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Abstract: In this paper, by combining the development characteristics of the Beijing–Tianjin–Hebei
region, the fractional accumulation GM (1,1) model was used to predict the peak time of the
Beijing–Tianjin–Hebei region, and the carbon peak year was predicted to be 2044. Then, accord-
ing to the urbanization level and the proportion of the added value of the secondary industry in
different regions in 2018, regions were divided into four categories: the first to reach the peak,
the peak on schedule (easy), the peak on schedule (general), and the peak may be delayed. The
Beijing–Tianjin–Hebei region plans to achieve a carbon peak by 2044 and proposes specific suggestions
to achieve carbon neutrality by 2060 to achieve coordinated development of Beijing–Tianjin–Hebei and
high-quality development.

Keywords: carbon peak period prediction; Beijing–Tianjin–Hebei region; FGM (1,1); analysis of
temporal and spatial differences
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1. Introduction

In recent years, China’s economic development has been undergoing a transformation
from rapid development to high-speed development and high-quality development. At
the same time as economic development, the industrial structure dominated by heavy
industry and the energy structure dominated by fossil energy such as coal and petroleum
has added difficulty to the goal of carbon emission reduction and carbon peak. When
looking at the carbon emissions of all countries in the world, China’s carbon emissions
rank first in the world. Facing such a situation, China has made a series of commitments
on carbon emission reduction to the international community. For example, the carbon
emission intensity should be reduced by 45% by 2020 and 60% to 65% by 2030 compared
with 2005, and the carbon emission intensity should reach a peak by 2030. As the country
with the largest total carbon emissions and the highest proportion in the world, realizing
carbon peaks plays a vital role in global climate improvement. As one of the three strategic
regions in China, the Beijing–Tianjin–Hebei region is one of the main forces to achieve
the “dual carbon” goal. Among them, the regional carbon peaks in Beijing, Tianjin and
Hebei also play an important role in the overall carbon peak in the Beijing–Tianjin–Hebei
region and reduce the pressure on carbon emission reduction. Regional emission reduction
has not always been an isolated issue, generally affected by the economic development,
population distribution, policy and other factors in the region. This paper mainly focuses
on the prediction of the overall carbon peak period in Beijing, Tianjin, Hebei Province and
the Beijing–Tianjin–Hebei region and the analysis of the spatial difference of carbon peak,
and proposes appropriate suggestions to promote the realization of the “dual carbon” goal.
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In recent years, many scholars at home and abroad have used various models to study
the peak value, driving factors, spatial and temporal distribution characteristics and evolu-
tion patterns of carbon emissions in various industries. Through reading a large number of
the literature, carbon emission prediction models can be divided into statistical analysis,
nonlinear intelligent model and grey prediction model. Fang et al. proposed an improved
Gaussian process regression method to predict carbon dioxide emissions [1]. Yan et al.
used the STIRPAT model to quantitatively analyze the relationship between population
number, per capita GDP, energy intensity, urbanization level and carbon emissions in the
Blue Economic Zone of Shandong Peninsula through ridge regression and set a scenario
model to analyze the development trend of carbon emissions [2]. Zhang et al. used the
STIRPAT model to study the overall development situation of Shanghai in the past 20 years,
analyze the influencing factors of carbon emissions, and judge whether Shanghai can reach
its peak in 2025 [3]. Application of the nonlinear intelligent learning model, Liu et al. used
the Lasso-BP neural network combined model to predict the carbon emissions of Jiangsu
Province [4]. Wang et al. predicted carbon emissions and carbon emission intensity based
on the extreme learning machine model improved by the whale optimization algorithm [5].
Zhu et al. used support vector machines (SVM) and scenario analysis to predict the peak
of carbon dioxide emissions from China’s transportation sector [6]. The common feature
of this statistical type and nonlinear intelligent model is that the required sample data are
large, and the parameters have a great influence on the model. However, in reality, there
are fewer data that can be used for forecasting research, which causes a lot of uncertainty
in the calculation results when applying statistical models and nonlinear intelligent models
such as support vector machines and neural networks. As an alternative to the above
models, the grey model has low requirements for data volume, and the prediction results
are accurate even in the case of sparse data. Therefore, a large number of improved grey
models are used for carbon emission forecasting: For example, Ding et al. used the discrete
grey predictive model to estimate China and energy-related carbon dioxide emissions [7].
Liang and Lei used the STIRPAT panel model to analyze carbon emissions in six provinces
in central China and used the GM (1,1) model to predict carbon emissions and carbon
emission intensity [8]. Gao et al. used Gompertz’s law and fractional accumulation operator
to establish a fractional accumulation grey Gompertz model to predict carbon emissions [9].
Gao et al. used a new fractional grey-scale Riccati model (FGRM (1,1)) model combining
the environmental Kuznets hypothesis and differential information principle [10]. Xu used
the non-equidistant grey model to predict carbon dioxide emissions in 53 countries and
regions [11]. Xiang et al. used Simpson’s new information to prioritize the accumulation
of lake carbon dioxide emissions for prediction [12]. Duan et al. used a new multi-kernel
GMC (1,N) model to predict carbon dioxide emissions in Chongqing from 2016 to 2020 and
make recommendations [13].

