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Abstract: Several pieces of research have spotlighted the importance of count data modelling and its
applications in real-world phenomena. In light of this, a novel two-parameter compound-Poisson
distribution is developed in this paper. Its mathematical functionalities are investigated. The two
unknown parameters are estimated using both maximum likelihood and Bayesian approaches. We
also offer a parametric regression model for the count datasets based on the proposed distribution.
Furthermore, the first-order integer-valued autoregressive process, or INAR(1) process, is also used to
demonstrate the utility of the suggested distribution in time series analysis. The unknown parameters
of the proposed INAR(1) model are estimated using the conditional maximum likelihood, conditional
least squares, and Yule–Walker techniques. Simulation studies for the suggested distribution and the
INAR(1) model based on this innovative distribution are also undertaken as an assessment of the
long-term performance of the estimators. Finally, we utilized three real datasets to depict the new
model’s real-world applicability.

Keywords: compounding; over-dispersion; Bayesian estimation; count time series; COVID-19 data;
earthquake data
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1. Introduction

Many studies have underlined the importance of modelling count data as well as
the time series of counts, which has sparked considerable interest in a variety of sectors,
including medical science, earth science, physics, finance, and insurance. For modelling
count datasets, the Poisson distribution is the most frequently used, but it has the drawback
of not being able to model over-dispersed datasets, while the negative binomial distribution
is used for modelling over-dispersed data. When investigating counting data, the existence
of at least one overdispersion warrants extra consideration when selecting a count model
(for details, see [1,2]). As a consequence, the conventional Poisson regression model is
rarely used in these situations.

Furthermore, one of the most widely utilized methodologies for analyzing time-
dependent data are time series analysis. The corresponding time series is known as a
time series of counts or, equivalently, an integer-valued time series when the data are
generated by a random counting procedure. The demand for modelling count time series
is seen in diverse real-life situations—for example, the monthly number of earthquakes in
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a specific place, the monthly number of automobile sales, the monthly number of deaths
due to a specific disease, the monthly number of traffic accidents, and the number of living
cells (see [3]). Refs. [4–6] proposed the class of first-order non-negative integer-valued
autoregressive, shortly INAR(1), processes with Poisson innovation based on the binomial
thinning operator to model time series of counts. INAR models are frequently built using
the binomial thinning operator.

Moreover, the INAR(1) model can be altered by changing the innovation distributions
according to various real-life situations. According to [7], the INAR(1) model with respect
to negative binomial innovations (NB-INAR(1)) is effective for generating overdispersion.
Since the common occurrence in overdispersion is that the incidence of zero counts is
higher than expected from the Poisson distribution, Ref. [8] proposed an INAR(1) process
with geometric distribution as the innovation model. Ref. [9] proposed the PL-INAR(1)
model, which combines the INAR(1) model with Poisson–Lindley innovations. Then,
Ref. [10] introduced the INAR(1) process with Poisson–Bilal innovations. These are a few
of the most significant studies on the overdispersed INAR(1) process. Even while these
methods give fine solutions for over-dispersed time series count datasets, they still have
significant drawbacks that can pose computing challenges in real-world applications. Thus,
discovering more INAR(1) models will provide more possibilities for superiorly fitting the
real datasets by choosing those models according to the situations.

In this paper, we construct a novel discrete two-parameter distribution by mixing
the Poisson and Mirra distributions, which can be used to model overdispersed count
data sets. Hereafter, we call this new distribution the Poisson–Mirra distribution (PMiD).
The two-parameter Mirra distribution by [11] is considered to be the generalization of the
Xgamma distribution with one parameter, which is proposed by [12]. In addition, Ref. [13]
considers the Poisson–Xgamma distribution to be an alternative or rival to the well-known
one-parameter Poisson–Lindley distribution proposed by [14]. Interestingly, we discovered
that the proposed PMiD is the generalization of the Poisson–Xgamma distribution. As
a result, more research into the PMiD is unavoidable, both theoretically and in terms of
applied aspects, which is the primary motivation for this work. The suggested distribution
has the advantages of having a simple probability mass function (pmf ) and cumulative
distribution function (cdf ), as well as explicit probability and moment generating functions,
and can monitor over-dispersed count datasets, which are common in real-world data
modelling. By using the PMiD as an innovation process, we also emphasize the significance
of the PMiD in the INAR(1) process.

