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Abstract: The use of discrete probabilistic distributions is relevant to many practical tasks, especially
in present-day situations where the data on distribution are insufficient and expert knowledge and
evaluations are the only instruments for the restoration of probability distributions. However, in
such cases, uncertainty arises, and it becomes necessary to build suitable approaches to overcome
it. In this direction, this paper discusses a new approach of fuzzy binomial distributions (BDs) and
their extensions. Four cases are considered: (1) When the elementary events are fuzzy. Based on
this information, the probabilistic distribution of the corresponding fuzzy-random binomial variable
is calculated. The conditions of restrictions on this distribution are obtained, and it is shown that
these conditions depend on the ratio of success and failure of membership levels. The formulas
for the generating function (GF) of the constructed distribution and the first and second order
moments are also obtained. The Poisson distribution is calculated as the limit case of a fuzzy-random
binomial experiment. (2) When the number of successes is of a fuzzy nature and is represented as a
fuzzy subset of the set of possible success numbers. The formula for calculating the probability of
convolution of binomial dependent fuzzy events is obtained, and the corresponding GF is built. As
a result, the scheme for calculating the mathematical expectation of the number of fuzzy successes
is defined. (3) When the spectrum of the extended distribution is fuzzy. The discussion is based
on the concepts of a fuzzy-random event and its probability, as well as the notion of fuzzy random
events independence. The fuzzy binomial upper distribution is specifically considered. In this case
the fuzziness is represented by the membership levels of the binomial and non-binomial events of
the complete failure complex. The GF of the constructed distribution and the first-order moment
of the distribution are also calculated. Sufficient conditions for the existence of a limit distribution
and a Poisson distribution are also obtained. (4) As is known, based on the analysis of lexical
material, the linguistic spectrum of the statistical process of word-formation becomes two-component
when switching to vocabulary. For this, two variants of the hybrid fuzzy-probabilistic process are
constructed, which can be used in the analysis of the linguistic spectrum of the statistical process
of word-formation. A fuzzy extension of standard Fuchs distribution is also presented, where the
fuzziness is reflected in the growing numbers of failures. For better representation of the results, the
examples of fuzzy BD are illustrated in each section.

Keywords: fuzzy-sets; fuzzy-random variables; distribution generating function; fuzzy binomial
distribution; Fuchs distribution

MSC: 03E72; 60A86

1. Introduction

In current practice, and especially in the creation of new technologies, the use of
extensions of classical probabilistic distributions based on expert data and evaluations is be-
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coming more and more common. Particularly, the fuzzy extensions of discrete distributions
are attracting attention, and the use of fuzzy-stochastic distributions or fuzzy-stochastic
processes often have no alternative in dealing with incomplete objective-experimental
data [1–8]. Based on these considerations, the aim of our research was to develop a new
approach to the extension of the BD under the fuzzy uncertainty environment. In the
introduction, we first review the existing research directions on the fuzzy BD extensions
and then present the main principle of our approach.

Briefly, regarding the basic works studying fuzzy BD and its application in the different
problems, practices, and research, the addition of two fuzzy Bernoulli distributions and the
sum of subsequent fuzzy BDs have been discussed in [9]. Extensions of these ideas would
be of use to study fuzzy randomness and the concept of measure. In [10], the authors
assume that the probability of “success” p is not known exactly and is to be estimated
from a random sample or from expert opinion. For the fuzzy BD, a fuzzy number p̃
instead of p is substituted. In [11], discrete probability distributions, where some of the
probability values are uncertain, are considered. These uncertainties are modeled using
fuzzy numbers. The basic laws of fuzzy probability theory are derived. Applications to
the binomial probability distribution and queuing theory are considered. In [12], essential
properties of fuzzy probability are derived to present the measurement of fuzzy conditional
probability, fuzzy independency, and fuzzy Bayes theorem. Fuzzy discrete distributions,
fuzzy binomials, and fuzzy Poisson distributions are introduced with different examples.
Among intelligent techniques, the authors in [13] focus on the application of the fuzzy set
theory in the acceptance sampling. Multi-objective mathematical models for fuzzy single
and fuzzy double acceptance sampling plans with illustrative examples are proposed. The
study illustrates how an acceptance sampling plan should be designed under fuzzy BD.
The fuzzy set theory can be successfully used to cope with the vagueness in these linguistic
expressions for acceptance sampling. In [14], the main distributions of acceptance sampling
plans are handled with fuzzy parameters, and their acceptance probability functions are
derived. Then, the characteristic curves of acceptance sampling are examined under
fuzziness. Illustrative examples are given with binomial and other fuzzy distributions.
In [15], the authors intend to generate some properties of negative BD under imprecise
measurement. These properties include fuzzy mean, fuzzy variance, fuzzy moments, and
fuzzy GF. The uncertainty in the observations may not be addressed with the classical
approach to probability distribution; therefore, the fuzzy set theory helps to modify the
classical approach. In [16], the authors discuss the single acceptance sampling plan, when
the proportion of nonconforming products is a fuzzy number. They showed that the
operating characteristic (OC) curve of the plan is a band with high and low bounds and
that for a fixed sample size and acceptance number, the width of the band depends on the
ambiguity proportion parameter in the lot. Illustrative examples are given with binomial
and other fuzzy distributions. In [17], the portfolio consists of only options traded in
the financial market. One of the most famous models of option pricing is the Binomial
Cox-Ross-Rubinstein (CRR) Model. Using Fuzzy Binomial CRR procedure, the price
of option is an interval with a specific membership degree, by which the investors are
allowed to adjust their portfolios. We make a portfolio dynamically adjusted periodically,
in which the membership degree of an option price determines the decision of buying
or selling the option in the simulation. Classifiers based on the BD can be found in
the scientific literature, but due to the uncertainty of the epidemiological data, a fuzzy
approach may be interesting. Reference [18] presents a new classifier named fuzzy binomial
naive Bayes (FBiNB). The theoretical development is presented as well as the results of
its application on simulated multidimensional data. A brief comparison among FBiNB,
a classical binomial naive Bayes classifier, and a naive Bayes classifier is performed. The
results obtained showed that the FBiNB provided the best performance, according to
the Kappa coefficient. In [19], two main distributions of acceptance sampling plans are
considered, which are binomial and Poisson distributions with fuzzy parameters, and they
derived their acceptance probability functions. Then, fuzzy acceptance sampling plans
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were developed based on these distributions. In [20] the authors study the determination of
the Quick Switching Single Double Sampling System using fuzzy BD, where the acceptance
number tightening method is used. In [21], the fuzzy representations of a real-valued
random variable are introduced for capturing relevant information on the distribution of
the variable through the corresponding fuzzy-valued mean value. Specifically, characteristic
fuzzy representations of a random variable allow us to capture the whole information
on its distribution. As a result, the tests about fuzzy means of fuzzy random variables
can be applied to develop goodness-of-fit tests. In this work, empirical comparisons of
goodness-of-fit tests based on some convenient fuzzy representations with well-known
procedures in case the null hypothesis relates to some specified BDs are presented. As is
known [22], the optimal hypothesis tests for the BD and some other discrete distributions
are uniformly most powerful (UMP) one-tailed and UMP unbiased (UMPU) two-tailed
randomized tests. Therefore, conventional confidence intervals are not dual to randomized
tests and perform badly on discrete data at small and moderate sample sizes. In this work,
a new confidence interval notion, called fuzzy confidence intervals, that is dual to and
inherits the exactness and optimality of UMP and UMPU tests is introduced. A new P-value
notion, called fuzzy P-values or abstract randomized P-values, that also inherits the same
exactness and optimality is also introduced. In [15], the generating procedure of some
properties of negative BD under imprecise measurement is developed. These properties
include fuzzy mean, fuzzy variance, fuzzy moments, and fuzzy moments GF.