In addition to the research and prediction of carbon emissions by the above various
prediction models, there are also studies on carbon dioxide emissions from various factors
affecting carbon emissions and different industries. For example, Xu et al. aim to peak
China’s carbon emissions by adjusting the energy mix [14]. Boamah et al. used a novel aug-
mented hypo-variance brain storm optimization and impulse response function to predict
carbon dioxide emissions in China. The results indicate that urbanization and import and
export trade will be major contributors to CO2 emissions in the coming years [15]. Cui et al.
used the Logarithmic Mean Divisia Index (LMDI) method to explore the driving force of
Beijing’s historical carbon emissions, including green electricity, to provide suggestions
for carbon emission reduction [16]. Ye et al. proposed a new time-delay multivariate
grey model to measure the cumulative impact of CO2 emissions in China’s transportation
sector [17].

In terms of the analysis of temporal and spatial differences in carbon emissions, Yang
et al. analyzed the impact of the policy on spatial carbon emissions and the development of
various regions in Beijing under the background of the non-capital function redistribution
policy and put forward policy suggestions [18]. Xu et al. used the two-stage LMDI model



Axioms 2022, 11, 215 3 of 15

to study the per capita carbon emissions in Jiangsu Province from 2003 to 2018 [19]. Yang
et al. used a combinatorial model to explore the impact of technological factors on carbon
emissions of Various industries in China from a spatial perspective [20]. Based on the
carbon footprint theory, Zhao et al. analyzed the temporal and spatial differences in the
depth of China’s electricity footprint [21]. Based on China’s Multi-resolution Emission
Inventory (MEIC) model, Xu et al. analyzed the carbon emissions from industrial, power
generation, residential and transportation sources in the Pearl River Delta region from 2008
to 2012 and mainly expounded on the corresponding spatial and temporal distribution and
influencing mechanism [22].

In addition, the temporal and spatial differences in carbon emissions of various
industries were analyzed. For example, Wang et al. used data envelopment analysis
(DEA) and the Theil model to analyze agricultural carbon emission efficiency and regional
differences in China [23]. Liu et al. studied the spatial-temporal pattern and evolution of
carbon intensity and financial development at a provincial level in China and used the
spatial Dubin model to study the impact of financial development on carbon intensity in
China since 2007 [24]. Bai et al. used social network analysis to explore the characteristics of
the spatial correlation network structure of carbon emissions from provincial transportation
in China [25]. Ding et al. measured the carbon emissions of the planting industry by using
the IPCC carbon emission coefficient method and further analyzed the driving factors of
planting carbon emissions, providing reference suggestions for the low-carbon sustainable
development of the planting industry and the high-quality development of China [26]. Cao
et al. calculated the carbon emissions of the logistics industry in the Yangtze River Delta
region and analyzed its spatial and temporal distribution characteristics and the driving
factors affecting carbon emissions [27]. Based on Kaya characteristics, Wang et al. selected
the basic indicators of the maturity of carbon emission reduction in the service industry,
used the grey correlation model to calculate the maturity of carbon emission reduction in
China’s service industry from 2006 to 2015, and analyzed the spatial pattern of its evolution
by using the spatial autocorrelation method [28]. Tang et al. took Wulingyuan Scenic Area
as an example to study the spatial-temporal evolution and influencing factors of carbon
emissions of scenic spots in heritage tourism destinations [29]. Liu et al. investigated and
analyzed the spatial correlation of provincial industrial carbon emissions in China from
2004 to 2017 based on the SNA-ICE model [30].