The following is how the rest of the article is sorted. The detailed description of
the Mirra distribution is covered in Section 2. The definition of the new distribution,
its factorial moments, moments about the origin, skewness, kurtosis, mode, generating
functions, entropy measures, and other details are presented in Section 3. In Section 4, the
maximum likelihood (ML) estimation and the Bayesian estimation technique are defined
to estimate the unknown parameters of the new distribution, and the performance of the
PMiD parameters for the ML estimation is also studied using simulation technique in
the same section. A regression model with respect to the new distribution is discussed
in Section 5. Section 6 develops the INAR(1) model construction with PMiD innovations;
the PMiD-INAR(1) process is created. The methods for the estimation of parameters,
which include the conditional maximum likelihood, conditional least squares, and the Yule–
Walker estimation procedures for the PMiD-INAR(1) process are discussed in Section 7,
and the simulation studies based on these three estimation procedures are also conducted
in the same section. The applications and the empirical studies based on the new model
concerning three real datasets are conducted in Section 8. A detailed discussion of the article
is presented in Section 9. Then, Section 10 finishes with the decisive concluding words.

2. The Mirra Distribution

An inaugural approach to the Mirra distribution (MiD) was implemented in the
literature by [11]. Let T be a continuous random variable which follows the MiD with
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parameters α and θ. Then, the probability density function (pdf ), and the survival function
(sf ) of the random variable T are respectively given by

f (t) =
θ3

θ2 + α

(
1 +

αt2

2

)
e−θt

and

S(t) =
θ2

θ2 + α

(
1 +

α

θ2 +
αt
θ
+

αt2

2

)
e−θt,

where t > 0 and the parameters α, θ > 0. This distribution is denoted by Mi(α, θ). The
plots in Figure 1 portray the graphical representation of the pdf.
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Figure 1. Plots of the pdf of the MiD.

Now, the hazard function (hf ) of the MiD is given as

h(t) =
θ

(
1 +

αt2

2

)
1 +

α

θ2 +
αt
θ
+

αt2

2

.

As indicated by [11], the hf of the MiD is shaped as a bathtub, decreasing for t <
√

2
α ,

and increasing for t >
√

2
α .

As a special case, for α = θ = λ, the Xgamma distribution (XGD) is obtained with the
pdf given by

f (t) =
λ2

λ + 1

(
1 +

λt2

2

)
e−tλ,

where t > 0 and the parameter λ > 0. For more information on the XGD, see [12].

3. The Poisson–Mirra Distribution
3.1. Presentation

Through the following proposition, a novel mixed-Poisson distribution is introduced
by compounding the Poisson and Mirra distributions.

Proposition 1. Assume that X follows the new compound Poisson–Mirra distribution (PMiD),
which has the stochastic representation as follows:

X|λ ∼ Poisson(λ)

λ|α, θ ∼ Mi(α, θ),
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where λ, α and θ > 0. Then, the pmf of X is given by

p(x; α, θ) = Pr(X = x) =
θ3

(θ2 + α)(1 + θ)x+1

{
1 +

α(x + 1)(x + 2)
2(1 + θ)2

}
, x = 0, 1, 2, . . . (1)

This distribution is denoted as PMiD(α, θ), and one can note X ∼ PMiD(α, θ) to inform
that X follows the PMiD with parameters α and θ.

Proof. The pmf of X can be derived using the general compounding formula as follows:

p(x; α, θ) =

∞∫
0

Pr(X = x|λ) f (λ|α, θ) dλ

=

∞∫
0

e−λλx

x!
θ3

θ2 + α

(
1 +

αλ2

2

)
e−θλ dλ

=
θ3

x!(θ2 + α)


∞∫

0

e−λ(1+θ)λx dλ +
α

2

∞∫
0

e−λ(1+θ)λx+2 dλ


=

θ3

x!(θ2 + α)

{
Γ(x + 1)
(1 + θ)x+1 +

α

2
Γ(x + 3)
(1 + θ)x+3

}
=

θ3

(θ2 + α)(1 + θ)x+1

{
1 +

α(x + 1)(x + 2)
2(1 + θ)2

}
.