It should be noted that in almost all of the studies presented here, the use of binomial
distribution (BD) in an uncertain environment may result in fuzziness for only one reason:
the value-realization of a binomial value in an uncertain environment cannot be the result
of exact measurements or calculations, and it must be represented by fuzzy variables [9–22].
In other words, we are dealing with a binomial experiment when the possible results are
presented in fuzzy values, more often in triangular or trapezoidal fuzzy numbers [23]—i.e.,
the binomial distribution is a descriptor of a random-fuzzy experiment whose realizations or
characteristic parameters are represented in fuzzy values. The problem presented in this
article is different from those presented in the studies above. It refers to a generalization of
binomial distribution when the results or characteristics of an experiment are described by
fuzzy variables. These variables are defined on the universe of all the results of the exper-
iment and not on a certain subset of real numbers, as discussed in the studies presented
above—i.e., we are dealing with a fuzzy-random experiment, where the binomial variable is a
fuzzy-random variable. It has both a probability distribution and a membership function
on the universe of all results of the experiment. Of course, the use of such binomial models
is in great demand. This was the main motivation for us, the authors, to explore some of
the new fuzzy extensions of binomial distribution.

In this work, we present a new approach to the extension of a classical BD under
different fuzzy environments. In contrast to the above approaches to the study of fuzzy
BDs, a completely new approach is developed in this paper. Section 2 presents the fuzzy
extension of the BD, where the Bernoulli fuzzy-random variable is considered instead of the
Bernoulli random variable. Success and failure events have both probabilistic distributions
and their implementation possibility in the form of compatibility levels. Based on this
information, the probabilistic distribution of the corresponding binomial fuzzy-random
variable is calculated. The conditions of restrictions on this distribution are obtained. The
Poisson distribution is calculated as a limit case of the constructed binomial fuzzy-random
experiment. Section 3 considers the fuzzy extension of a BD, where the number of successes,
unlike the previous case, is of a fuzzy nature and is represented as a fuzzy subset of the set
of possible success numbers. A formula for calculating the probability of the occurrence of
binomial dependent fuzzy events is obtained. The formula for calculating the probability of
the convolution of binomial dependent fuzzy events is obtained. The invariance principle
of exponential distribution is applied, and the corresponding GF is constructed. As a result,
a scheme for calculating the mathematical expectation of the number of fuzzy successes
is created. Section 4 considers the fuzzy extension of the binomial upper distribution,
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where the fuzziness is represented in the compatibility levels of the binomial and non-
binomial events of the complete failure complex. The GF of the constructed distribution
and the first-order moment of the distribution are also calculated. Sufficient conditions
for the existence of a corresponding limit distribution and the Poisson distribution are
also obtained. Section 5 presents the fuzzy extension of the classical Fuchs distribution,
where fuzziness is reflected in the number of increasing failures. The built distribution
function and the first and second order moments of the distribution are also calculated.
Sufficient conditions for the existence of a corresponding limit distribution and the Poisson
distribution are obtained. For better representation of the results, the examples of fuzzy BD
are illustrated in each section. Section 6 presents the main results obtained and prospects
for future research. A sequential scheme of the key facts and obtained results is presented
by Scheme 1.
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2. BD by Fuzzy Elementary Events

Consider P1 and P0 = 1− P1 as elementary a priori probabilities of success (“1”) and
failure (“0”) events, respectively. Let us also consider the membership levels µ1 and µ2
for (1) and (0), respectively. Therefore, we created a fuzzy-random variable of Bernoulli

-X̃ ∼

 values 1 0
probabilities P1 P0

membership levels µ1 µ2

. Then, the probabilities of the fuzzy events 1̃ and 0̃

according to [24,25] can be calculated by the formulas:

P(1̃) = µ1P1 and P(0̃) = µ2P0 (1)

For a sequence of n repetitive ordinary (non-fuzzy) trials in a binomial experiment,
we introduce the notations

C1 ≡ (1, . . . , 1) , C2 ≡ (1, . . . , 1, 0), . . . ,
C2n−1 ≡ (0, . . . , 0, 1), C2n ≡ (0, . . . , 0),

(2)

as there exist 2n possible results by the combination of (1) and (0). For describing the “n
repetitive fuzzy elementary experiments”

C̃1 ≡ (1̃, . . . , 1̃), . . . , C̃2n ≡ (0̃, . . . , 0̃) (3)

We refer to the notion of a fuzzy variable introduced in [24]. Suppose we have a fuzzy
Bernoulli variable X̃ ≡ (X, U, R̃(x, u)), where X is a fuzzy elementary event, U = {0, 1} is
a universal set, and the restriction R̃(x, u) ⊂ U means that

R̃(x, u) ≡ R̃(X̃ ) ≡ 0̃∪ 1̃ ≡
{

0̃, 1̃
}

, (4)

Consider an ordered set of n such variables (X̃1, . . . , X̃n) as a fuzzy binomial experiment.
According to [24], the universal set of such a compound fuzzy variable is the Cartesian product
U1 × . . .×Un. Now, suppose that X̃1, . . . , X̃n are the same non-interactive variables, i.e.,