In this paper, the fractional GM (1,1) model was used to calculate the selected driving
factors affecting carbon peak, and then the time to achieve carbon peak in the Beijing–
Tianjin–Hebei region was predicted according to the standards of developed countries that
have achieved carbon peak. Then the spatio-temporal differences of the Beijing–Tianjin–
Hebei region were analyzed. The study of carbon emissions in two spatial dimensions
greatly increases the pertinence of the region and can put forward effective suggestions
to accelerate the pace of carbon peak carbon neutrality. In addition, this paper does not
directly predict the carbon emissions in the Beijing–Tianjin–Hebei region to infer the time
to achieve carbon peak but predicts the driving factors that affect carbon peak and predicts
the time to achieve carbon peak in the Beijing–Tianjin–Hebei region based on the values of
these indicators in the developed countries in Europe and the United States.

This paper is divided into five parts, and the rest of the content is distributed as
follows: the study area and data sources are introduced in the second part, the carbon peak
period prediction is in the third part, the spatial difference analysis of carbon emissions in
Beijing–Tianjin–Hebei is shown in the fourth part and the conclusion and recommendations
are given in the fifth part.

2. Introduction to the Research Area and Data Sources

The Beijing–Tianjin–Hebei region is located between 113◦27′ and 119◦50′ east longitude
and 36◦05′ and 42◦40′ north latitude, spanning north China and northeast China, as shown
in Figure 1. It is located in a superior geographical position and contains Beijing, Tianjin,
11 prefecture-level cities and two directly administered cities in Hebei Province, with
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different levels of economic development. Among them, Beijing and Tianjin have a higher
level of economic development, mainly in the tertiary industry. Hebei is the cradle of
modern industry in China; the industry is relatively developed, among which Tangshan,
Handan, Xingtai and other places are more prominent industries. In order to study the
time and peak of carbon peak, many domestic and foreign scholars use indicators such
as per capita GDP, urbanization level, tertiary industry ratio, energy consumption and
permanent population to predict carbon emissions. When predicting the time when the
carbon peaks in the Beijing–Tianjin–Hebei region, this paper selects the per capita GDP, the
level of urbanization and the proportion of the tertiary industry in combination with the
development status of the Beijing–Tianjin–Hebei region. Therefore, we use the urbanization
level, per capita GDP, and the proportion of tertiary industry in Beijing, Tianjin and Hebei
cities from 2012 to 2019 to predict the time when carbon peaks in Beijing, Tianjin and Hebei.
Among them, the statistical data for Beijing comes from the “Beijing Statistical Yearbook”
over the years, the statistical data for Tianjin comes from the statistical bulletin over the
years, and the data for Hebei comes from the “Economic Yearbook” over the years.

 
Figure 1 

 

 

Figure 7 

Figure 1. Geographical location of Beijing–Tianjin–Hebei region.

3. Prediction of Carbon Peak Period in Beijing–Tianjin–Hebei Region

There are many factors affecting peak carbon time, such as population size, urbaniza-
tion level and total energy consumption. Therefore, predicting the time of carbon peak can
be regarded as a grey problem. In this paper, the fractional accumulation GM (1,1) model is
used to predict the influencing factors of carbon emissions in the Beijing–Tianjin–Hebei
region. Firstly, the FGM (1,1) model can obtain more accurate results under the condition
of limited data sets. Secondly, fractional accumulation emphasizes information priority
and satisfies the principle of information priority. The problem of carbon peak and carbon
neutralization has been proposed in recent years. The information on carbon emissions in
recent years is very important to predict the time of carbon peak and carbon neutralization.
Therefore, the FGM (1,1) model [31] is more accurate in predicting the selected driving
factors affecting carbon emissions. The specific steps of the model are as follows.

3.1. FGM (1,1) Model

Step 1: Assume the original sequence is:

G(0) =
(

g(0)(1), g(0)(2), · · · , g(0)(n)
)

(1)

where G(0)(k) ≥ 0, k = 1, 2, · · · , n.
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The cumulative sequence of order r of G(0) is

G(r) =
{

g(r)(1), g(r)(2), · · · g(r)(n)
}

(2)

where g(r)(k) =
k
∑

i=1
Ck−i

k−i+r−1g(0)(i), C0
r−1 = 1, Ck+1

k = 0.

Ck−i
k−i+r−1 =

(k− i + r− 1)(k− i + r− 2) · · · (r + 1)r
(k− i)!