We have employed the gamma function defined by Γ(x) =
∞∫
0

tx−1e−tdt, with the

relation Γ(m) = (m− 1)! for any positive integer m. The proof is completed.

Now, for α = θ = λ, the pmf of the PMiD reduces to

p(x; λ) =
λ2

2(1 + λ)x+4

{
2(1 + λ)2 + λ(x + 1)(x + 2)

}
, x = 0, 1, 2, . . . . (2)

The expression in Equation (2) is the pmf of Poisson–Xgamma distribution (PXGD),
which was introduced by [13]. Thus, the PXGD is a special case of the PMiD.

Now, the possible pmf plots for various values of the parameters of the PMiD are
portrayed in Figure 2.
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Figure 2. Plots of the pmf of the PMiD.

The pmf appears to be declining, growing, and unimodal, with some fluctuation in the
mode and tails.

3.2. Mode

The next result clarifies the mode analysis of the PMiD.

Proposition 2. Let X be a random variable following a PMiD. Then, if α ≥ 8θ2(1+θ)2

(θ+2)2 , the mode of
X, denoted by xm, exists, and lies in either of these two cases:

max{a1(α, θ), b2(α, θ)} ≤ xm ≤ b1(α, θ)

or
a1(α, θ) ≤ xm ≤ min{b1(α, θ), a2(α, θ)},

where

a1(α, θ) =
α(2− θ)−

√
ε

2αθ
, b1(α, θ) =

α(2− θ) +
√

ε

2αθ
,

a2(α, θ) =
α(2− 3θ)−

√
ε

2αθ
, b2(α, θ) =

α(2− 3θ) +
√

ε

2αθ
,

(3)
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with ε = α2(θ + 2)2 − 8αθ2(1 + θ)2. The condition α ≥ 8θ2(1+θ)2

(θ+2)2 is to ensure that ε ≥ 0, such

that
√

ε has sense.

Proof. We have to find the integer x = xm, for which p(x; α, θ) takes its maximum value.
That is, we aim to solve p(x; α, θ) ≥ p(x− 1; α, θ) and p(x; α, θ) ≥ p(x + 1; α, θ), which is
equivalent to solving:

αθx2 + α(θ − 2)x + 2[θ(1 + θ)2 − α] ≤ 0, (4)

and
αθx2 + α(3θ − 2)x + 2[α(θ − 2) + θ(1 + θ)2] ≥ 0, (5)

respectively. On solving the quadratic inequality in Equation (4), we obtain a1(α, θ) ≤ xm ≤
b1(α, θ), and on solving the quadratic inequality in Equation (5), we obtain b2(α, θ) ≤ xm
or xm ≤ a2(α, θ), where a1(α, θ), b1(α, θ), a2(α, θ), and b2(α, θ) are given in Equation (3).
Combining these three inequalities, we obtain the mode xm such that

max{a1(α, θ), b2(α, θ)} ≤ xm ≤ b1(α, θ)

or
a1(α, θ) ≤ xm ≤ min{b1(α, θ), a2(α, θ)}.

This completes the proof.

3.3. Cdf and Hf

The corresponding cdf of the PMiD is given by

F(x; α, θ) = Pr(X ≤ x) =
(θ + 1)−x−3

2(α + θ2)
{α[2(θ + 1)x+3 − θ(x + 3)(θ(x + 2) + 2)− 2]

+ 2θ2(θ + 1)2[(θ + 1)x+1 − 1]},
(6)

and the hf of the PMiD is given by

H(x; α, θ) =
p(x; α, θ)

1− F(x; α, θ)
,

where p(x; α, θ) and F(x; α, θ) are respectively given in Equations (1) and (6). Furthermore,
plots in Figure 3 refer to the shapes of the hf of the PMiD.