R̃(X̃1, . . . , X̃n) = R̃(X̃1) ∩ . . . ∩ R̃(X̃n) (5)

where R̃(X̃i) is a cylindrical continuation of a marginal constraint R̃(X̃i), i = 1, . . . , n. We
refer to the sequence of “n repetitive fuzzy elementary experiments” as a fuzzy point
R̃(X̃1, . . . , X̃n). According to (5), we have:

µC̃1
= min{µ1, . . . , µ1}, µC̃2n

= min{µ2, . . . , µ2},
µC̃i

= min{(µ1 or µ2) ∧ . . . ∧ (µ1 or µ2)} = µ1 ∧ µ2, i = 2, 3, . . . , 2n − 1.
(6)

If we use the formula for calculating a fuzzy event probability, we obtain the following
probabilities:

P
(

C̃1

)
≡ P(1̃, . . . , 1̃, 1̃) = µ1P(1, . . . , 1, 1)

P
(

C̃2

)
≡ P(1̃, . . . , 1̃, 0̃) = (µ1 ∧ µ2)P(1, . . . , 1, 0), . . . ,

P
(

C̃2n−1

)
≡ P(0̃, . . . , 0̃, 1̃) = (µ1 ∧ µ2)P(0, . . . , 0, 1)

P
(

C̃2n

)
≡ P(0̃, . . . , 0̃, 0̃) = µ2P(0, . . . , 0, 0).

(7)

As is well known, the projection of a relation on a given set of variables is a marginal
sub-relation of that relation which applies only on these variables. It is considered on the
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Cartesian product of the universes of these variables. If we sum the distribution (7) by the
projection of relation (5)

Proj
Ui1
×...× Uin−1

〈
R̃(X̃1, . . . , X̃n)

〉
= R̃q

(
X̃i1 , . . . , X̃in−1

)
, q ≡ ( i1, . . . , in−1), (8)

we receive only normed fuzzy probabilities of 1̃ and 0̃

P(1̃) = µ1P1

∑2n
i=1 P

(
C̃i

) , (9)

P(0̃) = 1−P(1̃) = µ1P0 + (µ2 − µ1)P(0, . . . , 0)

∑2n
i=1 P

(
C̃i

) .

After substituting (7) and (9) in the BD formula, we receive:

P(C̃(k)) =
Pk

1[
1+
(

µ2
µ1
−1
)

P(0,...,0)
]n−1

[
1 +

(
µ2
µ1
− 1
)

P(0, . . . , 0)− P1

]n−k
,

k = 1, . . . , n.
(10)

where common notation C̃(k) is introduced for those C̃i to which the same number k of
successes correspond, since the probabilities of such C̃i are equal. Note that

2n

∑
i=1
P(C̃i) = µ1 + (µ2 − µ1)P(0, . . . , 0), (11)

It is clear from (9) and (10) that if µ1 = µ2, then the conditions for the independence of
fuzzy events degenerate to the corresponding conditions for ordinary events.

The constraint (7) for probabilities P(C̃(k)) leads to the relationship

µ2

µ1
=

1 +
1− P1 · n−1

√
P1

P(1, ...,1)

P(1, . . . , 1)
(

n−1
√

P1
P(1, ...,1) − 1

)n


−1

. (12)

By putting Formula (12) into (11) and assuming that µ2 ≥ µ1 and P
(

C̃i

)
≥ 0, we get

a system of conditions

P
(

C̃(k)

)
= P(1, . . . , 1)

[
n−1

√
P1

P(1, . . . , 1)
− 1

]n−k

, k = 1, . . . , n; (13)

0 ≤
P1 · n−1

√
P1

P(1, ...,1) − 1

P(1, . . . , 1)
[

n−1
√

P1
P(1, ...,1) − 1

]n < 1;
µ2

µ1
= 1 +

−1 + P1 · n−1
√

P1
P(1, ...,1)

P(0, . . . , 0)
. (14)

The probabilities of considering fuzzy events, normalized in R̃(X̃1, . . . , X̃n) =
2n

∪
i=1

C̃i,

are calculated by the formula

P ′(C̃i) =
P(C̃i)

∑2n
j=1 P(C̃j)

, i = 1, . . . , 2n. (15)

In deriving the BD with fuzzy elementary events, we will proceed from the notion of
the independence of fuzzy events [23], which is not equivalent to the ordinary indepen-
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dence. This leads to the certain conditions of independence, which we discuss below. For
the purpose of clarity, let µ1 ≤ µ2; then, we obtain the fuzzy binomial distribution:

P ′
(

C̃1

)
=
[
P ′(1̃)

]n
, . . . ,P ′

(
C̃2n

)
=
[
P ′(0̃)

]n

Thus, conditions (13)–(15) are equivalent to the existence of the n-ar fuzzy-random
variable, which is a sequence of n repetitive, fuzzy, non-interacting, and independent
elementary events whose distribution is described by the BD with fuzzy elementary events

P ′
(
B̃k

n

)
= Ck

n

[
P ′(1̃)

]k[
P ′(0̃)

]n−k
= Ck

n
µk

1Pk
1 [µ1P0+(µ2−µ1)P(0...,0)]n−k

[µ1+(µ2−µ1)P(0,...0)]n
=

Ck
n

Pk
1

[
P0+

(
µ2
µ1
−1
)

P(0,...,0)
]n−k[

1+
(

µ2
µ1
−11

)
P(0,...0)

]n ,
(16)

where
B̃k

n = ∪
∀ j with k successes

C̃j.

If µ2 < µ1, for the calculation of P ′
(
B̃k

n

)
, it is necessary to make the following changes

in the ending part of Equation (16). Instead of µ2
µ1

, we write µ1
µ2

, and instead of P(0, . . . , 0),
we write P(1, . . . , 1):

µ2

µ1
← µ1

µ2
, P(0, . . . , 0)← P(1, . . . , 1).

To be more precise, we receive

P ′
(
B̃k

n

)
= Ck

n
[µ2P1+(µ1−µ2)P(1,...,1)]kµn−k

2 Pn−k
0

[µ2+(µ1−µ2)P(1,...,1)]n
,

Ck
n

Pn−k
0

[
P1+

(
µ1
µ2
−1
)

P(1,...,1)
]n−k[

1+
(

µ1
µ2
−1
)

P(1,...,1)
]n .