(3)

Obtain the background value g for the r− order cumulative sequence and calculation
by the following equation:

Z(r)(k) =
1
2
(g(r)(k) + g(r)(k− 1)) (4)

Step 2: r-order accumulative sequence, the whitening differential equation of k for
G(r) is,

dg(r)(k)
dt

+ ag(r)(k) = b (5)

where a is the development coefficient, and b is the grey effect.
After solving Equation (4), the time response function can be obtained as

g(r)(k + 1) = (g(0)(1)− b
a
)e−ak +

b
a

(6)

Step 3: The least-squares method is used to obtain the parameter,[
â
b̂

]
=
(

CTC
)−1

CT D (7)

where

C =


− 1

2 (g(r)(1) + g(r)(2)) 1
− 1

2 (g(r)(2) + g(r)(3)) 1
...

...
− 1

2 (g(r)(n− 1) + g(r)(n)) 1

 (8)

D =


g(r)(2)− g(r)(1)
g(r)(2)− g(r)(1)

...
g(r)(n)− g(r)(n− 1)

 (9)

Put a and b into the time response function ĝ(r)(k + 1) = (g(0)(1)− b̂
â )e
−âk + b̂

â , thus
ĝ(r)(k + 1) is the fitted value at time k + 1, which results in the sequence

Ĝ(r) =
{

ĝ(r)(1), ĝ(r)(2), · · · ĝ(r)(n), · · ·
}

(10)

Step 4: Through the accumulation,

G(1) =
(

ĝ(r)(1−r)(1), ĝ(r)(1−r)(2), · · · , ĝ(r)(1−r)(n)
)

(11)

can be obtained.
According to ĝ(0)(k) = ĝ(1)(k)− ĝ(1)(k− 1), k = 1, 2, · · · , n, the fitted value of the orig-

inal data can be obtained ĝ(0)(1), ĝ(0)(2), · · · ĝ(0)(n), and the predicted value is ĝ(0)(n + 1),
ĝ(0)(n + 2), · · · .
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Step 5: Evaluate the model; the formula is as follows:

MAPE =
1
n

n

∑
k=1

∣∣∣∣∣ ĝ(0)(k)− g(0)(k)
g(0)(k)

∣∣∣∣∣× 100% (12)

3.2. The Calculation Process

Taking the forecast of the per capita GDP of Hebei as an example, the FGM (1,1) model
is established based on the data from 2012 to 2019.The calculation process is as follows,

(1) The initial dataset is

G(0) = {38, 596.63, 39, 845.88, 40, 143.33, 42, 607.35, 47, 827.52, 47, 985, 47, 772, 46, 348}

In MATLAB (R2018a), a particle swarm optimization algorithm was used to obtain the
optimal order r = 0.26 of the FGM (1,1) model. Thus, the r-order cumulative sequence
can be obtained as,

{38, 596.63, 50, 027.78, 57, 088.75, 64, 694.55, 74, 732.97, 80, 222.14, 84, 334.4, 86, 563.98}

Use the least square method to calculate â and b̂,[
â
b̂

]
=

[
0.172

18, 479.3

]

where C =



−44, 312.2 1
−53, 558.3 1
−60, 891.6 1
−69, 713.8 1
−77, 477.6 1
−82, 278.3 1
−85, 449.2 1


, D =



11, 431.15
7060.966
7605.804
10, 038.42
5489.17
4112.26
2229.581


. Thus, the b̂

â = 107, 550.5.

(2) Put r and b̂
â into ĝ(r)(k + 1) = (g(0)(1) − b̂

â )e
−âk + b̂

â ; we can establish that
Ĝ(0.26)(k + 1) = (38, 596.63− 107, 550.5)e0.26k + 107, 550.5, and

Ĝ(0) = {38, 596.63, 39, 300.4, 41, 847.95, 43, 923.47, 45, 402.46, 46, 370.29, 46, 931.13, 47, 176.44}

(3) Then, we can establish that the predictive sequence is

Ĝ(0) = {38, 596.63, 39, 300.4, 41, 847.95, 43, 923.47, 45, 402.46, 46, 370.29, 46, 931.13, 47, 176.44}

(4) MAPE = 100%
8

8
∑

k=1

∣∣∣∣ ĝ(0)(k)−g(0)(k)
g(0)(k)

∣∣∣∣ = 2.59%

3.3. Validation of the Model

The calculation results of the per capita GDP of Hebei province are shown in Table 1.