Axioms 2022, 11, 193 7 of 27

0 20 40 60 80 100

0.
04

0
0.

04
2

0.
04

4
0.

04
6

x

h(
x)

α = 0.001, θ = 0.06

0 20 40 60 80 100

0.
00

09
2

0.
00

09
6

0.
00

10
0

x

h(
x)

α = 1e−04, θ = 0.005

0 20 40 60 80 100

0.
01

0.
03

0.
05

0.
07

x

h(
x)

α = 0.1, θ = 0.1

0 20 40 60 80 100

0e
+

00
1e

−
09

2e
−

09
3e

−
09

4e
−

09
5e

−
09

x

h(
x)

α = 2.1, θ = 1e−04

0 20 40 60 80 100

0.
31

0.
32

0.
33

0.
34

0.
35

0.
36

0.
37

x

h(
x)

α = 0.018, θ = 0.4

0 20 40 60 80 100

0.
01

35
0.

01
45

0.
01

55

x

h(
x)

α = 1e−04, θ = 0.02

Figure 3. Plots of the hf of the PMiD.

The hf is found to have all of the typical shapes, such as increasing, decreasing, bathtub,
and upside-down bathtub shapes.

3.4. Moments

Some aspects of the PMiD are now being studied using various moment measures.
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Proposition 3. The rth factorial moment of X ∼ PMiD(α, θ) is given by

µr = E(X(X− 1) . . . (X− r + 1)) =
θ3

(θ2 + α)

r!
θr+1

[
1 +

α(r + 1)(r + 2)
2θ2

]
. (7)

Proof. Based on the compound-Poisson theory (see [14]), the rth factorial moment of X can
be obtained as follows:

µr =

∞∫
0

λr θ3

θ2 + α

(
1 +

αλ2

2

)
e−θλ dλ

=
θ3

θ2 + α


∞∫

0

e−θλλx dλ +
α

2

∞∫
0

e−θλλx+2 dλ


=

θ3

(θ2 + α)

r!
θr+1

[
1 +

α(r + 1)(r + 2)
2θ2

]
.

Thus, the proof is complete.

The first four factorial moments of the PMiD can be obtained by substituting r = 1, 2, 3,
and 4 in Equation (7). That is,

µ1 =
θ

θ2 + α

(
1 +

3α

θ2

)
, µ2 =

2
θ2 + α

(
1 +

6α

θ2

)
,

µ3 =
6

θ(θ2 + α)

(
1 +

10α

θ2

)
, and µ4 =

24
θ2(θ2 + α)

(
1 +

15α

θ2

)
.

Now, the first four moments about the origin of the PMiD are obtained by utilizing
the general relationship between factorial moments and moments about the origin. We get

Mean = µ′1 = E(X) = µ1 =
θ

θ2 + α

(
1 +

3α

θ2

)
, (8)

µ′2 = E(X2) =
1

θ2 + α

{
2
(

1 +
6α

θ2

)
+ θ

(
1 +

3α

θ2

)}
,

µ′3 = E(X3) =
1

θ2 + α

{
6
θ

(
1 +

10α

θ2

)
+ 6
(

1 +
6α

θ2

)
+ θ

(
1 +

3α

θ2

)}
and

µ′4 = E(X4)

=
1

θ2 + α

{
24
θ2

(
1 +

15α

θ2

)
+

36
θ

(
1 +

10α

θ2

)
+ 14

(
1 +

6α

θ2

)
+ θ

(
1 +

3α

θ2

)}
.