(17)

Note that in both cases, if µ2 = µ1, then (16) and (17) transform to the usual BD.
From Formulas (16) and (17), we see that P ′

(
B̃k

n

)
depends on the ratio µ2

µ1
if µ2 > µ1,

and on the ratio µ1
µ2

if µ2 < µ1, while the condition of independence and non-interaction

(14) allows us to express the normalized probability P ′
(
B̃k

n

)
with the probabilities of the

corresponding non-fuzzy events. Indeed, it is not difficult to show that

P ′(1̃) =


n−1

√
P1(

n−1︷ ︸︸ ︷
1, . . . , 1), µ1 < µ2

n−1

√
P0(

n−1︷ ︸︸ ︷
1, . . . , 1), µ1 > µ2

, P ′(0̃) =


n−1

√
P1(

n−1︷ ︸︸ ︷
0, . . . , 0), µ1 < µ2

n−1

√
P0(

n−1︷ ︸︸ ︷
0, . . . , 0), µ1 > µ2

(18)

If we enter the values from Formula (18) to Formulas (16) and (17), we get

P ′
(
B̃k

n

)
=



Ck
n

P1(

n−1︷ ︸︸ ︷
1, . . . , 1)


k

n−1
P1(

n−1︷ ︸︸ ︷
0, . . . , 0)


n−k
n−1

, µ1 < µ2,

Ck
n

P0(

n−1︷ ︸︸ ︷
1, . . . , 1)


k

n−1
P0(

n−1︷ ︸︸ ︷
0, . . . , 0)


n−k
n−1

, µ1 > µ2.

(19)
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Using the notion of a discrete distribution moment generating function, we analytically
obtain the formula of the GF of the BD with fuzzy elementary events (two cases are
considered as presented above).

GP ′(B̂k
n)
(y) =


[µ1P0+µ1P1y+(µ2−µ1)P(0,...,0)]n

[µ1+(µ2−µ1)P(0,...,0)]n
, µ1 < µ2,

[µ2P1y+(µ1−µ2)P(1,...,1)y+µ2P0]
n

[µ2+(µ1−µ2)P(1,...,1)]n
, µ1 > µ2.

(20)

As is well known, distribution moments are easily calculated from the generating
function. Without presenting a long process of calculation, we give the analytical form of
the first and second order moments of the BD with fuzzy elementary events

k =


nµ1P1

µ1+(µ2−µ1)P(0, ...,0)
n[µ2P1+(µ1−µ2)P(1, ...,1)]

µ2+(µ1−µ2)P(1, ...,1)

, µ1 < µ2,

, µ1 > µ2.
=


nP1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

n[P1+
(

µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

, µ1 < µ2,

, µ1 > µ2.
(21)

k
2
= k(1 +

n− 1
n

k) =


nµ1P1

µ1+(µ2−µ1)P(0, ...,0)

[
1 + (n−1)µ1P1

µ1+(µ2−µ1)P(0, ...,0)

]
n[µ2P1+(µ1−µ2)P(1, ...,1)]

µ2+(µ1−µ2)P(1, ...,1)

[
1 + (n−1)[µ2P1+(µ1−µ2)P(1, ...,1)]

µ2+(µ1−µ2)P(1, ...,1)

] , µ1 < µ2,

, µ1 > µ2.

=


nP1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

[
1 + (n−1)P1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

]
n[P1+

(
µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

[
1 +

(n−1)P1+
(

µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

] , µ1 < µ2,

, µ1 > µ2.

(22)

Expressions (16), (17), and (21) allow us to prove the existence of Poisson limits for
BD with fuzzy elementary events. It is not difficult to calculate the limits below if we use a
well-known numerical sequence limit calculation technique. There are some possible cases:

(1). k = const. In this case, we obviously have

lim
n→ ∞

k = const

P ′
(
B̃k

n

)
= e−k k

k

k!
, k = 0, 1, . . . (23)

(2). µ1 and µ2 are fixed and nP1 = const. It is easy to show that:

lim
n→ ∞

nP1 = λ = const
P1 → 0

P ′
(
B̃k

n

)
=


e−c′ (c′)

k

k! , c′ = λ

1+
(

µ2
µ1
−1
)
[P(
︷ ︸︸ ︷
0, . . . , 0)]

, µ1 < µ2,

e−c′′ (c′′ )
k

k! c′′ = λ +
(

µ1
µ2
− 1
)
[P(

n︷ ︸︸ ︷
1, . . . , 1)], µ1 > µ2.

(24)

Example 1. Let the fuzzy Bernoulli distribution be given X̃ ∼

 values 1 0
probabilities 0.3 0.7

membership levels 0.5 0.6

.

Based on Formula (19), construct fuzzy BD for the n = 5. Use Formulas (21) and (22) and calculate
the moments of the first and second order k and k

2
. Calculate the standard deviation of distribution

SD =

√
k

2 − (k)
2
. Using the Poisson distribution Formula (24), calculate the distribution values

for k = 0, 1, . . . , 7 when nP1 ' const = 6.

Solution of Example 1. It is clear that for the calculations P1 = 0.3 and P0 = 0.7,
µ1 = 0.5 and µ2 = 0.6, n = 5, k = 0, 1, 2, 3, 4, 5. In our case, µ1 < µ2. Let us assume
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that P1(

n−1︷ ︸︸ ︷
0, . . . , 0) = P1(

4︷ ︸︸ ︷
0, . . . , 0) = (0.7)4 and P1(

n−1︷ ︸︸ ︷
1, . . . , 1) = P1(

4︷ ︸︸ ︷
1, . . . , 1) = (0.3)4. We receive

(Table 1).

Table 1. Conditional fuzzy binomial probability distribution.

k 0 1 2 3 4 5

P ′
(
B̃k

n

)
0.1681 0.3601 0.3087 0.1323 0.0283 0.0024

Using Formulas (21) and (22), we receive k = 1.4512, k
2

= 3.1360, and

SD =

√
k

2 − (k)
2

= 1.0149. For the Poisson distribution, if nP1 ' const = 6, then, for
k = 0, 1, 2, 3, 4, 5, we receive (Table 2).

Table 2. Fragment of Poisson distribution.

k 0 1 2 3 4 5 6 7

lim
n→ ∞

nP1 = const

P ′
(
B̃k

n

)
0.0029 0.0170 0.0497 0.0967 0.1411 0.1647 0.1603 0.1336

3. BDs with a Fuzzy Number of Successes

Consider a set An ≡ {0, 1, . . . , n}. Let k̃, k̃ ⊂ An be the fuzzy subset in An,
k̃ = “approximately k number” with some membership function µk̃ : An → [0, 1] and

k̃ =
n
∪

l=0

[
µk̃(l)/l

]
[23,24].

