
Citation: Liang, R.; Zhang, X.

Interval-Valued Pseudo Overlap

Functions and Application. Axioms

2022, 11, 216. https://doi.org/

10.3390/axioms11050216

Academic Editor: Hans J. Haubold

Received: 16 March 2022

Accepted: 27 April 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Interval-Valued Pseudo Overlap Functions and Application
Rong Liang and Xiaohong Zhang *

School of Mathematics and Data Science, Shaanxi University of Science & Technology, Xi’an 710021, China;
200911051@sust.edu.cn
* Correspondence: zhangxiaohong@sust.edu.cn

Abstract: A class of interval-valued OWA operators can be constructed from interval-valued overlap
functions with interval-valued weights, which plays an important role in solving multi-attribute
decision making (MADM) problems considering interval numbers as attribute values. Among them,
when the importance of multiple attributes is different, it can only be calculated by changing the
interval-valued weights. In fact, we can directly abandon the commutativity and extend the interval-
valued overlap functions (IO) to interval-valued pseudo overlap functions (IPO) so that function
itself implies the weights of the attributes, thus there is no need to calculate the OWA operator, which
is more flexible in applications. In addition, the similar generalization on interval-valued pseudo
t-norms obtained from interval-valued t-norms further enhances the feasibility of our study. In this
paper, we mainly present the notion of interval-valued pseudo overlap functions and a few their
qualities, including migrativity and homogeneity, and give some construction theorems and specific
examples. Then, we propose the definitions of residuated implications induced by interval-valued
pseudo overlap functions, give their equivalent forms, and prove some properties satisfied by them.
Finally, two application examples about IPO to interval-valued multi-attribute decision making
(I-MADM) are described. The results show that interval-valued pseudo overlap functions can not
only be used to obtain the same rankings, but also be more flexible, simple and widely used.

Keywords: interval-valued pseudo overlap functions; interval-valued residuated implications; mi-
grativity; homogeneity; interval-valued decision making

1. Introduction

Interval-valued fuzzy sets (IFS) were first proposed by Zadeh and they then attracted
a large number of other scholars who conducted in-depth research on them [1–4]. They are
extensively used in many practical problems, for instance, decision-making [5–7], image
processing [8–10] and classification [11–13] etc. After that, in order to better deal with
the uncertain information, some scholars extended the overlap functions [14–16] to the
IFS, which is introduced in [17,18]. In fact, the commutativity of overlap functions on
fuzzy sets limits their application to a certain extent. Some scholars have studied non-
commutative overlap functions, namely pseudo overlap functions, and achieved some
results [19]. In addition, some scholars introduced pairs of interval negations and interval
implications [20,21], which are induced by non-commutative property and studied the
non-commutative fuzzy interval logic system and defined interval negation [22]. With
regard to the interval-valued t-norms [23] associated with interval-valued overlap functions,
some scholars also removed their commutativity and studied the theory of interval-valued
pseudo t-norms. For example, in [24], the implication pairs based on interval-valued
pseudo t-norms are discussed. All these show that the commutativity of binary operations is
sometimes unnecessary. Therefore, we also naturally consider extending the pseudo overlap
functions to the IFS, studying the interval-valued pseudo overlap functions, removing the
commutativity of the IO, and then expanding their application scope.

On the other hand, an interval-valued OWA operator is a kind of OWA operator
on interval-valued fuzzy sets, which plays an important role in solving interval-valued
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multi-attribute decision making problems [25–27]. In recent years, it has been studied and
discussed by many scholars. In [17], Benjamin Bedregal et al. propose a new construction
method, which combines the interval-valued aggregation function and IO with the interval-
valued weights, which can be used to solve interval-valued decision making problems.
However, what is difficult to ignore in multi-attribute decision making problems is that
different attributes may have different degrees of importance, and the IO are difficult
to realize the difference because of their commutativity. For the above reasons, in this
article, we propose the conception of IPO, research their properties, and apply them to
interval-valued multi-attribute decision making to illustrate their flexibility.

The composition of this paper is as below. We introduce some basic concepts about
interval-valued functions and their properties, as well as interval-valued fuzzy implication
in Section 2. As for Section 3, we put forward the definition of IPO and their induced
interval-valued residuated implications, briefly illustrate the filiation between IPO and
pseudo t-norms on IFS, afterwards we give a few examples. Then, the representability
of IPO is proposed and several equivalent characterizations are given, furthermore, we
also analyze the properties of interval-valued residuated implications induced by IPO
which are representable. Moreover, we elaborate the related propositions of interval-valued
pseudo overlap functions satisfying migrativity or homogeneity. Finally, we expand the
interval-valued pseudo overlap functions to n-dimension, list some examples, and show
two specific cases concerning how they are applied to I-MADM problems in Section 4. The
results indicate that using interval-valued pseudo overlap functions can not only get the
same results as other methods, but can also be more simple and flexible. Conclusions and
references are given at the end.

2. Preliminaries

We first give some basic concepts about interval and interval-valued functions. Define
IV([0, 1]) = {[a, b] : 0 ≤ a ≤ b 6 1} as the family of all closed subintervals based on [0, 1],
the concept of projections are given by: [a, b] = a, [a, b] = b. Some operations on IV([0, 1])
are defined as follows [28]: X + Y = [X + Y, X + Y], XY = [XY, XY], X/Y = [X/Y, X/Y]
where Y 6= 0, Xc = [1− X, 1− X], X ∧ Y =[min{X, Y}, min{X, Y}], X ∨ Y =[max{X, Y},
max{X, Y}], X[k1,k2] = [Xk2 , Xk1 ] for 0 < k1 6 k2.

Definition 1 ([29]). Given an interval-valued function (IF) F: IV([0, 1])n → IV([0, 1]), it is
defined as inclusion increasing when it is monotonically increasing about the inclusion order, where
inclusion order is defined as: X ⊆ Y iff Y ≤ X, X ≤ Y.

In fact, there is another common order on IV([0, 1]), that is, the product order, which
is defined as: [a, b] ≤ [c, d] iff a ≤ c and b ≤ d for arbitrary [a, b], [c, d] ∈ IV([0, 1]) [2,17]. If
there is no special emphasis, the order mentioned in this paper refers to the product order.
The following are some definitions, lemmas and propositions used in this paper.

Definition 2 ([1,30]). Given the mapping f: Xn → Y is a real function, we call IF f̂ : IV(X)n →
IV(Y) as the best interval representation composed of f, where f̂ defined as below:

f̂ (A) = [inf{ f (a) : a ∈ A}, sup{ f (a) : a ∈ A}].

Definition 3 ([19]). The binary operator O: [0, 1]2 → [0, 1] is a pseudo overlap function if for any
x, y ∈ [0, 1], it meets these requirements:

(PO1) O(x, y) = 0 iff x = 0 or y = 0;
(PO2) O(x, y) = 1 iff x = y = 1;
(PO3) O is non-decreasing;
(PO4) O is continuous about each argument.
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Remark 1. Similar to the concepts of 0-overlap function and 1-overlap function, we have definitions
of 0-pseudo overlap function (0-PO) and 1-pseudo overlap function (1-PO). Based on the above
definition, when the (PO1) becomes if xy = 0 then O(x, y) = 0 (PO1′), and other conditions
remain unchanged, we call the mapping O is a 0-PO. In the same way, when the (PO2) becomes if
xy = 1 then O(x, y) = 1 (PO2′), and other conditions remain unchanged, we call the mapping O
is a 1-PO.

Definition 4 ([17,31]). A mapping M: IV([0, 1])n → IV([0, 1]) is called an interval-valued
aggregation function if it has the below properties:

(M1) M is increasing, i.e., for each i = 1, . . . , n, if Xi ≤ Yi, it holds that M(X1, . . . , Xn) ≤
M(Y1, . . . , Yn);

(M2) Boundary condition, is defined as: M([0, 0], . . . , [0, 0]) = [0, 0], M([1, 1], . . . , [1, 1]) = [1, 1].

Definition 5 ([17,30]). Given the mapping O on IV([0, 1]), it is an IO when and only when it
meets the below requirements:

(O1) O(X, Y) = O(Y, X);
(O2) O(X, Y) = [0, 0] when and only when X = [0, 0] or Y = [0, 0];
(O3) O(X, Y) = [1, 1] when and only when X = Y = [1, 1];
(O4) O is monotonic about every element, i.e., if Y ≤ Z, then O(X, Y) ≤ O(X, Z);
(O5) O is Moore continuous, i.e., for any (X1, X2), (Y1, Y2) ∈ IV([0, 1])2, and any ε > 0, there

is δ > 0 such that d((X1, X2), (Y1, Y2)) < δ ⇒ d(O(X1, X2), O(Y1, Y2)) < ε, where

d((X1, X2), (Y1, Y2))=
√
(max{|X1−Y1|, |X1 −Y1|})2+(max{|X2 −Y2|, |X2 −Y2|})2,

d(O(X1, X2), O(Y1, Y2)) = max{|O(X1, X2) − O(Y1, Y2)|, |O(X1, X2) − O(Y1, Y2)|}
(see [32]).

Definition 6 ([24]). The mapping T defined on IV([0, 1]) is called an interval-valued pseudo
t-norm (IPtm) when T meets the terms below:

(T1) T is associative;
(T2) T is monotonic about the product order and the inclusion order;
(T3) T has [1, 1] as an identity element, i.e., for arbitrary X ∈ IV([0, 1]), T(X, [1, 1]) =

T([1, 1], X) = X.

Definition 7 ([17]). An IPtm T on IV([0, 1]) is called positive when it meets T([a, b], [c, d]) =
[0, 0] when and only when [a, b] = [0, 0] or [c, d] = [0, 0].

Before introducing the following lemma, we firstly state a definition of the IF. Given
two real functions i, j: Xn → Y satisfying i ≤ j, then the IF IV([i, j]) : IV(X)n → IV(Y)
defined as IV([i, j])(A) = [i(A), j(A)] for arbitrary A ∈ IV(X)n.

Lemma 1 ([33]). Suppose that i, j: Xn → Y are monotonous real functions and they satisfy i ≤ j.
Then the following sentences are equal in value:

(1) IV([i, j]) is Moore continuous;
(2) i and j are continuous.