Therefore, the variance of the PMiD is obtained as

Var(X) =
1

θ2(θ2 + α)

{
2(θ2 + 6α) + θ(θ2 + 3α)

[
1− θ

θ2 + α

(
1 +

3α

θ2

)]}
. (9)

The dispersion index of the PMiD is given by

DI = 1 +
2
θ

(
θ2 + 6α

θ2 + 3α

)
− θ2 + 3α

θ(θ2 + α)
. (10)
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Since α and θ > 0, one can establish that the PMiD’s dispersion index is greater than
one, i.e., DI > 1, indicating that the PMiD is over-dispersed. The following formulae can
be used to get explicit expressions for the skewness and kurtosis of the PMiD:

Skewness(X) =
µ′3 − 3µ′2µ′1 + 2(µ′1)

3

[Var(X)]3/2

and

Kurtosis(X) =
µ′4 − 4µ′3µ′1 + 6µ′2(µ

′
1)

2 − 3(µ′1)
4

[Var(X)]2
.

Now, Table 1 shows some numerical values for the mean, variance, DI, skewness, and
kurtosis for the PMiD for various parameter settings.

Table 1. Values of some moment measures of the PMiD for various values of α and θ.

α = 0.5 and Various Values of θ

Measures θ = 1.5 θ = 3.5 θ = 5.5 θ = 7.5 θ = 9.5

Mean 0.9091 0.3081 0.1877 0.1357 0.1064
Variance 1.7796 0.4085 0.2240 0.1544 0.1179

DI 1.9576 1.3256 1.1931 1.1379 1.1076
Skewness 2.1407 2.5913 2.9319 3.2482 3.5398
Kurtosis 9.3872 11.8878 13.6830 15.5978 17.5592

α = 1.5 and Various Values of θ

Measures θ = 1.5 θ = 3.5 θ = 5.5 θ = 7.5 θ = 9.5

Mean 1.2 0.3481 0.1990 0.1403 0.1087
Variance 2.4267 0.4792 0.2411 0.1608 0.1209

DI 2.0222 1.3769 1.2117 1.1462 1.1118
Skewness 1.8289 2.5314 2.9032 3.2258 3.5212
Kurtosis 7.4713 11.5402 13.5972 15.5194 17.4747

Proposition 4. The probability generating function (pgf) of X ∼ PMiD(α, θ) is obtained as

G(s) = E(sX) =
θ3

(θ2 + α)(θ + 1− s)

[
1 +

α

(θ + 1− s)2

]
, (11)

for s ∈ (−1, 1).

Proof. Owing to the well-known compound-Poisson theory, the pgf of the PMiD is obtained
as follows:

G(s) =
∞∫

0

eλ(s−1) θ3

θ2 + α

(
1 +

αλ2

2

)
e−θλ dλ

=
θ3

θ2 + α


∞∫

0

e−λ(θ+1−s) dλ +
α

2

∞∫
0

e−λ(θ+1−s)λ2 dλ


=

θ3

θ2 + α

[
Γ(1)

θ + 1− s
+

α

2
Γ(3)

(θ + 1− s)3

]
=

θ3

(θ2 + α)(θ + 1− s)

[
1 +

α

(θ + 1− s)2

]
.

Thus, the proof is complete.
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When s is replaced by et and eit in Equation (11), we obtain the moment generat-
ing function (mgf ) and characteristic function (cf ) of the PMiD, respectively. They are
respectively given by

M(t) =
θ3

(θ2 + α)(θ + 1− et)

[
1 +

α

(θ + 1− et)2

]
,

for t ≤ 0, and

φ(t) =
θ3

(θ2 + α)(θ + 1− eit)

[
1 +

α

(θ + 1− eit)2

]
,

for t ∈ R.

3.5. Rényi and Shannon Entropies

Entropy is a measure of uncertainty fluctuation in a stochastic situation, in which
higher entropy indicates less information. The most popular entropy measures are Rényi
entropy and Shannon entropy, which are among the most accessible in the literature.

For every discrete distribution with pmf p(x), the related Rényi entropy is defined by

Hγ =
1

1− γ
log ∑

x
pγ(x),

for γ > 0 and γ 6= 1.
In the context of the PMiD, by using Equation (1), we obtain

∞

∑
x=0

pγ(x; α, θ) =
θ3γ

(θ2 + α)γ

∞

∑
x=0

{
1

(1 + θ)x+1 +
α(x + 1)(x + 2)

2(1 + θ)x+3

}γ

.