IfAn is a set of numbers of possible successes in n trials of the binomial scheme, then it
is well known that to each element of An corresponds the probability P(Bk

n;p) = Ck
n pkqn−k.

Therefore, according to [24,25], for the BD with the fuzzy success number, we obtain the
formula

P
(
B k̃

n;p

)
= ∑n

l=0 µk̃(l)P
(
Bl

n;p

)
(25)

Here, P
(
B̃k

n;p

)
is the probability measure of a fuzzy event B k̃

n;p or the fuzzy subset k̃.

Note that in this scheme under consideration, the fuzzy events B k̃
n;p are not mutually

exclusive events. Therefore, according to the additivity property of a probability measure
of a fuzzy event [24,25], we have

P
(

n
∪

k=0
B k̃

n;p

)
= ∑n

k=0 P
(
B k̃

n;p

)
− ∑

k,k′
P
(
B k̃

n;p ∩ B
∼
k′
n;p

)
+ ∑

k,k′ ,k′′
P
(
B k̃

n;p ∩ B
∼
k′
n;p ∩ B k̃′′

n;p

)
+ . . .

+(−1)nP
(
B õ

n;p ∩ . . . ∩ Bñ
n;p

)
.

(26)

Let 0 < pi < 1, i = 1, 2 be two numbers. An important feature of the distribution (25)
is that the law of composition is satisfied

P
(
B k̃

n;p1 p2

)
= ∑n

m=0 P
(
Bm

n;p1

)
P
(
B k̃

m,p2

)
(27)

which is easily verified by the simple calculations

P
(
B k̃

n;p1 p2

)
= ∑n

l=0 µk̃(l)P
(
Bl

n;p1 p2

)
= ∑n

l=0 µk̃(l)C
k
n(p1 p2)

l(1− p1 p2)
n−l

and
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∑n
m=0 P

(
Bm

n;p1

)
P
(
B k̃

m,p2

)
= ∑n

m=0 P
(
Bm

n;p1

)
∑n

l=0 µk̃(l)P
(
Bl

n;p2

)
=

∑n
l=0 µk̃(l)∑n

m=0 Cm
n Cl

m pm
1 (1− p1)

n−m pl
2(1− p2)

m−l = ∑n
l=0 µk̃(l)

n!
l!(n−l)! (p1 p2)

l(1− p1 p2)
n−l

×∑n
m=0

(n−l)!
(n−m)!(m−l)!

pm−l
1 (1−p1)

n−m(1−p2)
m−l

(1−p1 p2)
n−l = ∑n

l=0 µk̃(l)
n!

l!(n−l)! p1 pl
2(1− p1 p2)

n−l

×∑n−l
j=0

(n−l)!
j!(n−l−j)!

pj
1(1−p1)

n−l−j(1−p2)
j

(1−p1 p2)
n−l = ∑n

l=0 µk̃(l)P
(
Bl

n;p1 p2

)
.

Based on the property of the invariability of the exponential distribution, let us extend
the fuzzy subset k̃ from the set An to the non-negative integer numbers set N ∪ {0}. In this
case, the extended membership function µk̃(l), l ∈ N ∪ {0} will be a mapping of a set of
natural numbers N into [0, 1]. Consider the expression of the moments’ generating function
of fuzzy BD.

Consider the expression of the moments’ GF of the fuzzy BD

G(k̃) = ∑∞
n=0 P

(
B k̃

n;p

)
fn(u), (28)

where fn(u) = (1− u)un, 0 < u < 1.
If we denote v = pu

1−u+pu and gl(v) = (1− v)vl , then

G(k̃) = ∑∞
l=0 µk̃(l)gl(v). (29)

Indeed,

G(k̃) = ∑∞
n=0 fn(u)P

(
B k̃

n;p

)
= ∑∞

n=0 fn(u)∑n
l=0 µk̃(l)P

(
Bl

n;p

)
= f0(u)∑0

l=0 µk̃(l)P
(
Bl

0;p

)
+ f1(u)∑1

l=0 µk̃(l)P
(
Bl

1;p

)
+ f2(u)∑2

l=0 µk̃(l)P
(
Bl

2;p

)
+ . . .

= µk̃(0)
[

f0(u)P
(
B0

0;p

)
+ f1(u)P

(
B0

1;p

)
+ f2(u)P

(
B0

2;p

)
+ . . .

]
+

µk̃(1)
[

f1(u)P
(
B1

1;p

)
+ f2(u)P

(
B1

2;p

)
+ . . .

]
+µk̃(2)

[
f2(u)P

(
B2

2;p

)
+ f3(u)P

(
B2

3;p

)
+ . . .

]
+ . . .

Given that for r < s P
(
Bs

r;p

)
= 0, then

G
(

k̃
)
= ∑∞

n=0 µk̃(n)∑∞
l=0 fl(u)P

(
Bn

l;p

)
= ∑∞

n=0 µk̃(n)∑∞
l=0

l!
n!(n−l)! pn(1− p)l−n(1− u)ul

= ∑∞
n=0 µk̃(n)(1− u)(pu)n ∑∞

l=0
l!

n!(n−l)! [(1− p)u]l−n =

∑∞
n=0 µk̃(n)(1− u)(pu)n ∑∞

j=0
(n+j)!

n!j! [(1− p)u]j .

The last sum is a decomposition of the function [1− (1− p)u]−n+1 into series by
degrees of (1− p)u. Considering the connection between u and v, we finally obtain the
expression of (29)

G
(

k̃
)
= ∑∞

n=0 µk̃(l)
1− u

1− (1− p)u

[
pu

1− (1− p)u

]n
.

To determine the mean value of a success fuzzy number “with probability measure
P”, let us do the following. Consider a set of ordinary (nonfuzzy) events A ⊂ An. Define
the function of a set E(.) in such a way that, for any subset A, this function corresponds
to the conditional mean, i.e., if A ⊂ An, then E(A) = kA. According to the principle of
generalization [23], the domain of definition E(.) can be extended to fuzzy subsets as well.
Suppose we have a fuzzy subset k̃ of An, and k̃ is represented as

k̃ = ∪
α
Aα, α ∈ [0, 1], (30)
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where Aα denotes a cut set of level α. Then,

E(k̃) = ∪
α

E(Aα) = ∪
α

kAα
. (31)

Here, E(k̃) is a fuzzy subset on the set of all conditional mean values E . Relationships
(30) and (31) define the calculation rule for the values of the characteristic functions of fuzzy
subsets on the set of all conditional means µ

(
kA
)

corresponding to ordinary subsets An

over µk̃(l).
Define the mean value of the fuzzy success number as a convex combination [23] of

the fuzzy subsets E(k̃) with the following weights: Wn(k̃) =
P
(
B k̃

n;p

)
∑l P

(
B l̃

n;p

) . We define a fuzzy

subset with the following membership function

µk̃p

(
lA
)
= ∑

k̃∈An

Wn(k̃)µE(k̃)

(
lA
)

, lA ∈ E (32)

Note that when µũ(l)→ δl k, δl k =

{
1, i f l = k,
0, i f l 6= k

, that is, when moving k̃ to the

ordinary set {k}, “the average by the measure P” tends to the mathematical expectation
of the number of successes of the BD, k̃P → np. The method given here can be used for
the calculation of any order fuzzy moments k̃r

P , but when calculating high-order moments,
it is necessary to use a certain rule for multiplying fuzzy numbers. Most importantly, we
present a rule that is derived from the principle of generalization [23].