Definition 8 ([17]). Given a monotonic IF F : IV([0, 1])n → IV([0, 1]). We call the left and
right projections of F the mappings F, F: [0, 1]n → [0, 1] defined by

F(x1, . . . , xn) = F([x1, x1], . . . , [xn, xn]), F(x1, . . . , xn) = F([x1, x1], . . . , [xn, xn]) (1)

respectively.

Proposition 1 ([1]). Given a monotonically increasing (or decreasing) IF F: IV(X)n → IV(Y),
then it is monotonic about inclusion order if and only if it holds that F = IV([F, F]).
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Definition 9 ([17]). Given an IF F: IV([0, 1])2 → IV([0, 1]), it is called migrative when for arbitrary
[m, n], [a, b], [c, d] ∈ IV([0, 1]), it satisfies Equation F([m, n][a, b], [c, d]) = F([a, b], [m, n][c, d]).

Definition 10 ([17]). Given an IF F: IV([0, 1])2 → IV([0, 1]), it is called K-order homogeneous,
where K = [k1, k2] with 0 < k1 ≤ k2 when for arbitrary [m, n], [a, b], [c, d] ∈ IV([0, 1]), it satisfies
Equation F([m, n][a, b], [m, n][c, d]) = [m, n]KF([a, b], [c, d]).

Definition 11. Given an IF F: IV([0, 1])2 → IV([0, 1]), it is called idempotent if for arbitrary
X ∈ IV([0, 1]), it holds that F(X, X) = X.

Besides, some related propositions with regard to the properties satisfied by interval-
valued functions are given below.

Proposition 2 ([17,34]). Given an IF F: IV([0, 1])2 → IV([0, 1]), then it satisfies migrativity
when and only when it satisfies F([a, b], [c, d]) = F([1, 1], [a, b][c, d]).

Proposition 3 ([17]). Given an IF F: IV([0, 1])2 → IV([0, 1]), the formulations as below
are established:

(1) If F is migrative, then it is commutative;
(2) If F is K-order homogeneous, then it holds that F([0, 0], [0, 0]) = [0, 0];
(3) F satisfies idempotency when F is K-order homogeneous where K = [1, 1] and satisfies

F([1, 1], [1, 1]) = [1, 1];
(4) F is K-order homogeneous where K = [1, 1] when F satisfies migrativity and idempotency;
(5) For arbitrary [a, b] ∈ IV([0, 1]), F is K-order homogeneous where K = [1, 1] when F satisfies

migrativity and F([1, 1], [a, b]) = F([a, b], [1, 1]) = [a, b].

Definition 12 ([19]). Given a pseudo overlap function PO: [0, 1]2 → [0, 1], the following
R(1)

O , R(2)
O : [0, 1]2 → [0, 1] are said to be left (right) residuated operators, for arbitrary x, y ∈ [0, 1]:

R(1)
O = sup{z ∈ [0, 1] | PO(z, x) ≤ y}, (2)

R(2)
O = sup{z ∈ [0, 1] | PO(x, z) ≤ y}. (3)

Definition 13 ([35]). An interval-valued fuzzy implication is defined to be a function I: IV([0, 1])2 →
IV([0, 1]) that satisfies the requirements as below:

(I1′) boundary conditions: IV([0, 0], [0, 0]) = IV([0, 0], [1, 1]) = IV([1, 1], [1, 1]) = [1, 1], IV([1,
1], [0, 0]) = [0, 0];

(I2′) an extension of the fuzzy implication, i.e., if IV([x, x], [y, y]) = [a, b] then a = b;
(I3′) decreasing about the first element, i.e., if [a, b] ≤ [a′, b′] then IV([a, b], [m, n]) ≥ IV([a′, b′],

[m, n]);
(I4′) increasing about the second element, i.e., if [m, n] ≤ [m′, n′] then IV([a, b], [m, n]) ≤

IV([a, b], [m′, n′]).

3. Interval-Valued Pseudo Overlap Functions and Interval-Valued
Residuated Implications
3.1. IPO

In this subchapter, basic notions of IPO as well as the interval-valued residuated
implications induced by them are introduced, some concrete examples are given, and then
we briefly analyze the relevance between IPO and IPtm.

Definition 14. An IF O: IV([0, 1])2→ IV([0, 1]) is called an IPO when O meets the below statements:

(O1′) O(X, Y) = [0, 0] when and only when XY = [0, 0];
(O2′) O(X, Y) = [1, 1] when and only when XY = [1, 1];
(O3′) If Y ≤ Z, then O(Y, X) ≤ O(Z, X) and O(X, Y) ≤ O(X, Z);
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(O4′) O is Moore continuous.

Obviously, if an IPO is commutative, then it is an IO. Next, some examples of interval-
valued pseudo overlap functions are given as follows.

Example 1. (1) Any IO is an IPO.
(2) The mapping PO: IV([0, 1])2 → IV([0, 1]) defined as PO([a, b], [c, d]) = [a ∧ c, b ∧ d] is

an IPO, and also an IO.
(3) The mapping PO: IV([0, 1])2 → IV([0, 1]) defined as PO([a, b], [c, d]) = [a2c, bd b+d

2 ] is an
IPO, but not an IO.

For any two interval-valued pseudo overlap functions O1, O2 : IV([0, 1])2 → IV([0, 1]),
we mark O1 ≤ O2 when and only when for arbitrary X, Y ∈ IV([0, 1]), O1(X, Y) ≤
O2(X, Y) is established.

Lemma 2. Given the mapping O is an IPO. If M 6= N, then it holds that O([1, 1], M) 6=
O([1, 1], N) and O(M, [1, 1]) 6= O(N, [1, 1]) for any M, N ∈ IV([0, 1]).

Proof. Assume that O([1, 1], M) = O([1, 1], N). Then we have that d(O([1, 1], M), O([1, 1],
N)) = 0 and because M 6= N ⇒ d(X, Y) > 0, we can obtain O is not Moore continuous,
which is contradictory. Similarly, we have that O(M, [1, 1]) 6= O(N, [1, 1]).

As we all know, overlap functions on fuzzy sets are closely related to t-norms. There-
fore, we also discuss the correlation between pseudo overlap functions and pseudo t-norms
on IFS.

Proposition 4. Given the mapping PO is an IPO. If PO satisfies associative law, then PO is a
positive and Moore continuous interval-valued pseudo t-norm.

Proof. Assume that PO([1, 1], X) 6= X for some X ∈ IV([0, 1]), according to (O2′) and
Lemma 2, since PO is associative, it is clear that PO([1, 1], X) 6= PO([1, 1], PO([1, 1], X)) =
PO(PO([1, 1], [1, 1]), X) = PO([1, 1], X), which is contradictory. Similarly, suppose that
PO(X, [1, 1]) 6= X for some X ∈ IV([0, 1]), we also have a contradiction. So it is clear
that PO([1, 1], X) = X = PO(X, [1, 1]) for all X ∈ IV([0, 1]), i.e., PO takes [1, 1] as the
unit element. Therefore, according to the definition of IPO, it is monotonic, positive and
continuous, so PO is a positive and Moore continuous interval-valued pseudo t-norm.

Note that in the opposite sense, any positive and Moore continuous interval-valued
pseudo t-norm is an associative interval-valued pseudo overlap function with [1, 1] as the
unit element.

Next, we give a method to make up the IPO.

Theorem 1. Given two interval-valued pseudo overlap functions O1, O2, then the IF PO: IV([0, 1])2

→ IV([0, 1]) defined as PO(X, Y) = O1(X, Y)O2(X, Y) satisfies (O1′) ∼ (O4′), i.e., it is
an IPO.

Proof. Since X = [0, 0] or Y = [0, 0] ⇔ O1(X, Y) = O2(X, Y) = [0, 0] ⇔ PO(X, Y) = [0, 0],
we have that PO satisfies (O1′). Similarly, we can get PO satisfies (O2′). For arbitrary
X, Y, Z ∈ IV([0, 1]), when X ≤ Y, since O1 and O2 are non-decreasing, it holds that
PO(Z, X) = O1(Z, X)O2(Z, X) ≤ O1(Z, Y)O2(Z, Y) = PO(Z, Y) and PO(X, Z) ≤ PO(Y, Z)
analogously, so PO is increasing. Finally, since O1 and O2 are Moore continuous, by
definition, it is obvious that PO is Moore continuous.

In addition, another method of obtaining the interval-valued pseudo overlap function
using the best interval representation of the pseudo overlap function is as follows.
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Theorem 2. Given a pseudo overlap function O, the function Ô: IV([0, 1])2 → IV([0, 1])
defined as Ô(X, Y) = [inf{O(x, y) : x ∈ X, y ∈ Y}, sup{O(x, y) : x ∈ X, y ∈ Y}] satisfies
(O1′)∼(O4′).

Proof. (O1′) Ô(X, Y) = [0, 0] ⇔ for any x ∈ X and y ∈ Y, infO(x, y) = supO(x, y) = 0 ⇔
for any x ∈ X and y ∈ Y, O(x, y) = 0 ⇔ for any x ∈ X and y ∈ Y, xy = 0 ⇔ X = [0, 0]
or Y = [0, 0]. (O2′) In a similar way to the above, we can also get Ô satisfies (O2′). (O3′)
For arbitrary X, Y, Z ∈ IV([0, 1]), when X ≤ Y, it is clear that Ô(Z, X) = [inf{O(z, x) : z ∈
Z, x ∈ X}, sup{O(z, x) : z ∈ Z, x ∈ X}] ≤ [inf{O(z, y) : z ∈ Z, y ∈ Y}, sup{O(z, y) : z ∈
Z, y ∈ Y}] = Ô(Z, Y), similarly, we also have Ô(X, Z) ≤ Ô(Y, Z). (O4′) for arbitrary X, Y,∈
IV([0, 1]), because O satisfies (PO4), we have that Ô(X, Y) = [inf{O(x, y) : x ∈ X, y ∈ Y},
sup{O(x, y) : x ∈ X, y ∈ Y}], i.e., for arbitrary x ∈ X, y ∈ Y, it equals [O(infx, infy), O(supx,
supy)] = [O(X, Y), O(X, Y)], so Ô = IV([O, O]). Then it is clear that Ô is Moore continuous
by Lemma 1.

When studying interval-valued fuzzy operators, it is inevitable to discuss the interval-
valued fuzzy implication induced by them. So we also give the definition of interval-valued
residuated implications induced by IPO as follows.

