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Abstract: In this paper, the integrable (2+1)-dimensional Maccari system (MS), which can model 
many complex phenomena in hydrodynamics, plasma physics and nonlinear optics, is investigated 
by the variational approach (VA). This proposed approach that based on the variational theory and 
Ritz-like method can construct the explicit solutions via the stationary conditions only taking two 
steps. Finally, the dynamic behaviors of the solutions are exhibited by choosing the appropriate 
parameters through the 3-D and density plots. It can be seen that the proposed method is concise 
and straightforward, and can be adopted to study the travelling wave theory in physics. 
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1. Introduction 
Many significant natural science and engineering problems arising in circuits [1–3] 

hydrodynamics [4–6], plasma physics [7–9], optics [10–15], biomedical science [16–19], vi-
bration [20–24], chemistry [25,26] and so on can be attributed to the study of nonlinear 
partial differential equations (NPDEs). The study of NPDEs is of great value in theory and 
application, and can well explain various natural phenomena. In this work, we mainly 
study the (2+1)-dimensional MS that reads as [27,28]: 
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where ( )tyxpp ,,=  represents the complex scalar field and ( )tyxqq ,,=  indicates 
the real scalar field. x , y  and t  are the independent spatial variables and temporal 
variable, respectively. The (2+1)-dimensional MS can model many complex phenomenon 
arising in hydrodynamics, plasma physics, nonlinear optics and so on. In addition, the 
study of its travelling wave solution is important. Here in this work, we aim to search for 
the solitary and periodic wave solutions of coupled system via the VA. The rest of this 
article is arranged as follows: In Section 2, the variational principle (VP) is established by 
means of the semi-inverse method (SIM). In Sections 3 and 4, we attain the periodic wave 
solution (PWS) and solitary wave solution (SWS) by applying the VA, respectively. In 
Section 5, the numerical results and discussion are given. Finally, we present the conclu-
sion in Section 6. 

2. The VP 
To solve the coupled model, we first derive the VP in this section. To this end, the 

following wave transformation is introduced: 

( ) ( )ξφ petyxp i=,, , ( ) ( )ξqtyxq =,, , (2) 

Where, 

tyx 321 γγγξ ++= , tyx 321 εεεφ ++= , (3) 

where 1γ , 2γ , 3γ , 1ε , 2ε  and 3ε  are arbitrary constants. 
Using Equations (2) and (3), we have: 

( ) ( )[ ] ( ) ( )ξγξεξγξε φφφφ peipepepeiiip iiii
t ′+−=′+= 3333 , 

( ) ( )[ ] ( ) ( ) ( )ξγξγεξεξγξε φφφφφ pepeipepepeip iii
x

ii
xx ′′+′+−=′+= 2

111
2
111 2 , 

( )ξγ qqt ′= 3 , 

( )ξγ qqy ′= 2 , 

( ) ( ) ( )′== 2
1

22 ppp xx
γ

, 

 

Taking above results into Equation (1), Equation (1) can be transformed into the fol-
lowing equations: 

02 2
111

2
133 =+′′+′+−−′ pqppipppi γγεεεγ , (4) 

( ) ( ) 02
132 =

′
+′+ pq γγγ , (5) 

where 
ξd

dpp =′ , 2

2

ξd
pdp =′′ , 

ξd
dqq =′ , ( ) ( )

ξd
pdp

2
2 =
′

. 

Integrating Equation (5) about ξ  once and setting the integration constant to zero, 
it gives: 
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η 2

32

1 pq 







+

−=
γγ

γ
. (6) 

Equation (4) can be separated into the real part and imaginary part, respectively, as: 

( ) 02
13

2
1 =++−′′ pqpp εεγ , (7) 

( ) 02 113 =′+ pγεγ . (8) 

Obviously, we can have the following expression in the view of Equation (8): 

113 2 γεγ −= . (9) 

Substituting Equations (6) and (9) into Equation (7) yields: 

( ) 0
2

2
13

3

112

12
1 =+−








−

−′′ ppp εε
γεγ

γγ . (10) 

By the SIM [29–37], the VP of Equation (10) can be found as: 