The discussion of the Poisson and Normal approximations for (25) is reduced to the
substitution of the corresponding approximate values of P

(
Bl

n;p

)
in this formula.

Example 2. Let the Bernoulli distribution be given X ∼
(

values 1 0
propbabilities 0.3 0.7

)
and let

a binomial experiment be created based on this Bernoulli experiment for n = 6. Let be given the
following fuzzy subsets “approximately k successes” (k = 0, . . . , 6) (Table 3).

Table 3. Fuzzy subsets “approximately k successes” (k = 0, 1, 2, 3, 4, 5, 6 ).

k̃\k 0 1 2 3 4 5 6

0̃ 1.0 0.8 0.6 0.5 0.3 0.2 0.1

1̃ 0.9 1.0 0.8 0.6 0.5 0.3 0.1

2̃ 0.7 0.8 1.0 0.9 0.6 0.4 0.2

3̃ 0.4 0.6 0.8 1.0 0.9 0.7 0.5

4̃ 0.2 0.3 0.5 0.8 1.0 0.8 0.6

5̃ 0.1 0.3 0.5 0.7 0.9 1.0 0.8

6̃ 0.1 0.2 0.3 0.5 0.7 0.9 1.0

Use the results of this Section to calculate the numerical values of BD with fuzzy
success numbers.

Solution of Example 2. Note that p = 0.3. Using expression (25) and the data of Table 3,
we calculate the BD values presented in Table 4.
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Table 4. Numerical values of BD with fuzzy success numbers—P
(
B k̃

n;p

)
.

k̃ 0̃ 1̃ 2̃ 3̃ 4̃ 5̃ 6̃

P
(
B k̃

n;p

)
0.6667 0.8118 0.8552 0.7342 0.4927 0.4586 0.3137

4. Fuzzy “Upper” BD

As is well known, the discussion on the (non-fuzzy) “upper” BD is based on a model of
the superposition of two processes: the binomial process Bk

n;p and the process of “increasing
the total number of failures” B0-denoted by B0 ◦ Bk

n;p, characterized by a priori probability
P(B0) = 1− γ [26], where p is the elementary event probability of (“1”). Let µ0 and µ′0 be

the values of the membership function that correspond to the complex events

n︷ ︸︸ ︷
(0, . . . , 0)

at attempting to distinguish the binomial and non-binomial origin events. Then, as it
is easy to verify, the probability of k successes in n trials of the binomial “upper” fuzzy
experiment—denoted by B̃0 ◦ Bk

n;p will have the form

P
(
B̃0 ◦ Bk

n;p

)
= 1

Z

µ0P(B0) + µ′0P
(
B0

)
P
(
B0

n;p

)
, k = 0,

P
(
B0

)
P
(
Bk

n;p

)
, k = 1, . . . , n,

=

1
Z

{
µ0(1− γ) + µ′0γ(1− p)n, k = 0,
γCk

n pk(1− p)n−k, k = 1, . . . , n

(33)

where Z is a constant that is determined by the normalization condition ∑
k
P
(
B̃0 ◦ Bk

n;p

)
= 1

and
Z = µ0(1− γ) + µ′0γ(1− p)n + γ

[
1− (1− p)n]. (34)

The corresponding GF and the first moment of this probabilistic distribution are
as follows:

GP(B̃0◦Bk
n,p)

(y) =
1
Z
[µ0(1− γ) + µ0γ(1− p)n + γ((1− p + py)n − (1− p)n)], (35)

and k = Z−1γnp.
Poisson’s limit ( np→ c > 0, n→ ∞, p→ 0) is

PPoiss(k) =
1
Z

{
µ0(1− γ) + µ′0γe−c , k = 0,

γe−c ck

k! , k = 1, 2, . . . .
(36)

k and c are related by the ratio

k =
[
µ0(1− γ) + µ′0γe−c + γ

(
1− e−c)]−1

γc. (37)

By the integration of Formula (36) with respect to membership levels 0 ≤ µ0 ≤ 1, 0 ≤
µ′0 ≤ 1, we obtain the Poisson distribution

PPoiss(k) =

{
1− (1− e−c)ξ, k = 0,
ξe−c ck

k! , k = 1, 2, . . . ,
(38)

where
ξ =

x

0≤µ0,µ′0≤1

γZ−1dµ0dµ′0. (39)
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It is easy to show that GF GPoiss looks like as follows:

GPoiss(y) = 1− (1− ec) ξ + ξe−c(ecy − 1), (40)

and in this case, k = ξc. Therefore, we finally receive

PPoiss(k) =


1−

(
1− e−

k
ξ

)
ξ , k = 0,

ξe−
k

ξ

(
k

ξ

)k

k! , k = 1, 2, . . . .

(41)

Example 3. Let the binomial experiment by the same data presented in Example 2 be given:
p = 0.3, q = 0.7, n = 6. For the creation of the (non-fuzzy) “upper” BD B0 ◦ Bk

n;p as a model of
the superposition of two processes—the binomial process Bk

n;p and the process of “increasing the
total number of failures” B0—we enter the a priori probability value P(B0) = 1− γ = 0.65 [13]
and the elementary event probability of (“1”)—p = 0.3. Let µ0 = 0.8 and µ′0 = 0.4 be the levels

of the membership function that correspond to the complex events

n︷ ︸︸ ︷
(0, . . . , 0) when we want to

distinguish the binomial and non-binomial origin events. Calculate: 1. the probability distribution
of k success of the fuzzy “upper” binomial experiment—denoted by B̃0 ◦ Bk

n;p; 2. the Poisson
distribution—PPoiss(k); 3. the Poisson distribution PPoiss(k).