Definition 15. Given the mapping PO on IV([0, 1]) is an IPO. We call the interval-valued
residuated implications induced by PO to be the interval-valued functions IR(1) and IR(2), where
they are defined by

IR(1)(X, Y) = sup{Z ∈ IV([0, 1]) | PO(Z, X) ≤ Y}, (4)

IR(2)(X, Y) = sup{Z ∈ IV([0, 1]) | PO(X, Z) ≤ Y} (5)

respectively, for any X, Y ∈ IV([0, 1]).

Example 2. The concrete examples of interval-valued residuated implications corresponding to the
examples in Example 1 above are as follows:
(1)

IR(1)([a, b], [c, d]) = IR(2)([a, b], [c, d]) =


[1, 1] a ≤ c, b ≤ d
[c, 1] a > c, b ≤ d
d a ≤ c, b > d
[c, d] a > c, b > d

(6)

(2)

IR(1)([a, b], [c, d]) =



[1, 1] a ≤ c, b ≤ d

[
√

c
a , 1] a > c, b ≤ d

min{
√

b2+8bd−b2

2b , 1} a ≤ c, b > d

[min{
√

c
a ,
√

b2+8bd−b2

2b }, min{
√

b2+8bd−b2

2b , 1}] a > c, b > d

(7)

IR(2)([a, b], [c, d]) =


[1, 1] a ≤ c, b ≤ d
[min{ c

a2 , 1}, 1] a > c, b ≤ d

min{
√

b2+8bd−b2

2b , 1} a ≤ c, b > d

[min{ c
a2 ,
√

b2+8bd−b2

2b , 1}, min{
√

b2+8bd−b2

2b , 1}] a > c, b > d

(8)

3.2. Representable Interval-Valued Pseudo Overlap Functions

Similar to the representability of IO, we can also research the representability of
the IPO.
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Theorem 3. Given two pseudo overlap functions O1 and O2 satisfying O1 ≤ O2, then the function
Õ1O2: IV([0, 1])2 → IV([0, 1]) defined as Õ1O2(X, Y) = [O1(X, Y), O2(X, Y)] is an IPO.

Proof. We confirm that the function Õ1O2 satisfies (O1′)∼(O4′) as follows.

(O1′) Õ1O2(X, Y) = [0, 0] ⇔ [O1(X, Y), O2(X, Y)] = [0, 0] ⇔ O1(X, Y) = 0 as well as
O2(X, Y) = 0 ⇔ X = 0 or Y = 0, since X ≤ X and Y ≤ Y, when and only when
X = [0, 0] or Y = [0, 0].

(O2′) Similar to the above, we have Õ1O2(X, Y) = [1, 1]⇔ X = [1, 1] and Y = [1, 1].
(O3′) For arbitrary X, Y, Z ∈ IV([0, 1]), X ≤ Y⇒ X ≤ Y as well as X ≤ Y, since O1, O2 are

increasing, so we have Õ1O2(X, Z) = [O1(X, Z), O2(X, Z)] ≤ [O1(Y, Z), O2(Y, Z)] =
Õ1O2(Y, Z), similarly, it holds that Õ1O2(Z, X) ≤ Õ1O2(Z, Y).

(O4′) Since O1, O2 are non-decreasing and continuous, and O1 ≤ O2, it is clear that

Õ1O2(X, Y) = IV([O1, O2])(X, Y) and it is Moore continuous by Lemma 1.

According to the above theorem, the definition of representable IPO as below can
be generated.

Definition 16. Given the mapping O is an IPO on IV([0, 1]), we call it representable when there
are two pseudo overlap functions O1 and O2 satisfying O = Õ1O2, where O1, O2 are called
representatives of O.

A few examples of the interval-valued pseudo overlap functions obtained by the
pseudo overlap function are given below.

Example 3. (1) The mapping OmM : IV([0, 1])2 → IV([0, 1]) defined as

OmM([a, b], [c, d]) = [min{a, c}max{a2, c}, min{b, d}max{b2, d}] (9)

is an IPO.
(2) The mapping Opq : IV([0, 1])2 → IV([0, 1]) defined as

Opq([a, b], [c, d]) = [ap · cq, bp · dq], p, q > 0 (10)

is an IPO.
(3) The mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [
2apcq

1 + apcq ,
2bpdq

1 + bpdq ] (11)

is an IPO.
(4) The mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [min{ap, cq}, min{bp, dq}], p, q > 0 (12)

is an IPO.

Remark 2. There exists some IPO that are not representable. For instance, the mapping O(X, Y) =
[max{X + Y− 1, 0}, XY2

] is not representable. Suppose that there are pseudo overlap functions
O1 and O2 satisfying O1 ≤ O2 and O = Õ1O2, then for arbitrary X, Y ∈ IV([0, 1]), there
is O(X, Y) = Õ1O2(X, Y) = [O1(X, Y), O2(X, Y)], in particular, when X = 0 and Y =
0.5, O1(X, Y) = 0, which is in contradiction with (PO1).

In order to describe the representability of IPO, we give propositions below.
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Proposition 5. Given the mapping PO is an IPO. For arbitrary z ∈ (0, 1], if PO satisfies that
XY = 0 when PO(X, Y) = [0, z] (strongly positive), then PO and PO are pseudo overlap functions.

Proof. PO(x1, x2) = 0 ⇒ PO([x1, x1], [x2, x2]) = 0 ⇒ PO([x1, x1], [x2, x2]) = [0, z] is es-
tablished for any z ∈ [0, 1], when z = 0, since PO satisfies (O1′), then [x1, x1] = [0, 0]
or [x2, x2] = [0, 0], i.e., x1x2 = 0, if z > 0, from the property satisfied by PO in the
proposition, we have that x1 = 0 or x2 = 0. On the other hand, if x1 > 0, x2 > 0, then
PO([x1, x1], [x2, x2]) > [0, 0] ⇒ PO(x1, x2) ≥ 0. However, when PO(x1, x2) = 0, consid-
ering the above evidence, it holds that x1 = 0 or x2 = 0, which is contrary to x1 > 0
and x2 > 0. So the function PO satisfies (PO1). PO(x1, x2) = PO([x1, x1], [x2, x2]) = 1 ⇔
PO([x1, x1], [x2, x2]) = [1, 1], since PO satisfies (O2′), it is clear that [x1, x1] = [1, 1] and
[x2, x2] = [1, 1], i.e., x1 = 1 and x2 = 1. So the function PO satisfies (PO2). Since PO satisfies
(O3′), PO clearly satisfies (PO3). Finally, since PO is the left projection of PO, which are con-
tinuous functions, PO is continuous. Similarly, PO is also a pseudo overlap function.

Proposition 6. If the mapping O is an IPO and it is representable, then O = ÕO.

Proof. Assume that O is representable, then according to Theorem 3, there are two pseudo
overlap functions O1 and O2 satisfying O1 ≤ O2 and O = Õ1O2. Therefore, O1(x, y) =

[O1(x, y), O2(x, y)] = Õ1O2([x, x], [y, y]) = O([x, x], [y, y]) = O(x, y), similarly, it is clear

that O2(x, y) = O(x, y). So O = ÕO.

Remark 3. The inverse of the above proposition is not necessarily true, that is, if there is O =

ÕO for an IPO, it is not necessarily representable. For example, O is an IPO and defined as
O([x1, x2], [y1, y2]) = [max{x1 + y1 − 1, 0}, min{xp

2 , yq
2}], where p, q > 0. However, we have

that O = max{x1 + y1 − 1, 0}, which does not satisfy (PO1), i.e., it is not a pseudo overlap
function, so O is not representable.

Point at the above proposition, we can add a condition to make it reversible. The
conclusion is as follows.

Theorem 4. For an interval-valued pseudo overlap function O, the following two statements
are equivalent:

(1) O is representable;

(2) O is strongly positive and O = ÕO.

Proof. (1)⇒ (2) The latter is obvious from Proposition 6. When O is representable, it holds
that O = Õ1O2 and O1, O2 are pseudo overlap functions. Then for some e ∈ (0, 1], it is clear
that O(X, Y) = [0, e] ⇒ Õ1O2(X, Y) = [0, e] ⇒ O1(X, Y) = 0 ⇒ X = 0 or Y = 0, i.e., O is
strongly positive.
(2)⇒ (1) It is obvious from Proposition 5.

Theorem 5. Given the mapping O on IV([0, 1]) is a representable IPO, then it is inclusion
monotonic.

Proof. By Proposition 6, since O is representable, it is clear that O = ÕO, i.e., O(X, Y) =
[O(X, Y), O(X, Y)] = IV([O, O])(X, Y), by Proposition 1, we have that O is monotonic about
the inclusion order.

It is important to note that the inverse of the above theorem is also not necessarily
true. We can take the example in Remark 3 above to explain. The mapping O is an IPO and
inclusion increasing, but it is not representable where O is not a pseudo overlap function.

In addition, a weak equivalent characterization of a representable IPO is given below.
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Theorem 6. Given an inclusion increasing IF O on IV([0, 1]). In this way, it is an IPO if and
only if O = IV([O1, O2]), where O1 is a 0-PO and O2 is a 1-PO with O1 ≤ O2. Particularly, we
have that O1 = O and O2 = O.