Table 1. Fitting results of per capita GDP in Hebei Province.

Year Real Value FGM (1,1) GM (1,1)

2012 38,596.63 38,596.63 38,596.63
2013 39,845.88 39,300.40 40,572.05
2014 40,143.33 41,847.95 41,860.43
2015 42,607.35 43,923.47 43,189.74
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Table 1. Cont.

Year Real Value FGM (1,1) GM (1,1)

2016 47,827.52 45,402.46 44,561.25
2017 47,985.00 46,370.29 45,976.32
2018 47,772.00 46,931.12 47,436.32
2019 46,348.00 47,176.44 48,942.69

MAPE 2.59% 3.1%

The fitting results of the FGM (1,1) model were compared with those of the GM (1,1)
model. The results show that FGM (1,1) model has a better fitting effect.

3.4. Index Prediction and Carbon Peak Time Prediction Result Analysis

According to the development status of developed countries whose carbon emissions
have reached the peak, it can be preliminarily determined that the carbon peak can be
achieved when the per capita GDP reaches more than $20,000, the urbanization rate reaches
more than 75%, and the added value of the tertiary industry reaches more than 65%.Based
on the data of the three indicators from 2012 to 2019 in Figures 2–5, the FGM (1,1) model
is used to predict the future values of the above three indicators. Thus analysis of the
Beijing–Tianjin–Hebei region carbon peak period.
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According to the indicator data in Figure 2 and the achievement of carbon peak
standards in developed countries, Beijing’s carbon emissions have already reached the
peak, so there is no need to predict the carbon emissions deadline. It is only necessary to
predict the indicators that have not reached the national carbon peak standards in Tianjin,
Hebei and Beijing–Tianjin–Hebei regions. Due to the different calculation standards of
Tianjin’s per capita GDP in 2019, the calculation results have declined, resulting in the
use of the FGM (1,1) model calculation results to increase first and then decrease, which
reflects the FGM (1,1); it works better in exponentially smoothed sequences. Therefore, the
forecast of Tianjin’s per capita GDP uses the median forecast of the growth rate from 2012 to
2019. The urbanization level and the proportion of tertiary industry in Hebei province are
calculated according to the average growth rate from 2012 to 2019. This method combines
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the FGM (1,1) model, and the statistical calculation makes the prediction result of carbon
peak time in Beijing–Tianjin–Hebei region more accurate. The results of the carbon peak
period are shown in Table 2.

Axioms 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 
Figure 2. Index data affecting carbon emission in Beijing. 

 
Figure 3. The development trend of indicators affecting the carbon peak period in Tianjin. Figure 3. The development trend of indicators affecting the carbon peak period in Tianjin.

Axioms 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 
Figure 4. Indicators affecting the carbon peak period in Hebei Province. 

 
Figure 5. Indicators of carbon emission period forecast in the Beijing–Tianjin–Hebei region from 
2012 to 2019. 

According to the indicator data in Figure 2 and the achievement of carbon peak 
standards in developed countries, Beijing’s carbon emissions have already reached the 
peak, so there is no need to predict the carbon emissions deadline. It is only necessary to 
predict the indicators that have not reached the national carbon peak standards in Tianjin, 
Hebei and Beijing–Tianjin–Hebei regions. Due to the different calculation standards of 
Tianjin’s per capita GDP in 2019, the calculation results have declined, resulting in the use 
of the FGM (1,1) model calculation results to increase first and then decrease, which 

Figure 4. Indicators affecting the carbon peak period in Hebei Province.



Axioms 2022, 11, 215 9 of 15

Axioms 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 
Figure 4. Indicators affecting the carbon peak period in Hebei Province. 

 
Figure 5. Indicators of carbon emission period forecast in the Beijing–Tianjin–Hebei region from 
2012 to 2019. 

According to the indicator data in Figure 2 and the achievement of carbon peak 
standards in developed countries, Beijing’s carbon emissions have already reached the 
peak, so there is no need to predict the carbon emissions deadline. It is only necessary to 
predict the indicators that have not reached the national carbon peak standards in Tianjin, 
Hebei and Beijing–Tianjin–Hebei regions. Due to the different calculation standards of 
Tianjin’s per capita GDP in 2019, the calculation results have declined, resulting in the use 
of the FGM (1,1) model calculation results to increase first and then decrease, which 
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Table 2. The prediction results of the carbon peak period.