Solution of Example 3. Case 1. Using Formula (33), we receive the numerical values
of the probability distribution of k success of the fuzzy “upper” binomial experiment—
denoted by B̃0 ◦ Bk

n;p. p = 0.3, q = 0.7, n = 6 (Table 5).

Table 5. The values of probabilities of the fuzzy “upper” BD B̃0 ◦ Bk
n;p.

k 0 1 2 3 4 5 6

P
(
B̃0 ◦ Bk

n,p

)
0.6347 0.1253 0.1342 0.0767 0.0247 0.0042 0.0002

Case 2. By Formula (36), we calculated the values of the Poisson distribution—PPoiss(k)
for the k = 0, 1 . . . , 6 success (Table 6).

Table 6. The probabilities of k success of the Poisson distribution—PPoiss(k).

k 0 1 2 3 4 5 6

PPoiss(k) 0.6445 0.1242 0.1129 0.0685 0.0319 0.0128 0.0052

Case 3. Using Formula (37), we numerically calculated the value of the first order
moment of distribution—k. Therefore, we analytically received expression of the functions
Z (Formula (34)) and GF GP(B̃0◦Bk

n;p)
(y). After this, we numerically calculated the value of

the integral ξ. Finally, we calculated the values of the Poisson distribution PPoiss(k) for the
k = 0, 1 . . . , 6 success (Table 7).

Table 7. The probabilities of k success of the Poisson distribution PPoiss(k).

k 0 1 2 3 4 5 6

PPoiss(k) 0.5100 0.1747 0.1572 0.0943 0.0424 0.0153 0.0061
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5. Fuzzy Fuchs Distribution

Let us consider a hybrid fuzzy-random process where the fuzzy process is pre-
distributed while the random process is ordinary. Based on the analysis of lexical material, it
has been established that the linguistic spectrum of the statistical process of word-formation
(which is in conversation) becomes two-component when switching to vocabulary. This
has been explained for several languages [24]. In this section, we construct two variants of
such a process, which can be used in the analysis of the linguistic spectrum of the statistical
process of word-formation. It is well known that, as in the case of the binomial “upper”
distribution, all variants of the Fuchs distribution are based on a two-process superposition
model, which, in the case under consideration, is interpreted as “determined” and binomial,
Φk

n;ν;p = Bν ◦ Bk
n−ν;p [24].

The derivation of the Fuchs probability distribution function for the most characteristic
cases discussed below actually coincides with the corresponding (non-fuzzy) probability
distribution. Therefore, we will present only the final results. In addition, we use the Fuchs
model and terminology [26]. We consider two cases:

Case 1. The pre-placement process is non-fuzzy, while the fuzziness of the binomial
process is conditioned by the fuzziness of the elementary events. In this case, the fuzzy
elemental event is characterized by a probability that depends on the number of pre-placed
elements. As in Section 1, we consider a basic fuzzy-random variable of Bernoulli B̃ ∼ values 1 0

probabilities P1 P0
membership levels µ

1
µ2

 and a sequence of fuzzy-random variables of Bernoulli

B̃ν ∼

 values 1 0
probabilities P(ν)

1 P(ν)
0

membership levels f or ( ν) µ
(ν)
1 µ

(ν)
2

, ν = 0, . . . , n for the creation of a fuzzy

Fuchs probability distribution. In this case, the Fuchs probabilistic distribution is as follows:

P ′
(
B̃v ◦ B̃k

n−v;p

)
= ∑n

v=0 ρvCk−v
n−v

[
P ′n−v(1̃)

]k−v[
P ′n−v(0̃)

]n−k
, (42)

where ρν are the proportions of those cells in which the ν elements are pre-placed (according
to (15)) for ν = 0, 1, . . . and must meet the conditions µ

(ν)
1 < µ

(ν)
2 , ν = 0, . . . n, and

P (v)
(

C̃(k)

)
=

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)

 n−v−1

√√√√√√√
P(v)

1
n−v︷ ︸︸ ︷

P(v)
1 (1, . . . , 1)

− 1


n−k

, k = 1, . . . , (43)

P (v)
(

C̃2n−v

)
=

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)·

 n−v−1)

√√√√√√√
P(v)

1
n−v︷ ︸︸ ︷

P(v)
1 (1, . . . , 1)

− 1


n−v

+ 1− P(v)
1 · n−v−1

√√√√√√√
P(v)

1
n−v︷ ︸︸ ︷

P(v)
1 (1, . . . , 1)

,

0 ≤

P(ν)
1 ×

n−ν−1

√√√√√ P(ν)
1

n−ν︷ ︸︸ ︷
P(ν)

1 (1, . . . , 1)

P(ν)
1

n−ν

(1, . . . , 1)

 n−ν−1

√√√√√ P(ν)
1

n−ν︷ ︸︸ ︷
P(ν)

1 (1, . . . , 1)

− 1


n−ν

< 1,



Axioms 2022, 11, 220 15 of 18

µ
(ν)
2

µ
(v)
1

= 1 + [

n−ν︷ ︸︸ ︷
P(ν)

1 (0, . . . , 0)]

−1

−1 +
n−ν−1

√√√√√√√
P(ν)

1
n−ν︷ ︸︸ ︷

P(ν)
1 (1, . . . , 1)

.

The corresponding GF of the distribution (42) and the first two moments are as follows:

GP ′(B̃v◦B̃k
n−v;p)

(y) = ∑
v=0

ρvyv [µ1P0+µ1P1y+(µ2−µ1)[

n−v︷ ︸︸ ︷
P(v)

1 (0, . . . , 0)]n−v

[µ1+(µ2−µ1)[

n−v︷ ︸︸ ︷
P(v)

1 (0, . . . , 0)]n−v

,

k = nP1 + (1− P0)
(

∑n
v=0 µ

(v)
1 ρv

)−1(
∑n

v=0 µ
(v)
2 ρv

)
(44)

k
2
= (∑n

ν=0 µ
(ν)
1 ρν)

−1[
∑n

ν=0 µ
(ν)
2 ρν + P1 ∑n

ν=0(n− ν)(2ν + 1 + P1(n− ν− 1))µ(ν)
2 ρν

]
. (45)

We can obtain the similar expressions for GP ′(B̃v◦B̃k
n−v;p)

(y), k, and k
2

in the case

µ
(ν)
1 > µ

(ν)
2 , ν = 0, . . . , n, (omitted here).