( ) ( ) ( )∫








+−







−

−′−= ξεε
γεγ

γγ dppppJ 22
13

4

112

122
1 2

1
24

1
2
1

. (11) 

To facilitate the calculation, we can re-express Equation (11) as: 

( ) ( ){ }∫ −−′= ξααα dppppJ 2
3

4
2

2
1 , (12) 

where, 

2
11 2

1 γα −= , 







−

=
112

1
2 24

1
γεγ

γα , ( )2
133 2

1 εεα += . (13) 

Comparing Equation (11) with Equation (10), it is easy to see that that the order of 
Equation (10) has been reduced through the VP, which makes the equation more simple. 
In addition, the obtained VP can imply the structural form of the solution. Next, we will 
find the PWS and SWS based on Equation (12) via the VA. 

3. The PWSs 
The target of this section is to seek the PWSs of Equation (1) by the VA [38–41]. In 

order to achieve this goal, we can assume Equation (10) has the following periodic solu-
tion: 

( ) ( )ϖξξ cosΛ=p , 0>ϖ . (14) 

Substituting the above into the Equation (12) yields: 
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( ) ( )[ ] ( )[ ] ( )[ ]{ }
( ) ( ) ( ){ }
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( ) ( ) ( )

( )
ϖ

πααϖα

ψψ
ϖ

αψψ
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ξϖξαϖξαϖξϖα

π

16
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coscossin
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4
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Λ+−Λ
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Λ
−

Λ
−Λ=

Λ−Λ−Λ=
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∫∫∫
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ddd
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(15) 

By the Ritz-like method, there is: 

0=
Λ∂
∂J

, (16) 

which leads to: 

( ) 0
4

322 2
2

1
2

3 =
Λ+−Λ

−
ϖ

πααϖα
. (17) 

Solving above equation, we obtain: 

0
2

32

1

2
2

3 >
Λ+

=
α

ααϖ . (18) 

Substituting Equation (13) into above equation, we acquire: 

( )( )
( ) 0

22
322

112
2
1

1
2

112
2
13 >

−
Λ+−+

−=
γεγγ

γγεγεεϖ . (19) 

So the periodic solution of Equation (10) is attained as: 

( ) ( )( )
( ) 











−
Λ+−+

−Λ= ξ
γεγγ

γγεγεεξ
112

2
1

1
2

112
2
13

22
322cosp . (20) 

In light of Equations (2) and (3), the PWS of Equation (1) can be obtained as: 

( ) ( )( )
( ) ( ) ( )tyxietyxtyxp 321

1121
112

2
1

1
2

112
2
13 2

22
322cos,, εεεγεγγ

γεγγ
γγεγεε ++












−+

−
Λ+−+

−Λ= . (21) 

With help of Equations (6) and (9), we have: 

( ) ( )( )
( ) ( ) ( )tyxietyxtyxq 3212

1121
112

2
1

1
2

112
2
1322

112

1 2
22

322cos
2

,, εεεγεγγ
γεγγ

γγεγεε
γεγ

γ ++












−+

−
Λ+−+

−Λ







−

−=  (22) 

Note: We can also obtain the other different PWSs via supposing ( ) ( )ϖξξ sinΛ=p
, ( ) ( )ϖξξ 2cosΛ=p  and so on. 

4. The SWSs 
This section will apply the VA to derive the SWSs. For this end, we make a assump-

tion that the solution of Equation (10) is: 
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( ) ( )ξξ BhAp sec= , 0>B  (23) 

where A  and B  are constants that to be determined later. Taking Equation (23) into 
Equation (12) gives: 

( ) ( ) ( )[ ] ( )[ ] ( )[ ]{ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( )
B
ABA

dh
B
Ah

B
AhBA

dBhABhABBhBA

dBhABhABBhABBAJ

3
32

secsectanhsec

secsectanhsec

secsectanhsec,

32
2

1
22

0

2
2

34
4

2222
1

0

22
3

44
2

2222
1

0

2
3

4
2

2
1

ααα

ααα

ξξαξαξξα

ξξαξαξξα

−−
=

Ξ








Ξ−Ξ−ΞΞ=

−−=

−−−=

∫

∫
∫

∞

∞

∞

 (24) 