Proof. (⇒) Presume that an IPO O : IV([0, 1])2 → IV([0, 1]) satisfies monotonic incre-
ment about inclusion order. Consider two functions O1, O2 : [0, 1]2 → [0, 1] : O1(x, y) =
O([x, x], [y, y]), O2(x, y) = O([x, x], [y, y]), which are clearly definable. Then we certifi-
cate that O1 is a 0-PO. (i) if xy = 0, then O1(x, y) = O([x, x], [y, y]) = [0, 0] = 0; (ii) if
xy = 1, then O1(x, y) = O([x, x], [y, y]) = [1, 1] = 1, conversely, if O1(x, y) = 1, then
O([x, x], [y, y]) = 1 ⇒ O([x, x], [y, y]) = [1, 1], since O satisfies (O2′), xy = 1; (iii) for ar-
bitrary a, b, c ∈ [0, 1], suppose that b ≤ c, since O is monotonic, it holds that O1(b, a) =
O([b, b], [a, a]) ≤ O([c, c], [a, a]) = O1(c, a), similarly we have that O1(a, b) ≤ O1(a, c); (iv)
According to Proposition 1, O = IV([O, O]), since O satisfies (O4′), O1 = O and it satisfies
(PO4) by Lemma 1. Similarly, we have that O2 is a 1-pseudo overlap function and O1 ≤ O2,
O = IV([O1, O2]).
(⇐) we prove that O satisfies (O1′)∼ (O4′). (O1′) O(X, Y) = [0, 0]⇔ [O1(X, Y), O2(X, Y)] =
[0, 0] ⇔ O1(X, Y) = 0 and O2(X, Y) = 0 ⇔ XY = 0 ⇔ X = [0, 0] or Y = [0, 0]. (O2′)
Similar to the above, we have O satisfies (O2′). (O3′) for arbitrary X, Y, Z ∈ IV([0, 1]),
when Z ≥ Y, O(X, Z) = [O1(X, Z), O2(X, Z)] ≥ [O1(X, Y), O2(X, Y)] = O(X, Y) and
O(Y, X) = [O1(Y, X), O2(Y, X)] ≤ [O1(Z, X), O2(Z, X)] = O(Z, X), i.e., O is monotonic.
(O4′) According to Lemma 1, it is obvious that O satisfies (O4′).

In fact, the above theorem is equivalent to a method of using 0-pseudo overlap function
and 1-pseudo overlap function to construct an interval-valued pseudo overlap function.
Here are some examples.

Example 4. (1) A mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [max{a + c− 1, 0}, 2bpdq

1 + bpdq ], p, q > 0 (13)

is an IPO.
(2) A mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [
2apcq

1 + apcq max{a + c− 1, 0}, 2bpdq

1 + bpdq ], p, q > 0 (14)

is an IPO.
(3) A mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [max{a + c− 1, 0}, b2d + b2d(1− b)(1− d)] (15)

is an IPO.
(4) A mapping O : IV([0, 1])2 → IV([0, 1]) defined as

O([a, b], [c, d]) = [
2apcq

1 + apcq , min{2bd, 1}], p, q > 0 (16)

is an IPO.

Next, we consider some features of interval-valued residuated implications induced
by representable IPO.

As O is representable, it holds that O = Õ1O2, where O1 and O2 are two pseudo
overlap functions, then O(Z, X) = [O1(Z, X), O2(Z, X)], O(X, Z) = [O1(X, Z), O2(X, Z)].
Therefore, we can use the residuated implications induced by pseudo overlap functions O1
and O2 to represent the interval-valued residuated implication induced by O. The theorem
is as follows.
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Theorem 7. Given a representable IPO O on IV([0, 1]) and O1, O2 are two representatives of O
such that O1 ≤ O2. Then the interval-valued residuated implications IR(1), IR(2) induced by O
have the following forms,

IR(1)(X, Y) = [R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y), R(1)
O2

(X, Y)] (17)

IR(2)(X, Y) = [R(2)
O1

(X, Y) ∧ R(2)
O2

(X, Y), R(2)
O2

(X, Y)] (18)

where R(1)
O1

, R(2)
O1

are residuated implications induced by O1, R(1)
O2

, R(2)
O2

are residuated implications
induced by O2.

Proof. First, according to definition, IR(1)(X, Y) = sup{Z ∈ IV([0, 1]) | O(Z, X) ≤ Y} =
sup{Z ∈ IV([0, 1]) | O1(Z, X) ≤ Y and O2(Z, X) ≤ Y}. We record the set {Z ∈ IV([0, 1]) |
O1(Z, X) ≤ Y and O2(Z, X) ≤ Y} as S, then we prove that [R(1)

O1
(X, Y)∧R(1)

O2
(X, Y), R(1)

O2
(X, Y)]

is the minimum upper bound of S.

(i) Since R(1)
O1

(X, Y) = sup{z | O1(z, X) ≤ Y}, R(1)
O2

(X, Y) = sup{z | O2(z, X) ≤ Y},
it holds that for any Z ∈ S, O1(Z, X) ≤ Y and O2(Z, X) ≤ Y ⇒ R(1)

O1
(X, Y) ≥ Z

and R(1)
O2

(X, Y) ≥ Z ≥ Z. So [R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y), R(1)
O2

(X, Y)] ≥ [Z, Z] = Z, i.e.,

[R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y), R(1)
O2

(X, Y)] is the upper bound of S.
(ii) Suppose that there is [a, b] another upper bound of S, i.e., for any Z ∈ S, [a, b] ≥ Z,

and such that [R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y), R(1)
O2

(X, Y)] � [a, b]. At this point, we consider

the following two cases. (1) a < R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y) ⇒ a < R(1)
O1

(X, Y) and

a < R(1)
O2

(X, Y) ⇒ a < sup{z | O1(z, X) ≤ Y}, a < sup{z | O2(z, X) ≤ Y} ⇒
∃z1, z2 > a, s.t. O1(z1, X) ≤ Y and O2(z2, X) ≤ Y, we take m = z1 ∧ z2, then m > a
and O1(m, X) ≤ Y, O2(m, X) ≤ Y, i.e., [m, m] ∈ S and [m, m] � [a, b], which is
a contradiction. (2) a ≥ R(1)

O1
(X, Y) ∧ R(1)

O2
(X, Y) and b < R(1)

O2
(X, Y), since a ≤ b,

a < R(1)
O2

(X, Y), then it holds that a ≥ R(1)
O1

(X, Y). So we have that a ≥ sup{z |
O1(z, X) ≤ Y}, we take n such that O1(n, X) ≤ Y, then n ≤ a. On the other hand, b <

R(1)
O2

(X, Y) ⇒ b < sup{z | O2(z, X) ≤ Y} ⇒ ∃z′ > b ≥ a, O2(z′, X) ≤ Y. So we have
that n ≤ a ≤ b < z′ and O1(n, X) ≤ Y, O2(z′, X) ≤ Y, i.e., [n, z′] ∈ S and [n, z′] � [a, b],
which is also a contradiction. So [R(1)

O1
(X, Y) ∧ R(1)

O2
(X, Y), R(1)

O2
(X, Y)] is the minimum

upper bound of S, i.e., [R(1)
O1

(X, Y) ∧ R(1)
O2

(X, Y), R(1)
O2

(X, Y)] = sup{Z ∈ IV([0, 1]) |
O(Z, X) ≤ Y}. Similarly, [R(2)

O1
(X, Y) ∧ R(2)

O2
(X, Y), R(2)

O2
(X, Y)] is the minimum upper

bound of the set {Z ∈ L([0, 1]) | O1(X, Z) ≤ Y and O2(X, Z) ≤ Y}, i.e., [R(2)
O1

(X, Y) ∧
R(2)

O2
(X, Y), R(2)

O2
(X, Y)] = sup{Z ∈ IV([0, 1]) | O(X, Z) ≤ Y}.

Below we give some concrete examples of interval-valued residuated implications.

Example 5. (1) Given an IPO defined as Opq(X, Y) = [Xp · Yq, Xp · Yq
], where p, q > 0, the

function IR(1), IR(2) defined as

IR(1)(X, Y) =



[1, 1] X[q,q] ≤ Y

[ p
√

Y
Xq , p

√
Y
Xq ] Xq ≤ Y, Xq

> Y

[ p
√

Y
Xq , 1] Xq > Y, Xq ≤ Y

[ p
√

Y
Xq ∧ p

√
Y
Xq , p

√
Y
Xq ] X[q,q] > Y

(19)
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IR(2)(X, Y) =



[1, 1] X[p,p] ≤ Y

[ q
√

Y
Xp , q

√
Y

Xp ] Xp ≤ Y, Xp
> Y

[ q
√

Y
Xp , 1] Xp > Y, Xp ≤ Y

[ q
√

Y
Xp ∧ q

√
Y

Xp , q
√

Y
Xp ] X[p,p] > Y

(20)

are interval-valued residuated implications induced by Opq.
(2) Given an IPO defined by O(X, Y) = [min{Xp, Yq}, min{Xp, Yq}], where p, q > 0, the
function IR(1), IR(2) defined by

IR(1)(X, Y) =


[1, 1] X[q,q] ≤ Y
[

p√Y,
p√Y] Xq ≤ Y, Xq

> Y
[ p
√

Y, 1] Xq > Y, Xq ≤ Y
[ p
√

Y,
p√Y] X[q,q] > Y

(21)

IR(2)(X, Y) =


[1, 1] X[p,p] ≤ Y
[

q√Y,
q√Y] Xp ≤ Y, Xp

> Y
[ q
√

Y, 1] Xp > Y, Xp ≤ Y
[ q
√

Y,
q√Y] X[p,p] > Y

(22)

are interval-valued residuated implications induced by O.
(3) Given an IPO defined as OmM(X, Y) = [min{X, Y}max{X2, Y},
min{X, Y}max{X2, Y}], the function IR(1), IR(2) defined by

IR(1)(X, Y) =



[1, 1] X ≤ Y
min{X, Y

X
} X ≤ Y, Y < X

[X, 1] X2 ≤ Y < X, X ≤ Y
X X[2,2] ≤ Y < X

[X ∧ Y
X

, Y
X
] X2 ≤ Y < X, Y < X2

[ Y
X , 1] Y < X2, X ≤ Y

[ Y
X ∧ X, X] Y < X2, X2 ≤ Y < X

[ Y
X ∧

Y
X

, Y
X
] Y < X[2,2]

(23)

IR(2)(X, Y) =



min{1, Y
X
} X ≤ Y, X2 ≤ Y

min{ Y
X2 ,
√

Y} X ≤ Y, X2
> Y

[ Y
X , 1] X2 ≤ Y < X, X ≤ Y

[ Y
X ∧

Y
X

, Y
X
] X[2,2] ≤ Y < X

[min{ Y
X , Y

X2 ,
√

Y}, min{ Y
X2 ,
√

Y}] X2 ≤ Y < X, Y < X2

[min{ Y
X2 ,
√

Y}, 1] Y < X2, X ≤ Y

[min{ Y
X2 ,
√

Y}, Y
X
}, Y

X
] Y < X2, X2 ≤ Y < X

[min{ Y
X2 ,
√

Y}, Y
X2 }, min{ Y

X2 ,
√

Y}] Y < X[2,2]

(24)

are interval-valued residuated implications induced by OmM.
(4) Given an IPO defined as

O(X, Y) =

{
[0, XY2

] αX + (2− α)Y = 0

[ 2XY
αX+(2−α)Y , XY2

] otherwise
(25)
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the function IR(1), IR(2) defined by

IR(1)(X, Y) =


[1, 1] (2− α)XY ≥ 2X− αY, X2 ≤ Y
Y
X2 (2− α)XY ≥ 2X− αY, X2

> Y

[ (2−α)XY
2X−αY , 1] (2− α)XY < 2X− αY, X2 ≤ Y

[ (2−α)XY
2X−αY ∧

Y
X2 , Y

X2 ] otherwise

(26)

IR(2)(X, Y) =



[1, 1] αXY ≥ 2X− (2− α)Y, X ≤ Y√
Y
X

αXY ≥ 2X− (2− α)Y, X > Y

[ αXY
2X−(2−α)Y , 1] αXY < 2X− (2− α)Y, X ≤ Y

[ αXY
2X−(2−α)Y ∧

√
Y
X

,
√

Y
X
] otherwise

(27)

are interval-valued residuated implications induced by O.