Area GDP Per
Capita/(Yuan/person)

Level of
Urbanization/%

Proportion of Added Value
of Tertiary Industry/%

Beijing 2019 164,000 86.60% 83.10%
Estimated realization time (129,000) 2018 Implemented Implemented

Tianjin 2019 90,306.12 83.48% 63.50%
Estimated realization time (129,000) 2028 Implemented (65%)2020

Hebei
2019 46,348 57.62 51.03%

Estimated realization time (129,000) 2053 (75%)2027 (65%)2027
Beijing–Tianjin–Hebei

Region
2019 84,479.23 66.7 67.06%

Estimated realization time (129,000) 2025 (75%) 2044 (65%)2018

Note: Calculated according to the exchange rate of 6.4593, the per capita GDP, urbanization rate and tertiary
industry’s added value are 20,000 USD/person (equivalent to more than 129,000 RMB), 75% and 65%, respectively.

According to the prediction results in Table 2, Beijing achieved the carbon peak target.
According to the per capita GDP index, Tianjin will achieve the carbon peak goal in 2028.
Judging by the proportion of the tertiary industry, the peak will be reached in 2020. The
process of carbon peak realization in Hebei is slow. According to the three indicators of per
capita GDP, urbanization level and the proportion of the tertiary industry, the time of carbon
peak realization is 2053, 2027 and 2027, respectively. The entire Beijing–Tianjin–Hebei
region will reach a carbon peak in 2044 at the latest. Based on the above results, Hebei
should increase the intensity of carbon emission reduction, accelerate the pace of economic
development, and take the road to green development.

4. Spatial Differentiation Analysis of Carbon Peak in Beijing–Tianjin–Hebei Region

Beijing–Tianjin–Hebei is the abbreviation of Beijing–Tianjin–Hebei Province, where
Beijing is the capital of China and Tianjin is one of the municipalities directly under the
Central Government. Therefore, there is a big difference in the level of development
between the Beijing–Tianjin–Hebei region. Through research, it was found that there are
big differences in the level of urbanization and the proportion of the added value of the
secondary industry between the Beijing–Tianjin–Hebei region. Based on the data of each
district and city in 2018, this paper divides the urbanization level and the proportion of the
added value of the secondary industry into four levels. Among them, the urban level was
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arranged in order of low to high, and the proportion of the added value of the secondary
industry was arranged from high to low. A two-line radar chart was drawn. The results are
shown in Figures 6–8.

In the Figures 6–8, the further away from the center of the circle the urbanization level
is, the higher the urbanization level is. Generally speaking, the higher the urbanization
level of a region is, the lower the proportion of the added value of the secondary industry
is, and the easier it is for the carbon emissions of the region to reach the peak. Therefore, the
degree of difficulty of carbon peak is divided into the first peak, peak on schedule (easy)and
peak on schedule (general), which may be overdue peak four grades. It corresponds to
a high level of urbanization and a low proportion of the added value of the secondary
industry. The urbanization rate is high, and the proportion of the added value of the
secondary industry is low. The level of urbanization is medium, and the proportion of the
added value of the secondary industry is medium. Low level of urbanization, secondary
industry accounted for a high proportion of added value.

According to Figure 6, the urbanization rate of each district in Beijing is in the top
three levels, with the urbanization rate above 50%. The proportion of the added value of
the secondary industry is lower than that of the central region. Most areas are expected to
reach peak time. Among them, Dongcheng District, Xicheng District, Chaoyang District,
Fengtai District, Shijingshan District, Haidian District can achieve the first peak, Changping
area on schedule to peak (easy), the rest of the peak on schedule (general).
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As shown in Figure 7, Tianjin’s six districts (Heping District, Hexi District, Hedong
District, Hebei District, Nankai District, Hongqiao District) can take the lead in reaching
the peak, Dongli District, Xiqing District, Beichen District, Binhai New District The level
of urbanization is high, and the proportion of regional industry added value is also high.
It can reach the peak on time (easy). The urbanization rate of Ninghe District and Jizhou
District is low, and the proportion of secondary industry added value may reach the peak
overdue. The urbanization rate of Wuqing District, Baodi District, and Jinghai District are
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equivalent to the proportion of the added value of the secondary industry, so it may reach
the peak (general) on schedule.