Case 2. The pre-placement process is fuzzy, while the Binomial process is non-fuzzy—
Φ̃k

n;ν;p = B̃ν ◦ Bk
n−ν;p. Analogously to the previous case, we receive

P ′(B̃v ◦ Bk
n−v;p) = ∑n

v=0
ρv pv

∑n
s=0 ρs ps

P
(
Bk

n−v;p

)
, (46)

where (ν, ρν, pν), ν = 0, 1, . . . , n is some fuzzy-random variable of the pre-placement
process in the Fuchs distribution.

Given the subjective nature of the spectral probabilities in the Fuchs distribution, we
can argue that, in this case, the non-fuzzy and fuzzy distributions coincide.

Example 4. Case 1. Calculate the first and second moments of the Fuchs distribution if, in the role

of fuzzy Bernoulli distribution, we selected B̃ ∼

 values 1 0
probabilities P1 = 0.3 P0 = 0.7

membership levels µ1 = 0.5 µ2 = 0.6

,

and the sequence of the membership levels of B̃ν is given by Table 8.

Table 8. Sequence of the membership levels of B̃ν.

Values 1 0

Probabilities P1 = 0.3 P0 = 0.7

Membership levels µ1 = 0.6 µ2 = 0.8

Membership levels for ν = 0 µ
(0)
1 = 0.5 µ

(0)
2 = 0.6

Membership levels for ν = 1 µ
(1)
1 = 0.4 µ

(1)
2 = 0.7

Membership levels for ν = 2 µ
(2)
1 = 0.3 µ

(2)
2 = 0.6

Membership levels for ν = 3 µ
(3)
1 = 0.5 µ

(3)
2 = 0.8

Membership levels for ν = 4 µ
(4)
1 = 0.3 µ

(4)
2 = 0.6

Membership levels for ν = 5 µ
(5)
1 = 0.5 µ

(5)
2 = 0.9

Membership levels for ν = 6 µ
(0)
1 = 0.6 µ

(0)
2 = 0.7

Calculate the values of k and k
2
.
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Case 2. Let the fuzzy binomial experiment and the fuzzy random variable on all
possible success values be given {0, 1, 2, 3, 4, 5, 6} (Table 9).

Table 9. The fuzzy random variable.

ν 0 1 2 3 4 5 6

pν 0.05 0.1 0.2 0.3 0.2 0.1 0.05

ρν 0.15 0.25 0.45 0.75 0.55 0.35 0.25

Let the fuzzy Bernoulli variable also be given

X̃ ∼

 values 1 0
probabilities P1 = 0.3 P0 = 0.7

membership levels µ1 = 0.5 µ2 = 0.6

. Calculate the numerical value of the

Fuchs distribution.
Solution of the Example 4.
In Case 1, the fuzzy character of the binomial process is conditioned by the fuzzy character

of the elementary events. Therefore, we received an expression of the corresponding GF. After
this, we calculated the values of k = 2.3100 and k̃2 = 10.7470 (Formulas (44) and (45)).

In Case 2, when in the Fuchs experiment there is a fuzzy pre-placement process
while the binomial process is non fuzzy—Φ̃k

n;ν;p = B̃ν ◦ Bk
n−ν;p, for obtaining the numer-

ical values of the Fuchs fuzzy distribution, we used Table 9 and Formula (46), where
P(Bl

n−ν;p) = Cl
n−ν pl(1− p)n−ν−l , p = P1 = 0.3, Cl

n−ν = 0 if l > n− ν. The results are
given by Table 10.

Table 10. Values of the Fuchs fuzzy distribution.

k 0 1 2 3 4 5 6

P ′(B̃v ◦ Bk
n−v;p) 0.1157 0.4044 0.5702 0.3867 0.1382 0.0336 0.0045

6. Conclusions

The research presented in this paper is relevant today in terms of its applicability.
Experimental, objective data are often not sufficient to build discrete distributions in the
study, analysis, and synthesis of difficult and complex phenomena. Often, such data do
not exist at all. Modern modeling, and in particular simulation modeling, is unthinkable
outside of the solution of the problems of restoring discrete distributions. The research
presented in this paper is different from the existing studies. It refers to a generalization of
binomial distribution where the results of an experiment are described by fuzzy variables.
These variables are defined in the universe of all the results of the experiment. We are
dealing with a binomial fuzzy-random variable. It has both a probability distribution and a
membership function in the universe of all results of the experiment. This paper discusses
four new and different cases of BD fuzzy extensions. Case 1: The fuzzy extension of the
BD is presented when the Bernoulli fuzzy-random variable is considered instead of the
Bernoulli random variable—i.e., the success and failure events have both probabilistic
distributions and their implementation capabilities in the form of compatibility levels.
Based on this information, the probabilistic distribution of the corresponding binomial
fuzzy-random variable is calculated. The conditions of restrictions on this distribution
are obtained. It is shown that these conditions depend on the ratio of success and failure
compatibility levels. The formulas for the GF of the built distribution and the first and
second order moments are also obtained. The Poisson distribution is calculated as a limit
case of a constructed binomial fuzzy-random experiment. Case 2: The fuzzy extension of
the BD is considered, where the number of successes, in contrast to the previous case, is of
a fuzzy nature and is represented as a fuzzy subset of the set of possible success numbers.
A formula for calculating the probability of the convolution of binomial dependent fuzzy
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events is obtained. Using the principle of the invariancy of an exponential distribution,
the corresponding GF is built. As a result, the scheme for calculating the mathematical
expectation of the number of fuzzy successes is defined. It becomes possible in future
studies to obtain Poisson and normal distributions as marginal cases of the fuzzy BDs
constructed here. Case 3: The fuzzy extension of the “upper” BD is considered, where
the fuzziness is represented by the compatibility levels of the binomial and non-binomial
events of the complete failure complex. The GF and the first-order moment of the built
distribution are calculated. Sufficient conditions for the existence of an appropriate marginal
distribution, a Poisson distribution, are also obtained. Case 4: The fuzzy extension of the
classical Fuchs distribution is presented, where the fuzziness is reflected in the growing
number of failures. The built distribution function and the first and second order moments
of the distribution are also calculated. In each section of the paper, for illustration of the
obtained results, examples of the built fuzzy BD are considered. It becomes possible in
future studies to obtain Poisson and normal distributions as marginal cases of the fuzzy
Fuchs distribution. Of course, the practical application of the hybrid fuzzy-binomial models
studied here is in great demand. This is the main motivation to continue research in this
direction in the future. The main gradient of the research will be directed to the solution of
applied problems, where the distributions built in this paper, or their modifications and
generalizations, will be used.
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