Below a concrete proof that the interval-valued residuated implications defined by us
are interval-valued fuzzy implications is given.

Proposition 7. Given a representable IPO O on IV([0, 1]), IR(1) and IR(2) are interval-valued
residuated implications induced by O, then IR(1) and IR(2) satisfy conditions (I1′) ∼ (I4′), i.e.,
they are interval-valued fuzzy implications.

Proof. (i) Since O is interval-valued pseudo overlap function, it is obvious that IR(1)([0, 0],
[0, 0]) = sup{Z ∈ IV([0, 1]) | O(Z, [0, 0]) ≤ [0, 0]} = sup{Z ∈ IV([0, 1]) | [0, 0] ≤
[0, 0]} = [1, 1], IR(1)([0, 0], [1, 1]) = sup{Z ∈ IV([0, 1]) | O(Z, [0, 0]) ≤ [1, 1]} = [1, 1],
IR(1)([1, 1], [1, 1]) =sup{Z ∈ IV([0, 1]) | O(Z, [1, 1]) ≤ [1, 1]} = [1, 1], IR(1)([1, 1], [0, 0])
= sup{Z ∈ IV([0, 1]) | O(Z, [1, 1]) ≤ [0, 0]} = [0, 0], so IR(1) satisfies (I1′).

(ii) If IR(1)([x, x], [y, y]) = [a, b], by Theorem 7, it holds that IR(1)([x, x], [y, y]) = [R(1)
O1

(x, y)∧
R(1)

O2
(x, y), R(1)

O2
(x, y)] = [a, b], then a = R(1)

O1
(x, y) ∧ R(1)

O2
(x, y), b = R(1)

O2
(x, y). Since

R(1)
O1

(x, y) = sup{z | O1(z, x) ≤ y}, R(1)
O2

(x, y) = sup{z | O2(z, x) ≤ y}, O1 ≤ O2 ⇒
O1(z, x) ≤ O2(z, x), i.e., O2(z, x) ≤ y ⇒ O1(z, x) ≤ y, so sup{z | O2(z, x) ≤ y} ≤
sup{z | O1(z, x) ≤ y}, that is, R(1)

O2
(x, y) ≤ R(1)

O1
(x, y), then a = R(1)

O1
(x, y) ∧ R(1)

O2
(x, y) =

R(1)
O2

(x, y) = b, so IR(1) satisfies (I2′).

(iii) According to the definition we have that IR(1)([x, y], [a, b]) = sup{Z ∈ IV([0, 1]) |
O(Z, [x, y]) ≤ [a, b]}, as well as IR(1)([x′, y′], [a, b]) = sup{Z ∈ IV([0, 1]) | O(Z, [x′, y′]) ≤
[a, b]}. If [x, y] ≤ [x′, y′], then O(Z, [x, y]) ≤ O(Z, [x′, y′]) for any Z ∈ IV([0, 1]), it is clear
that O(Z, [x′, y′]) ≤ [a, b]⇒ O(Z, [x, y]) ≤ [a, b], so sup {Z ∈ IV([0, 1]) | O(Z, [x′, y′]) ≤
[a, b]} ≤ sup {Z ∈ IV([0, 1]) | O(Z, [x, y]) ≤ [a, b]} ⇒ IR(1)([x′, y′], [a, b]) ≤ IR(1)([x, y],
[a, b]), thus IR(1) satisfies (I3′).

(iv) When [x, y] ≤ [x′, y′], it is clear that O(Z, [a, b]) ≤ [x, y]⇒ O(Z, [a, b]) ≤ [x′, y′], that is,
IR(1)([a, b], [x, y]) = sup{Z ∈ IV([0, 1]) | O(Z, [a, b]) ≤ [x, y]} ≤ sup{Z ∈ IV([0, 1]) |
O(Z, [a, b]) ≤ [x′, y′]} = IR(1)([a, b], [x′, y′]), so IR(1) satisfies (I4′).
Similarly, we have that IR(2) also satisfies (I1′)∼(I4′).

The following proposition expounds that the interval-valued residuated implications
induced by the representable interval-valued pseudo overlap function satisfy the residua-
tion property.

Proposition 8. Given a representable IPO O on IV([0, 1]), and IR(1), IR(2) are interval-valued
residuated implications induced by O. Then the pair (O, IR(1)) satisfies the residuation property
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O(X, Y) ≤ Z ⇔ IR(1)(Y, Z) ≥ X (RP1), as well as the pair (O, IR(2)) satisfies the residuation
property O(X, Y) ≤ Z ⇔ IR(2)(X, Z) ≥ Y (RP2).

Proof. (i) O(X, Y) ≤ Z ⇒ X ∈ {Z′ ∈ IV([0, 1]) | O(Z′, Y) ≤ Z} ⇒ X ≤ sup{Z′ ∈
IV([0, 1]) | O(Z′, Y) ≤ Z} = IR(1)(Y, Z), i.e., IR(1)(Y, Z) ≥ X.

(ii) Conversely, by Theorem 7, IR(1)(Y, Z) ≥ X⇒ [R(1)
O1

(Y, Z) ∧ R(1)
O2

(Y, Z), R(1)
O2

(Y, Z)] ≥
X ⇒ [sup{x′ ∈ [0, 1] | O1(x′, Y) ≤ Z}∧ sup{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z}, sup{x′ ∈
[0, 1] | O2(x′, Y) ≤ Z}] ≥ X, because R(1)

O1
and R(1)

O2
are residuated implications

satisfying residuation property, it equals [max{x′ ∈ [0, 1] | O1(x′, Y) ≤ Z}∧ max{x′ ∈
[0, 1] | O2(x′, Y) ≤ Z}, max{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z}] ≥ X ⇒ X ≤ max{x′ ∈
[0, 1] | O1(x′, Y) ≤ Z}∧ max{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z} and X ≤ max{x′ ∈ [0, 1] |
O2(x′, Y) ≤ Z}, since X ≤ X, i.e., X ≤ max{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z} ⇒ X ≤
max{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z}, so we have that X ≤max{x′ ∈ [0, 1] | O1(x′, Y) ≤ Z}
and X ≤max{x′ ∈ [0, 1] | O2(x′, Y) ≤ Z}, then by residuation property of residuated
implication induced by pseudo overlap function, it holds that O1(X, Y) ≤ Z and
O2(X, Y) ≤ Z, i.e., O(X, Y) = [O1(X, Y), O2(X, Y)] ≤ Z.
Similarly, it is clear that (O, IR(2)) satisfies the residuation property (RP2).

Remark 4. Given an IPO O on IV([0, 1]), when it is not representable, the pair (O, IR) composed
of it and its induced interval-valued residuated implications may not satisfy the residuation property.
For example, O(X, Y) = [XYX, XY] is an IPO, and it is not representable. Suppose that X =
[
√

0.4, 0.8], Y = [0.2, 1], Z = [0.1, 0.8], then IR(1)(Y, Z) = [
√

0.5, 0.8] ≥ X, but O(X, Y) =
[
√

0.01024, 0.8] � Z.

At the end of this subsection, we spread some properties contented by interval-valued
residuated implications.

Proposition 9. Given a representable interval-valued pseudo overlap function O, some properties
satisfied by interval-valued residuated implications IR(1), IR(2) are as follows:

(1) IR(1)([0, 0], [a, b]) = IR(2)([0, 0], [a, b]) = [1, 1] for any [a, b] ∈ IV([0, 1]);
(2) IR(1)([a, b], [1, 1]) = IR(2)([a, b], [1, 1]) = [1, 1] for any [a, b] ∈ IV([0, 1]);
(3) IR(1)([1, 1], [x, y]) = IR(2)([1, 1], [x, y]) = [x, y] if O take [1, 1] as unit element, for any

[x, y] ∈ IV([0, 1]);
(4) IR(2)(X, IR(2)(Y, Z)) = IR(2)(Y, IR(2)(X, Z)) if O is associative;
(5) When X 6= [0, 0], it is established that IR(1)(X, [0, 0]) = IR(2)(X, [0, 0]) = [0, 0];
(6) IR(1)([x, y], [x, y]) = [1, 1] if and only if O([1, 1], [x, y]) ≤ [x, y], IR(2)([x, y], [x, y]) =

[1, 1] if and only if O([x, y], [1, 1]) ≤ [x, y], for any [x, y] ∈ IV([0, 1]);
(7) IR(1)([a, b], [c, d]) = [1, 1] ⇔ [a, b] ≤ [c, d] when and only when O([1, 1], [a, b]) = [a, b],

IR(2)([a, b], [c, d]) = [1, 1] ⇔ [a, b] ≤ [c, d] if and only if O([a, b], [1, 1]) = [a, b], for any
[a, b], [c, d] ∈ IV([0, 1]);

(8) IR(1)([a, b], [c, d]) ≥ [c, d], IR(2)([a, b], [c, d]) ≥ [c, d] when O takes [1, 1] as a unit element,
for any [a, b], [c, d] ∈ IV([0, 1]).