According to Figure 8, the urbanization rate in all parts of Hebei is at the third level,
with the urbanization rate ranging from 50% to 60%, while the secondary industry’s added
value accounts for a medium to a high level. Among them, the proportion of the added
value of the secondary industry in Tangshan is the highest. According to the division basis
and the development status of Hebei Province over the years, Shijiazhuang may reach its
peak as scheduled by 2030, and the goal of achieving carbon peaks in most other regions
requires joint efforts from multiple parties.

In summary, there is a big difference in the degree of difficulty for Beijing, Tianjin
and Hebei to achieve a carbon peak. Beijing and Tianjin are relatively easy to achieve
carbon peak, while most parts of Hebei are more difficult to achieve carbon peak by 2030.
Therefore, according to the functional positioning of Beijing, Tianjin and Hebei in the future,
we should coordinate low-carbon development to achieve a carbon peak in the Beijing,
Tianjin and Hebei region as soon as possible to help China achieve a carbon peak by 2030.

5. Conclusions and Countermeasures to Speed up the Realization of the Dual Carbon
Goal in the Beijing–Tianjin–Hebei Region

Based on the above time-space analysis of carbon emissions in the Beijing–Tianjin–Hebei
region, benchmarking European and American countries’ carbon-neutral time limit (2050) [32].
It is predicted that the Beijing–Tianjin–Hebei region will achieve a carbon peak in 2044. At
this rate, the probability of achieving carbon neutrality in the Beijing–Tianjin–Hebei region
by 2060 is slim. Therefore, it is necessary to accelerate the pace of regional carbon peaking
and carbon neutrality to accelerate the achievement of the carbon peaking and carbon-
neutral goals in the Beijing–Tianjin–Hebei region. In terms of space, carbon emissions in the
Beijing–Tianjin–Hebei region are closely related to the level of regional urbanization and
the proportion of the added value of the secondary industry. The carbon peak area is closely
related to the level of urbanization, economic development and population in the area.
With the rapid development of the social economy, the state has implemented a series of
measures for the Beijing–Tianjin–Hebei region. For example, the coordinated development
of Beijing–Tianjin–Hebei. The fractional accumulation GM (1,1) used in this paper to predict
the carbon peak period in the Beijing–Tianjin–Hebei region is consistent with the results of
Zang et al.’s research on the carbon dioxide emission peak in the Beijing–Tianjin–Hebei
urban agglomeration [33]. That is, Beijing and Tianjin have achieved carbon peaks. In
addition, the model can also be used for many aspects of forecasting, air quality forecasting
and water quality forecasting, and it has a wide range of applications.

Since General Secretary Xi Jinping proposed the coordinated development of Beijing–
Tianjin–Hebei in February 2014, Hebei Province has firmly grasped the key to resolving
non-capital functions, effectively serving and undertaking the industrial transfer of Beijing-
Tianjin, and accelerating the realization of high-quality development of Beijing–Tianjin–
Hebei. The focus of work for non-capital functions should be clarified; the population
should be evacuated; and shut down and transfer enterprises with high energy consump-
tion, heavy pollution and high emissions. The proposal of this measure makes it easier for
the Beijing–Tianjin area to achieve the “dual carbon” goal. However, Hebei Province needs
many efforts to achieve the “dual carbon” goal. In fact, studies have shown that Beijing’s
total carbon dioxide emissions will reach a historical peak in 2020, and the future carbon
emissions will still be relatively large after reaching the peak [34]. This is closely related to
the economic development, energy structure and population of Beijing’s various regions.
As the capital of China, Beijing attracts more and more migrants, consumes a lot of carbon
emissions, and has relatively high per capita carbon emissions. Therefore, to achieve effec-
tive control of the total carbon emissions in the Beijing area, huge efforts must be made [35].
In order to achieve the goal of carbon peaking and carbon neutrality on schedule, the 29th
meeting of the Standing Committee of the Seventeenth People’s Congress of Tianjin passed
the “Regulations for the Promotion of Carbon Neutrality of Carbon Peaking in Tianjin” on
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27 September 2021. The Hebei Provincial Government issued the “Implementation Opin-
ions on Establishing and Improving an All-Green and Low-Carbon Circular Development
Economic System.” All parts of Beijing–Tianjin–Hebei are making efforts to achieve this
end. In order for the Beijing–Tianjin–Hebei region to achieve the “dual carbon” goal as
scheduled and effectively control the total carbon emissions, the following suggestions are
put forward according to the difficulty level of achieving the carbon peak, as shown in
Tables 3–6.