According to Ritz-like method [42–45], the following expressions can be obtained via 
the stationary conditions: 

( ) 0,
=

∂
∂

A
BAJ

, 
(25) 

 

( ) 0,
=

∂
∂

B
BAJ

. 
(26) 

From which, we have: 

( ) 0
3

342 32
2

1
2

=
++−

−
B

ABA ααα
, (27) 

 

( ) 0
3

32
2

32
2

1
22

=
++

B
ABA ααα

. (28) 

which results in: 

2

3

α
α

−=A , 
1

3

α
α

−=B . (29) 

Or, 

2

3

α
α

−−=A , 
1

3

α
α

−=B . (30) 

In the view of Equation (13), we have: 

( )( )
1

112
2
13 22
γ

γεγεε −+
−=A , 2

1

2
13

γ
εε +

=B , (31) 

or, 

( )( )
1

112
2
13 22
γ

γεγεε −+
−−=A , 2

1

2
13

γ
εε +

=B . (32) 
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Thus, we can acquire the solution of Equation (10) as: 

( ) ( )( )









 +−+
−= ξ

γ
εε

γ
γεγεεξ 2

1

2
13

1

112
2
13 sec22 hp , (33) 

Or, 

( ) ( )( )









 +−+
−−= ξ

γ
εε

γ
γεγεεξ 2

1

2
13

1

112
2
13 sec22 hp . (34) 

By the transform given in Equations (2) and (3), we have: 

( ) ( )( ) ( ) ( )tyxietyxhtyxp 321
11212

1

2
13

1

112
2
13 2sec22,, εεεγεγγ

γ
εε

γ
γεγεε ++












−+

+−+
−= , (35) 

or 

( ) ( )( ) ( ) ( )tyxietyxhtyxp 321
11212

1

2
13

1

112
2
13 2sec22,, εεεγεγγ

γ
εε

γ
γεγεε ++












−+

+−+
−−= . (36) 

In the view of Equation (6), we have: 

( ) ( )( ) ( ) ( )tyxietyxhtyxq 3212
11212

1

2
132

32

112
2
13 2sec22,, εεεγεγγ

γ
εε

γγ
γεγεε ++












−+

+
+

−+
= . (37) 

Thus, we can acquire the SWSs of Equation (1) as: 
Family one: 

( ) ( )( ) ( ) ( )tyxietyxhtyxp 321
11212

1

2
13

1

112
2
13 2sec22,, εεεγεγγ

γ
εε

γ
γεγεε ++












−+

+−+
−=

 

(38) 

( ) ( )( ) ( ) ( )tyxietyxhtyxq 3212
11212

1

2
132

32

112
2
13 2sec22,, εεεγεγγ

γ
εε

γγ
γεγεε ++












−+

+
+

−+
=

. 
(39) 

Family two: 

( ) ( )( ) ( ) ( )tyxietyxhtyxp 321
11212

1

2
13

1

112
2
13 2sec22,, εεεγεγγ

γ
εε

γ
γεγεε ++












−+

+−+
−−= , (40) 

( ) ( )( ) ( ) ( )tyxietyxhtyxq 3212
11212

1

2
132

32

112
2
13 2sec22,, εεεγεγγ

γ
εε

γγ
γεγεε ++












−+

+
+

−+
=

. 

(41) 

It should be noted that another SWSs can be obtained by assuming 
( ) ( )ξξ BhAp 2sec= , ( ) ( )ξξ BhAp 3sec=  and so on. 

5. Numerical Results and Discussion 
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The goal of this section is to ascertain the correctness and effectiveness of the VA 
through one example. We choose the parameters as 11 −=γ , 12 =γ , 13 =γ , 11 =ε , 

12 =ε , 13 =ε . 
For 3=Λ , the PWSs of Equation (1) can be obtained by using Equations (21) and 

(22) as: 

( ) ( ) ( )

( ) ( ) ( )




















++−=









++−=

++

++

tyxi

tyxi

etyxtyxq

etyxtyxp

22 2
2
5cos3,,

2
2
5cos3,,

 (42) 

We plot the absolute part (AP), real part (RP) and imaginary part (IP) of the PWSs 
given by Equation (42) through 3-D polt and density contours in Figure 1 for 1=t . Obvi-
ously, the AP, RP and IP of the solutions all have perfect periodic characteristics, that is, 
the profile of AP is a perfect wave, on the hand, the contours of the RP and IP are the 
kinky-perfect waves. They represent the periodic wave propagating along the x-axis and 
y-axis. 