Proof. (1) IR(1)([0, 0], [a, b]) = sup{Z ∈ IV([0, 1]) | O(Z, [0, 0]) ≤ [a, b]} = sup{Z ∈
IV([0, 1]) | [0, 0] ≤ [a, b]} = [1, 1], IR(2)([0, 0], [a, b]) = sup{Z ∈ IV([0, 1]) | O([0, 0], Z)
≤ [a, b]} = sup{Z ∈ IV([0, 1]) | [0, 0] ≤ [a, b]} = [1, 1].

(2) Since O is an interval-valued pseudo overlap function, it is clear that IR(1)([a, b], [1, 1]) =
sup{Z ∈ IV([0, 1]) | O(Z, [a, b]) ≤ [1, 1]} = [1, 1], IR(2)([a, b], [1, 1]) = sup{Z ∈
IV([0, 1]) | O([a, b], Z) ≤ [1, 1]} = [1, 1].

(3) Since O takes [1, 1] as a unit element, IR(1)([1, 1], [x, y]) = sup{Z ∈ IV([0, 1]) |
O(Z, [1, 1]) ≤ [x, y]} = sup{Z ∈ IV([0, 1]) | Z ≤ [x, y]} = [x, y], IR(2)([1, 1], [x, y]) =
sup{Z ∈ IV([0, 1]) | O([1, 1], Z) ≤ [x, y]} = sup{Z ∈ IV([0, 1]) | Z ≤ [x, y]} = [x, y].
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(4) Suppose that O(X, O(Y, Z)) = O(Y, O(X, Z)). By the residuation property,
IR(2)(X, IR(2)(Y, Z)) = sup{Z′ ∈ IV([0, 1]) | O(X, Z′) ≤ IR(2)(Y, Z)} = sup{Z′ ∈
IV([0, 1]) | O(Y, O(X, Z′)) ≤ Z} (by RP2) = sup{Z′ ∈ IV([0, 1]) | O(X, O(Y, Z′)) ≤
Z} = sup{Z′ ∈ IV([0, 1]) | O(Y, Z′) ≤ IR(2)(X, Z)} (by RP2) = IR(2)(Y, IR(2)(X, Z)).

(5) IR(1)(X, [0, 0]) = sup{Z ∈ IV([0, 1]) | O(Z, X) ≤ [0, 0]}, it is clear that if X 6= [0, 0] then
Z = [0, 0], so IR(1)(X, [0, 0]) = [0, 0]. Similarly, IR(2)(X, [0, 0]) = sup{Z ∈ IV([0, 1]) |
O(X, Z) ≤ [0, 0]} = [0, 0].

(6) IR(1)([x, y], [x, y]) = [1, 1] ⇔ sup{Z ∈ IV([0, 1]) | O(Z, [x, y]) ≤ [x, y]} = [1, 1] ⇔
O([1, 1], [x, y]) ≤ [x, y], IR(2)([x, y], [x, y]) = [1, 1]⇔ sup{Z ∈ IV([0, 1]) | O([x, y], Z) ≤
[x, y]} = [1, 1]⇔ O([x, y], [1, 1]) ≤ [x, y].

(7) If O([1, 1], [a, b]) = [a, b], then IR(1)([a, b], [c, d]) = [1, 1] ⇔ sup{Z ∈ IV([0, 1]) |
O(Z, [a, b]) ≤ [c, d]} = [1, 1] ⇔ O([1, 1], [a, b]) ≤ [c, d] ⇔ [a, b] ≤ [c, d], conversely,
since IR(1)([a, b], [c, d]) = [1, 1] ⇔ [a, b] ≤ [c, d], we have [a, b] ≤ [a, b] ⇒ IR(1)

([a, b], [a, b]) = [1, 1] ⇒ sup{Z ∈ IV([0, 1]) | O(Z, [a, b]) ≤ [a, b]} = [1, 1] ⇒
O([1, 1], [a, b]) ≤ [a, b], and since IR(1)([a, b], O([1, 1], [a, b])) = sup{Z ∈ IV([0, 1]) |
O(Z, [a, b]) ≤ O([1, 1], [a, b])} = [1, 1] ⇒ [a, b] ≤ O([1, 1], [a, b]), so O([1, 1], [a, b]) =
[a, b], similarly, IR(2)([a, b], [c, d]) = [1, 1]⇔ [a, b] ≤ [c, d] if and only if O([a, b], [1, 1]) =
[a, b].

(8) Suppose that O takes [1, 1] as a unit element, since IR(1) is non-increasing about
the first element, [a, b] ≤ [1, 1] ⇒ IR(1)([a, b], [c, d]) ≥ IR(1)([1, 1], [c, d]) = sup{Z ∈
IV([0, 1]) | O(Z, [1, 1]) ≤ [c, d]} = sup{Z ∈ IV([0, 1]) | Z ≤ [c, d]} = [c, d], similarly,
IR(2) is also non-increasing about the first element, so IR(2)([a, b], [c, d]) ≥ [c, d].

3.3. Migrativity and Homogeneity of Interval-Valued Pseudo Overlap Functions

There have been some studies on the migrativity of mappings ([17] for IFS and [36]
for fuzzy sets). In the following, some properties of IPO are discussed, mainly migrativity
and homogeneity.

Proposition 10. Given a migrative IPO O on IV([0, 1]). Then when p + q = s + t for any
p, q, s, t ∈ {0, 1, 2, . . .}, it is established that O(αp M, αqN) = O(αs M, αtN).

Proof. Since O is migrative, we have that O(αpM, αqN) = O(M, αpαqN) = O(M, αp+qN) =
O(M, αs+tN) = O(M, αsαtN) = O(αsM, αtN).

Proposition 11. Given a migrative IPO O on IV([0, 1]) satisfying O(X, [e, e]) = O([e, e], X) =
X. Then O is associative if and only if e = 1, that is, O(X, Y) = XY, for any X, Y ∈ IV([0, 1]).

Proof. (⇒) Suppose that 0 < e < 1, and we take x = e2 and y = 1, then [x, x], [y, y] ∈
IV([0, 1]), it is clear that O(O([x, x], [1, 1]), [y, y]) = O([e, e], [y, y]) = [y, y] = [1, 1], O([x, x], O
([1, 1], [y, y])) = O([x, x], [1, 1]) = [e, e]⇒ O(O([x, x], [1, 1]), [y, y]) 6= O([x, x], O([1, 1], [y, y])),
which is a contradiction, so e = 1.
(⇐) Since O(O(X, Y), Z) = O(XY, Z) = XYZ and O(X, O(Y, Z)) = O(X, YZ) = XYZ, O is
associative.

Proposition 12. Given an IPO O on IV([0, 1]), when it satisfies migrativity, it is an IO.

Proof. Directly from Proposition 3.

Theorem 8. Given an IPO O on IV([0, 1]), it is representable if it satisfies migrativity.

Proof. Since O is migrative, it holds that O is an IO. Then by ([17], Theorem 3.6), it
is obvious.
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Proposition 13. Given a representable IPO O on IV([0, 1]), then O satisfies migrativity if and
only if O, O are migrative pseudo overlap functions.

Proof. (⇒) Since O is representable, O = ÕO, so O, O are pseudo overlap functions. For
some α ∈ [0, 1], O(αx, y) = O([αx, αx], [y, y]) = O([α, α][x, x], [y, y]) = O([x, x], [α, α][y, y]) =
O([x, x], [αy, αy]) = O(x, αy), i.e., O is migrative. Similarly, O is also migrative.

(⇐) For some M, X, Y ∈ IV([0, 1]), it holds that O(MX, Y) = ÕO(MX, Y) = [O(MX, Y), O
(MX, Y)] = [O(X, MY), O(X, MY)] = ÕO(X, MY) = O(X, MY), so O is migrative.

According to the above proposition, we can easily get the following inference.

Corollary 1. Given a representable IPO O on IV([0, 1]), if pseudo overlap functions O, O are
migrative, then O is an IO.

Proposition 14. Given mappings O1, O2 on IV([0, 1]) are M-order homogeneous and N-order
homogeneous interval-valued pseudo overlap functions, respectively, then the mapping O defined as
O(X, Y) = O1(X, Y)O2(X, Y) is an (M + N)-order homogeneous IPO.

Proof. It is clear that O(λX, λY) = O1(λX, λY)O2(λX, λY) = λMO1(X, Y)λNO2(X, Y) =
λM+NO1(X, Y)O2(X, Y) = λM+NO(X, Y), so O(X, Y) is (M + N)-order homogeneous.

Proposition 15. Given a K-order homogeneous IPO O on IV([0, 1]), then it is idempotent if and
only if K = [1, 1].

Proof. (⇒) Since O(αX, αX) = αKO(X, X) and O(αX, αX) = αX, αKO(X, X) = αKX =
αX⇒ αK = α, so K = [1, 1].
(⇐) It holds that O([1, 1], [1, 1])= [1, 1], by (3) of Proposition 3, we have that O is idempotent.

Proposition 16. Given a Moore continuous and P-order homogeneous interval-valued aggregation
function M on IV([0, 1]) satisfying M(X1, X2) = [0, 0] only if X1X2 = [0, 0] and M(X1, X2) =
[1, 1] only if X1X2 = [1, 1]. Both O1 and O2 are Q-order homogeneous interval-valued pseudo
overlap functions. Then M(O1, O2) defined by M(O1, O2)(X, Y) = M(O1(X, Y), O2(X, Y)) is a
PQ-order homogeneous IPO.

Proof. We first prove that the function M(O1, O2) is an interval-valued pseudo overlap
function. XY = [0, 0] ⇒ O1(X, Y) = [0, 0], O2(X, Y) = [0, 0] ⇒ M(O1(X, Y), O2(X, Y)) =
M([0, 0], [0, 0]) = [0, 0], M(O1(X, Y), O2(X, Y)) = [0, 0] ⇒ O1(X, Y)O2(X, Y) = [0, 0] ⇒
XY = [0, 0], so M(O1, O2) satisfies (O1′). Similarly, we can get M(O1, O2) satisfies (O2′). It
is obvious that M(O1, O2) is increasing and Moore continuous, i.e., M(O1, O2) satisfies (O3′)
and (O4′). Then M(O1, O2)(αX, αY) = M(O1(αX, αY), O2(αX, αY)) = M(αQO1(X, Y), αQO2
(X, Y)) = (αQ)PM(O1(X, Y), O2(X, Y)) = αQ)PM(O1, O2)(X, Y), so M(O1, O2) is PQ-order
homogeneous.

