0.0233 0.0336 1.7689
9.7588 1.3134 7.4578 0.0271 0.0391 2.0533

1
10.9618 3.4012 1.2332 7.5355 0.0232 0.0396 1.8288
9.7671 1.2485 7.4606 0.0269 0.0461 2.1216

As a result of the analysis of the data in these tables, it is possible to draw conclusions
regarding the behavior of the performance measures (28)–(34). Note that not all of the
results of the numerical experiments corresponded to theoretical expectations. Thus, the
behavior of function Sav with respect to changing parameter η seems counterintuitive (see
Table 2). Indeed, it was theoretically expected that when using both RPs, with an increase
in the intensity of r-orders, the average stock level of the system would decrease. However,
from Table 2, we conclude that these expectations did not come true; with the growth
of parameter η, the function Sav, though at a very low rate, grew. In the same way, it
was expected that when using the policy (s, S), the function Vav should increase with an
increasing parameter η, but it also decreased at a very low rate. On the other hand, the
function Vav decreased because the function Sav increased.

Other theoretically unexpected results were the behavior of function RR with respect
to the increase in parameters ν (see Table 4) and γ (see Table 7). Thus, when using both
RPs, as these parameters increased, as expected, the function Sav grew, but function RR
also grew. However, with the increase in the average inventory level, a decrease in the
intensity of reorders was expected. It is important to note that the rates of change of these
performance measures were very small values, since changes in their values are often
observed in the third decimal place after the decimal point. In other words, these facts can
be explained by the accuracy of machine calculations. At the same time, such behavior by
these performance measures was observed with a wide range of changes in the initial data
of the studied models. The rest of the results confirmed the theoretical expectations.

Let us now consider the second goal of our numerical experiments. Note that in real
systems, often only the order point (i.e., parameter s) is the controlled parameter. Based on
this fact, the problem of minimizing the TC was solved here by choosing the optimal value
of the order point for fixed values of the initial parameters when using both RPs.

The TC is calculated as follows:

TC(s) = (K + coVav)RR(s) + chSav(s) + cdDRS(s) + cpλPp(s) + crηPr(s) + cwLo(s), (35)

where K is the fixed cost of one order; co is the cost of one unit of order value; ch is the
storage cost per unit of inventory volume per unit of time; cd is the cost of damaging one
unit of stock; cp are the penalties for losing one p-customer; cr are the penalties for losing
one r-customer; cw is the cost per unit of waiting time in the orbit of one r-customer.

The optimization problem is as follows: let all parameters of the model be fixed, except
for parameter s, as it is required to find such a value s in order to minimize (35). The
minimization problem (35) always has a solution, since the domain of feasible solutions
X = {s : 0 < s < (S/2)} is a discrete finite set.
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The results of solving this problem for the hypothetical model in which S = 16 are
shown in Table 8. Here, the values of the initial parameters of the model and the coefficients
in function (35) were chosen as follows:

λ = 10, κ = 8, ν = 10, η = 15, α = β = γ = 0.6 ;

K = 100, co = 100, ch = 100, cd = 150, cp = 120, cr = 1200, cw = 100.

Table 8. Results of the optimization problem; the optimal (minimal) value of the TC is indicated in
bold type.

S
TC

(s, Q) Policy (s, S) Policy

2 4332 3057

3 4288 2962

4 4277 2918

5 4332 2913

6 4384 2940

7 4470 2994

It can be seen from Table 8 that the values for TC when using the (s, Q) policy were
much larger than when using the (s, S) policy, and the optimal value of parameter s for the
(s, Q) policy was equal to four, while for the (s, S) policy it was equal to five.

6. Conclusions

The paper proposed Markovian models of RQISwDFB with a positive lead-time in
which two replenishment policies, (s, Q) and (s, S), are used. Three kinds of consumer
customers (i.e., primary, retrial, and feedback customers) were considered, and a common
and an infinite orbit for retrial and feedback customers were organized. It was assumed that
in addition to these customers, there are destructive customers that do not require items,
but upon arrival of such a customer, the inventory level instantly decreases by one due to
damage to items. Two-dimensional Markov chains that describe the investigated systems
were constructed and their ergodicity conditions for both policies were found. The steady-
state probabilities and performance measures of the investigated systems were calculated
via the matrix-geometric method. Numerical experiments, including the minimization of
the total cost, were demonstrated. These models can have application in the mathematical
analysis of many physical systems.

As direction of future work, similar models in which the size of damaged items
is a random variable with a known CDF could be studied. Another direction is the
investigation of these models with MAP (Markov arrival process) flows of primary and
retrial customers as well as with PH (phase-type) distribution of service times for customers
of different types.
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