  
(a) 

  
(b) 

  
(c) 
(A) 
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(a) 

  
(b) 

  
(c) 
(B) 

Figure 1. The AP, RP and IP of the PWS given by Equation (42) at 1=t . (A) The performance of 
( )tyxp ,, . (Aa) The 3-D plot and density contour of the AP. (Ab) The 3-D plot and density contour 

of the RP. (Ac) The 3-D plot and density contour of the IP. (B) The performance of ( )tyxq ,, . (Ba) 
The 3-D plot and density contour of the AP. (Bb) The 3-D plot and density contour of the RP. (Bc) 
The 3-D plot and density contour of the IP. 

On basis of Equations (38)–(41), we can acquire the SWSs of Equation (1) as: 
Family one: 

( ) ( )[ ] ( )

( ) ( )[ ] ( )





++−=

++−=
++

++

tyxi

tyxi

etyxhtyxq

etyxhtyxp
22 22sec6,,

22sec32,,
 (43) 

Family two: 
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( ) ( )[ ] ( )

( ) ( )[ ] ( )





++−=

++−−=
++

++

tyxi

tyxi

etyxhtyxq

etyxhtyxp
22 22sec6,,

22sec32,,
 (44) 

The AP, RP and IP of the SWSs obtained by Equations (43) and (44) are described in 
Figures 2 and 3, respectively, at 2=t . Obviously, the AP shown in Figures 2a and 3a are 
the bright solitary waves. In addition, the RP and IP of Equations (43) and (44) that plotted 
in Figures 2b,c and 3b,c are the breathe-like waves, which have breathe wave characteris-
tics. 

  
(a) 

 
 

(b) 

  
(c) 
(A) 
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(a) 

 
 

(b) 

  
(c) 
(B) 

Figure 2. The AP, RP and IP of the SWS given by Equation (43) at 2=t . (A) The performance of 
( )tyxp ,, . (Aa) The 3-D plot and density contour of the AP. (Ab) The 3-D plot and density contour 

of the RP. (Ac) The 3-D plot and density contour of the IP. (B) The performance of ( )tyxq ,, . (Ba) 
The 3-D plot and density contour of the AP. (Bb) The 3-D plot and density contour of the RP. (Bc) 
The 3-D plot and density contour of the IP. 
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(a) 

  
(b) 

  
(c) 
(A) 

  
(a) 
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(b) 

  
(c) 
(B) 

Figure 3. The AP, RP and IP of the SWS given by Equation (44) at 2=t . (A) The performance of 
( )tyxp ,, . (Aa) The 3-D plot and density contour of the AP. (Ab) The 3-D plot and density contour 

of the RP. (Ac) The 3-D plot and density contour of the IP. (B) The performance of ( )tyxq ,, . (Ba) 
The 3-D plot and density contour of the AP. (Bb) The 3-D plot and density contour of the RP. (Bc) 
The 3-D plot and density contour of the IP. 

6. Conclusions and Future Research 
In this paper, some explicit exact solutions of the integrable (2+1)-dimensional MS 

such as PWS and SWS are obtained by utilizing the VA. This method can simplify the 
equation via reducing the order of the differential equation, avoid the tedious solving pro-
cess, and obtain the optimal solution through the stationary conditions. The AP, RP and 
IP of the solutions are illustrated by using proper parameters via the 3-D plot and density 
contour. The calculations demonstrate that the proposed method is simple, straightfor-
ward and effective, which is expected to bring some new inspiration to the study of the 
travelling wave solutions. 

Recently, the fractional and fractal calculus [46–53] have attracted extensive attention 
in many different fields involving in physics, filter, biological, circuit and so on. How to 
apply the VA to the fractional and fractal calculus is worthy of consideration and in-depth 
study. 
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