Proposition 17. Given a representable IPO O on IV([0, 1]), then O is K-order homogeneous
where K = [k1, k2] with 0 < k1 ≤ k2 if and only if O is a k2-order homogeneous pseudo overlap
function and O is a k1-order homogeneous pseudo overlap function.

Proof. (⇒) O and O are pseudo overlap functions according to the representable definition.
For some α ∈ [0, 1], since O(αx, αy) = O([αx, αx], [αy, αy]) = O([α, α][x, x], [α, α][y, y]) =

[α, α]KO([x, x], [y, y]) = αk2O([x, x], [y, y]) = αk2O(x, y), O is k2-order homogeneous, simi-
larly, O is k1-order homogeneous.

(⇐) For arbitrary X, Y∈ IV([0, 1]) and some α∈ IV([0, 1]), since O(αX, αY)= ÕO(αX, αY)=
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[O(αX, αY), O(αX, αY)]= [αk2O(X, Y), αk1O(X, Y)]= αK[O(X, Y), O(X, Y)]= αKÕO(X, Y)=
αKO(X, Y), O is K-order homogeneous where K = [k1, k2].

Proposition 18. Given a pseudo overlap function O: [0, 1]2 → [0, 1], then O is idempotent if and
only if the interval-valued pseudo overlap function IV([O, O]) is idempotent.

Proof. (⇒) It is clear that IV([O, O])(X, X) = [O(X, X), O(X, X)], since O is idempotent,
O(x, x) = x, then IV([O, O])(X, X) = [X, X] = X. So IV([O, O]) is idempotent.
(⇐) Since IV([O, O]) is idempotent, IV([O, O])(X, X) = X. For arbitrary x ∈ [0, 1], we have
IV([O, O])([x, x], [x, x]) = [O(x, x), O(x, x)] = [x, x], so O(x, x) = x, i.e., O is idempotent.

4. Applications to Multi-Attribute Decision Making

In this section, we take into account interval-valued fuzzy multi-attribute decision
making problems, we first introduce the n-dimensional IPO, illustrate it through spe-
cific examples, and then show its application in interval-valued fuzzy multi-attribute
decision-making.

Definition 17. The mapping O : IV([0, 1])n → IV([0, 1]) is called an n-dimensional IPO if it
meets requirements below:

(On1) O(X1, . . . , Xn) = [0, 0] if and only if
n
Π

i=1
Xi = [0, 0];

(On2) O(X1, . . . , Xn) = [1, 1] if and only if
n
Π

i=1
Xi = [1, 1];

(On3) O is increasing, i.e., if for some i = 1, . . . , n, Xi ≤ Yi, then O(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)
≤ O(X1, . . . , Xi−1, Yi, Xi+1, . . . , Xn);
(On4) O is Moore continuous.

A few examples of n-dimensional IPO are given below.

Example 6. (1) The mapping O: IV([0, 1])n → IV([0, 1]) defined as

O(X1, . . . , Xn) = [X1 · X2 · · · · · Xn−1 · Xn
2, X1 · X2 · · · · · Xn−1 · Xn

2
] (28)

is an n-dimensional IPO.
(2) The mapping O: IV([0, 1])n → IV([0, 1]) defined as

O(X1, . . . , Xn) = [min{X1, X2, . . . , Xn−1,
√

Xn}, min{X1, X2, . . . , Xn−1,
√

Xn}] (29)

is an n-dimensional IPO.

We first introduce the interval-valued multi-attribute decision making (I-MADM)
problem. The I-MADM problem is to discuss the normal multi-attribute decision-making
problem on the interval set, in which the information is uncertain and fuzzy, we use interval
numbers to represent their attribute values and weights. There are the following basic
representations in the I-MADM problem: X = {x1, . . . , xm} is a set of m feasible alterna-
tives, A = {a1, . . . , an} is a set of n attributes and attributes are additively independent,
W = {w1, . . . , wn}T is a set of weights of attributes, M = (Aij)m×n is a decision matrix of
the decision maker, where Aij is the value of the association degree between the alternative
xi and the attribute aj, and Aij = [Aij, Aij]. The purpose of decision makers is to use this
information to get the relatively best alternative. In the existing literature [37–41] etc.,
many scholars have studied the I-MADM problem and given many methods, such as IER, I-
TODIM and so on. For the I-MADM problem, we propose the following processing method.

Step 1. Standardized decision matrix
Because attribute types are often divided into benefit type and cost type, and different

physical dimensions also have a certain impact on the decision results, we first need to
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use the following formula to convert the normal decision matrix into a standard decision
matrix R = (Rij)m×n:

Rij =
Aij√
n
∑

i=1
A2

ij

, if aj is a benefit attribute; Rij =
1

Aij√
n
∑

i=1
( 1

Aij
)2

, if aj is a cost attribute

In terms of interval numbers, Rij = [Rij, Rij], where

Rij =
Aij√

n
∑

i=1
(Aij)2

, Rij =
Aij√

n
∑

i=1
(Aij)2

, if aj is a benefit attribute;

Rij =

1
Aij√

n
∑

i=1
( 1

Aij
)2

, Rij =

1
Aij√

n
∑

i=1
( 1

Aij
)2

, if aj is a cost attribute.

(If the given matrix is already a standard decision matrix, this step may not be carried out)
Step 2. Get the interval value vector of the comprehensive attribute
We aggregate the interval values of each attribute belonging to the same alternative

using the interval-valued pseudo overlap function O to obtain the interval value vector of
the comprehensive attribute Z = (Z1, . . . , Zm), where Zi = O(Ri1, . . . , Rin), i = 1, . . . , m.

Step 3. Set up the possibility degree matrix
We calculate the possibility degree pij of alternative xi to alternative xj and set up the

possibility degree matrix P = (pij)m×m using the following formula:

pij = p(Zi ≥ Zj) =
min{Zi + Zj − Zi − Zj, max{Zi − Zj, 0}}

Zi + Zj − Zi − Zj

Step 4. Calculate the ranking vector of the possibility degree matrix
Finally, we rank all alternatives through calculating the ranking vector V of the possi-

bility matrix, where V = (v1, . . . , vm) and the larger the component, the better the corre-
sponding alternative. The specific formula is as follows:

vi =

m
∑

j=1
pij +

m
2 − 1

m(m− 1)
, i = 1, . . . , m.

4.1. Illustrative Example I

Then we consider an illustrative example in [40] as the first example to show our
method. In order to make an assessment of residential properties, the decision maker
considered the following eight attributes: localization (a1), construction area (a2), quality
of construction (a3), state of conservation (a4), number of garage spaces (a5), number of
rooms (a6), attractions (a7) and security (a8). The weight vector of the attributes provided by
the decision maker is W = (0.25, 0.15, 0.1, 0.2, 0.05, 0.1, 0.05, 0.1)T. There are five candidate
residential properties (alternatives x1, x2, x3, x4, x5) available for evaluation. The specific
data are revealed in the following Table 1.

Table 1. Decision matrix.

a1 a2 a3 a4 a5 a6 a7 a8

x1 [7, 8] [280, 280] [5, 7] [6, 7] [2, 2] [5, 5] [6, 7] [6, 7]
x2 [5, 6] [124, 124] [4, 6] [5, 9] [2, 2] [3, 3] [4, 5] [3, 6]
x3 [6, 8] [360, 360] [4, 8] [7, 8] [4, 4] [5, 5] [6, 8] [5, 9]
x4 [4, 7] [121, 121] [5, 7] [4, 5] [0, 0] [5, 5] [2, 4] [4, 5]
x5 [5, 6] [124, 124] [3, 5] [5, 9] [2, 2] [4, 4] [4, 5] [3, 6]
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The above eight attributes are benefit attributes. We first standardize the decision
matrix and obtain the following matrix R = [R1 R2] (rounded to three decimal places):

R1 =


[0.444, 0.651] [0.556, 0.556] [0.335, 0.734] [0.346, 0.570]
[0.317, 0.488] [0.246, 0.246] [0.268, 0.629] [0.289, 0.732]
[0.380, 0.651] [0.715, 0.715] [0.268, 0.839] [0.404, 0.651]
[0.253, 0.570] [0.240, 0.240] [0.335, 0.734] [0.231, 0.407]
[0.317, 0.488] [0.246, 0.246] [0.201, 0.524] [0.289, 0.732]



R2 =


[0.378, 0.378] [0.500, 0.500] [0.448, 0.674] [0.398, 0.718]
[0.378, 0.378] [0.300, 0.300] [0.299, 0.481] [0.199, 0.616]
[0.756, 0.756] [0.500, 0.500] [0.448, 0.770] [0.332, 0.923]
[0.000, 0.000] [0.500, 0.500] [0.149, 0.385] [0.265, 0.513]
[0.378, 0.378] [0.400, 0.400] [0.299, 0.481] [0.199, 0.616]


Then we use the eight-dimensional interval-valued pseudo overlap function

O1(X1, X2, X3, X4, X5, X6, X7, X8) = [O1, O1]

O1 =

√
X1X2X3X4X5X6X7X8

0.25X1 + 0.15X2 + 0.1X3 + 0.2X4 + 0.05X5 + 0.1X6 + 0.05X7 + 0.1X8
,

O1 =

√
X1X2X3X4X5X6X7X8

0.25X1 + 0.15X2 + 0.1X3 + 0.2X4 + 0.05X5 + 0.1X6 + 0.05X7 + 0.1X8

to get the interval value vector Z of the comprehensive attribute, as shown in the following
Table 2 (rounded to four decimal places).

Table 2. Interval value vector of the comprehensive attribute.

x1 x2 x3 x4 x5

Z [0.0475, 0.1509] [0.0120, 0.0608] [0.0604, 0.3117] [0.0000, 0.0000] [0.0119, 0.0641]

After calculating the possibility degree, we establish the possibility degree matrix P as
follows (rounded to four decimal places):

P =


0.5000 0.9124 0.2550 0.1000 0.4167
0.0876 0.5000 0.0013 0.1000 0.4839
0.7450 0.9987 0.5000 0.1000 0.9878
0.0000 0.0000 0.0000 0.5000 0.0000
0.5833 0.5161 0.0122 1.0000 0.5000


Finally, we use the formula mentioned above to get the ranking vector V, as shown in

the following Table 3 (round to four decimal places).