Table 3. Suggestions for areas that are the first to achieve carbon peak.

Region Implementation of the Main Body Corresponding Suggestions Corresponding Region

First reach peak area

Urban government, Ecological
environment administration, Energy

department, Transportation
management department,

Development and
Reform Commission

1. Control the rate of population growth
2. Adjust the energy consumption structure,

increase the input of clean energy, reduce
the consumption of fossil energy, strive to
achieve the supply of clean energy, control
the total amount of CO2 emissions

3. Vigorously promote new energy vehicles
4. Successful treatment of black and odorous

water bodies has been achieved
5. Protect the safety of drinking water,

supervise water sources and protected
natural areas

6. Industries that consume energy and
pollute heavily will be relocated

Dongcheng District,
Xicheng District, Shijingshan District,

Chaoyang District,
Fengtai District, Haidian District,

Mentougou District,
Heping District,

Hexi District, Hedong District, Nankai
District, Hongqiao District

Table 4. Recommendations for areas that are easy to peak carbon on time.

Region Implementation of the Main Body Corresponding Suggestions Corresponding Region

Easy to peak on schedule

Urban government, Ecological
environment administration,

Development and
Reform Commission

1. The success rate of industrial transfer and
transformation has reached 60%

2. Expand the use of clean energy to 75%
3. By 2020, regional black and odorous water

bodies will be under control
4. Pilot projects to monitor drinking water

sources and protected natural areas
5. Energy conservation and emission

reduction, promote green development
6. Control the development speed of

construction industry, reduce the carbon
emission of construction

Changping District, Fangshan District,
Daxing District, Huairou District,

Tongzhou District, Yanqing, Pinggu,
Miyun District, Shunyi District, Binhai
New District, Beichen District, Dongli
District, Xiqing District, Shijiazhuang

Table 5. Recommendations for areas that are generally easy to achieve peak carbon on time.

Region Implementation of the Main Body Corresponding Suggestions Corresponding Region

Generally easy to peak
on schedule

Ecological environment
administration agency, District (city)

government, Development and
Reform Commission

1. Further optimize the industrial structure
and eliminate “disorderly and
dirty” enterprises.

2. Adjust the energy mix and increase the
share of non-fossil energy in primary
energy consumption.

3. Strengthen coordinated control of
greenhouse gases and conventional air
pollutants, and realize air pollution days in
autumn and winter.

4. Vigorously promote clean energy heating
and accelerate the project to replace
bulk coal.

5. Prevent rebounding after successful
treatment of black and smelly water bodies.

Wuqing District, Baodi District,
Jinghai District, Tangshan,

Qinhuangdao, Handan, Xingtai,
Baoding, Zhangjiakou, Chengde,

Langfang, Hengshui
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Table 6. Recommendations for areas that may be overdue for carbon peak.

Region Implementation of the Main Body Corresponding Suggestions Corresponding Region

May reach peak overdue
Municipal ecological environment

administration agency, Development
and Reform Commission

1. Focus on the areas that may be overdue to
achieve the carbon peak target, and make
reasonable adjustments to the energy
structure and industrial structure of
these areas

2. To realize the construction of low-carbon
industrial parks

3. Strictly prevent the revival of “scattered
and dirty” enterprises

4. Relevant departments at all levels detailed
and decomposed targets strictly
implemented relevant tasks and
requirements, and held accountable those
who failed to meet the targets.

Jizhou District, Ninghe District

While promoting the strategic adjustment of industrial structure and the industrial
transformation and transfer between Beijing and Tianjin, the Beijing–Tianjin–Hebei region
should also improve its carbon sink capacity. Carbon neutrality is mainly reflected in
carbon sink capacity. When carbon dioxide emissions are controlled and reduced to a
certain extent, the carbon sink capacity of the Beijing–Tianjin–Hebei region will be greatly
improved. The carbon neutralization capacity of the region should be analyzed according
to the regional population density and industrial type so as to make the intensive industrial
areas and along the traffic trunk lines become carbon sink areas and form a network of
carbon sink areas according to the traffic trunk lines in all directions of Beijing Tianjin Hebei
region. In addition, the construction of urban greening and green screen at the edge of the
city is also very important.
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