Table 3. Ranking vector of the possibility degree matrix.

x1 x2 x3 x4 x5

V 0.2292 0.1786 0.2866 0.1000 0.2056

From the above table, we can obtain the ranking of five alternatives as follows:

x3 � x1 � x5 � x2 � x4

Of course, the above eight-dimensional interval-valued pseudo overlap function O1
used to get the interval value vector of the comprehensive attribute is not fixed, but can
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also be replaced by the following functions:

O2(X1, X2, X3, X4, X5, X6, X7, X8) = [O2, O2]

O2 =
√

X1X2X3X4X5X6X7X8(0.25X1 + 0.15X2 + 0.1X3 + 0.2X4 + 0.05X5 + 0.1X6 + 0.05X7 + 0.1X8),

O2 =
√

X1X2X3X4X5X6X7X8(0.25X1 + 0.15X2 + 0.1X3 + 0.2X4 + 0.05X5 + 0.1X6 + 0.05X7 + 0.1X8)

O3(X1, X2, X3, X4, X5, X6, X7, X8) = [O3, O3]

O3 =
1

0.25
X1

+ 0.15
X2

+ 0.1
X3

+ 0.2
X4

+ 0.05
X5

+ 0.1
X6

+ 0.05
X7

+ 0.1
X8

, O3 =
1

0.25
X1

+ 0.15
X2

+ 0.1
X3

+ 0.2
X4

+ 0.05
X5

+ 0.1
X6

+ 0.05
X7

+ 0.1
X8

O4(X1, X2, X3, X4, X5, X6, X7, X8) = [O4, O4]

O4 =

√
X1X2X3X4X5X6X7X8(1 + (1− 0.25X1)(1− 0.15X2)(1− 0.1X3)(1− 0.2X4)(1− 0.05X5)(1− 0.1X6)(1− 0.05X7)(1− 0.1X8))

1 + (1− 0.25)(1− 0.15)(1− 0.1)(1− 0.2)(1− 0.05)(1− 0.1)(1− 0.05)(1− 0.1)
,

O4 =

√
X1X2X3X4X5X6X7X8(1 + (1− 0.25X1)(1− 0.15X2)(1− 0.1X3)(1− 0.2X4)(1− 0.05X5)(1− 0.1X6)(1− 0.05X7)(1− 0.1X8))

1 + (1− 0.25)(1− 0.15)(1− 0.1)(1− 0.2)(1− 0.05)(1− 0.1)(1− 0.05)(1− 0.1)

Table 4 contains four rankings obtained by the functions given above and the results
in Table 8 of [40] for the same problem.

Table 4. Summary of the rankings obtained from the proposed method and the other methods.

Method Ranking

I-TODIM x3 � x1 � x5 � x2 � x4
Extended TODIM x3 � x1 � x5 ∼ x2 � x4

method based on loss aversion x3 � x1 � x5 ∼ x2 � x4
O1 x3 � x1 � x5 � x2 � x4
O2 x3 � x1 � x5 � x2 � x4
O3 x3 � x1 � x5 � x2 � x4
O4 x3 � x1 � x5 � x2 � x4

Through observation and analysis, seven methods in Table 4 return two different
results, but all of which believe that the best alternative is x3 and the worst alternative is x4.
Compared with the second and third methods, our proposed method can effectively rank
x2 and x5 clearly, and compared with the I-TODIM method in [40], our method is simpler
and can get the same ranking result.

4.2. Illustrative Example II

The second example is the case in [42]. When purchasing artillery weapons, an army
needs to consider the following five indicators (attributes): firepower assault capability
index (a1), reaction capability index (a2), mobility index (a3), survivability index (a4) and
cost (a5). There are four series of guns (alternatives x1, x2, x3, x4) available for purchase.
The specific data are revealed in the Table 5 below.
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Table 5. Decision matrix.

a1 a2 a3 a4 a5

x1 [26,000, 27,000] [2, 4] [18,000, 19,000] [0.7, 0.8] [15,000, 16,000]
x2 [60,000, 70,000] [3, 4] [16,000, 17,000] [0.3, 0.4] [27,000, 28,000]
x3 [50,000, 60,000] [2, 3] [15,000, 16,000] [0.7, 0.8] [24,000, 26,000]
x4 [40,000, 50,000] [1, 2] [28,000, 29,000] [0.4, 0.5] [15,000, 17,000]

Among them, all attributes except a5 are benefit attributes.
We first standardize the decision matrix and obtain the following matrix R:

R =


[0.240, 0.295] [0.298, 0.943] [0.431, 0.477] [0.538, 0.721] [0.571, 0.663]
[0.554, 0.765] [0.447, 0.943] [0.383, 0.426] [0.231, 0.361] [0.326, 0.368]
[0.462, 0.656] [0.298, 0.707] [0.359, 0.401] [0.538, 0.721] [0.351, 0.414]
[0.369, 0.546] [0.149, 0.471] [0.670, 0.728] [0.308, 0.451] [0.537, 0.663]


Then we use five-dimensional interval-valued pseudo overlap function

O5(X1, X2, X3, X4, X5) = [O5, O5]

O5 =
X1X2X3X4X5

0.2189X1 + 0.2182X2 + 0.1725X3 + 0.2143X4 + 0.1761X5
,

O5 =
X1X2X3X4X5

0.2189X1 + 0.2182X2 + 0.1725X3 + 0.2143X4 + 0.1761X5

to get the interval value vector of the comprehensive attribute, as shown in the following
Table 6 (rounded to four decimal places).

Table 6. Interval value vector of the comprehensive attribute.

x1 x2 x3 x4

Z [0.0232, 0.1017] [0.0182, 0.0693] [0.0230, 0.0934] [0.0156, 0.0997]

After calculating the possibility degree, we establish the possibility degree matrix P
as follows:

P =


0.5000 0.6441 0.5285 0.5293
0.3559 0.5000 0.3812 0.3971
0.4715 0.6188 0.5000 0.5034
0.4707 0.6029 0.4966 0.5000


Finally, we use the formula mentioned above to get the ranking vector, as shown in

the following Table 7.

Table 7. Ranking vector of the possibility degree matrix.

x1 x2 x3 x4

V 0.2668 0.2195 0.2578 0.2559

From the above table, we can obtain the ranking of four alternatives as follows:

x1 � x3 � x4 � x2

Of course, the above five-dimensional interval-valued pseudo overlap function func-
tion O5 is also not fixed, but can also be replaced by the following functions:

O6(X1, X2, X3, X4, X5) = [O6, O6]
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O6 =
√

X1X2X3X4X5(0.2189X1 + 0.2182X2 + 0.1725X3 + 0.2143X4 + 0.1761X5),

O6 =
√

X1X2X3X4X5(0.2189X1 + 0.2182X2 + 0.1725X3 + 0.2143X4 + 0.1761X5)

O7(X1, X2, X3, X4, X5) = [O7, O7]

O7 =
1

0.2189
X1

+ 0.2182
X2

+ 0.1725
X3

+ 0.2143
X4

+ 0.1761
X5

, O7 =
1

0.2189
X1

+ 0.2182
X2

+ 0.1725
X3

+ 0.2143
X4

+ 0.1761
X5

O8(X1, X2, X3, X4, X5) = [O8, O8]

O8 =
X1X2X3X4X5(1 + (1− 0.2189X1)(1− 0.2182X2)(1− 0.1725X3)(1− 0.2143X4)(1− 0.1761X5))

1 + (1− 0.2189)(1− 0.2182)(1− 0.1725)(1− 0.2143)(1− 0.1761)
,

O8 =
X1X2X3X4X5(1 + (1− 0.2189X1)(1− 0.2182X2)(1− 0.1725X3)(1− 0.2143X4)(1− 0.1761X5))

1 + (1− 0.2189)(1− 0.2182)(1− 0.1725)(1− 0.2143)(1− 0.1761)

Table 8 contains four rankings obtained by the given functions and the results in [42,43]
for the same problem.

Table 8. Summary of the rankings obtained from the proposed method and the method in [42,43].

Method Ranking

[42] x1 � x2 � x3 � x4
[43] x2 � x1 � x4 � x3
O5 x1 � x3 � x4 � x2
O6 x1 � x3 � x4 � x2
O7 x3 � x1 � x2 � x4
O8 x1 � x3 � x4 � x2

Note that all rankings in the above table are obtained by taking W = (0.2189, 0.2182,
0.1725, 0.2143, 0.1761)T as the weight vector of the attributes. In addition, six methods in
Table 8 return four different results, most of which believe that the best alternative is x1 and
the worst alternative is x2.

In summary, contrasted with the methods of [42,43], our method does not need to
calculate the projection value or absolute (negative) ideal solution. Using the interval-
valued pseudo overlap functions, we can directly achieve the effect of aggregation of
multiple attribute information, with less calculations and easy operation. On the other
hand, the above table also shows that when the weight is fixed, we can get multiple ranking
results by taking different IPO, which is conducive to the comparative evaluation of
decision makers. In fact, compared with IO, IPO can imply different degrees of importance
to multiple attributes, which demonstrates their flexibility and superiority.

5. Conclusions

This paper mainly introduces the notion of interval-valued pseudo overlap functions
and their properties including migrativity and homogeneity, as well as the residuated
implications induced by them, and expounds the application of multi-dimensional interval-
valued pseudo overlap functions in the I-MADM problem, which is supported by examples.
In addition, where we mainly focus on the research of the representable interval-valued
pseudo overlap function.

Specifically, we not only illustrate the relevance between IPO and interval-valued
pseudo t-norms, give some construction theorems of IPO, but also present the interval-
valued residuated implications induced by interval-valued pseudo overlap functions
and state examples. Secondly, we study the equivalent conditions of representable IPO,
give some examples and the properties of interval-valued residuated implications’ sat-
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isfaction induced by them are discussed. Then some related propositions of interval-
valued pseudo overlap functions satisfying migrativity and homogeneity are elaborated
and proved. Finally, we extend the interval-valued pseudo overlap function to the n-
dimension, illustrate its advantages in interval-valued multi-attribute decision-making
through concrete examples.

As a further work, we will study other properties of IPO, discuss the existence and
related contents of its additive (multiplicative) generators, and also pay attention to the
relationship between IPO and other aggregation operators and fuzzy rough sets (see [44–46]).
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