Thus, the Rényi entropy of the PMiD is simplified to the following formula:

Hγ =
1

1− γ

{
log
[

θ3γ

(θ2 + α)γ

]
+ log

∞

∑
x=0

[
1

(1 + θ)x+1 +
α(x + 1)(x + 2)

2(1 + θ)x+3

]γ
}

.

Now, the Shannon entropy for a discrete distribution with pmf p(x) is given by

H1 = −
∞

∑
x=0

p(x) log p(x).

Hence, the Shannon entropy for the PMiD can be expressed as

H1 = − log
(

θ3

θ2 + α

)
−

∞

∑
x=0

p(x) log
[

1
(1 + θ)x+1 +

α(x + 1)(x + 2)
2(1 + θ)x+3

]
.

4. Estimation of the Parameters

Hereafter, we perform the estimation of parameters of the PMiD using two well-known
estimation approaches: ML and Bayesian methods.

4.1. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample of size n from X ∼ PMiD(α, θ) (so n indepen-
dent and identically distributed (iid) random variables with the PMiD), with unknown
α and θ, and x1, x2, . . . , xn be observations of X1, X2, . . . , Xn. Then, the log-likelihood
function is
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log Ln = 3n log(θ)− n log(θ2 + α)− log(1 + θ)
n

∑
i=1

(xi + 1)

+
n

∑
i=1

log
[

1 +
α(xi + 1)(xi + 2)

2(1 + θ)2

]
.

The maximization of log Ln with respect to the parameters give their ML estimates
(MLEs).

The following approach can be considered. The score function associated with this
log-likelihood function is

U =

(
∂ log Ln

∂α
,

∂ log Ln

∂θ

)T
.

Now, by solving ∂ log Ln
∂α = 0, and ∂ log Ln

∂θ = 0, we obtain the associated nonlinear
log-likelihood equations. They are respectively given by

n

∑
i=1

(xi + 1)(xi + 2)
2(1 + θ)2 + α(xi + 1)(xi + 2)

− n
θ2 + α

= 0,

and
3n
θ
− 2nθ

θ2 + α
−

n

∑
i=1

(
xi + 1
1 + θ

)[
1− 2α(xi + 2)

2(1 + θ)2 + α(xi + 1)(xi + 2)

]
= 0.

The solutions of these two equations give the MLEs. We obtained the MLEs nu-
merically using the fitdistrplus package of the R software (see [15]). For more details on
the fitdistrplus package, one should go through the lin k https://CRAN.R-project.org/
package=fitdistrplus accessed on 14 February 2021. For the detailed R-code for finding the
MLEs of the PMiD, see Appendix A of this article.

4.2. Bayesian Estimation

The Bayesian estimation technique is used to estimate the PMiD parameters in this
subsection. That is, each parameter of PMiD must have some prior densities. For both of
the parameters α and θ, the half-Cauchy (hC) distribution is used as the prior densities.
The hereunder is the pdf of the hC distribution with scale parameter δ:

fhC(u) =
2δ

π(u2 + δ2)
, u > 0, δ > 0.

There is no mean and variance for the hC distribution. Other than that, its mode is
equal to 0. The hC distribution with the value of δ equals 25 is the preferable alternative
to the uniform distribution, if more information is needed, according to [16]. Thus, as a
noninformative prior distribution for the parameters α and θ, we utilize hC distribution
with its δ value fixed to 25. That is, we use

α, θ ∼ hC(25). (12)

Thus, using Equation (12), the joint posterior pdf is given by

ψ∗(α, θ|x) ∝ Ln × ψ(α)× ψ(θ), (13)

where Ln is the likelihood function for the PMiD, and ψ(x) is the pdf of the hC distribution
with δ = 25. It is clear from Equation (13) that there is no analytical solution for determining
the Bayesian estimates. As a consequence, we adopt the Metropolis–Hastings algorithm
(MHA) of the Markov Chain Monte Carlo (MCMC) technique, which is a phenomenal
simulation method, using the R software.

https://CRAN.R-project.org/package=fitdistrplus
https://CRAN.R-project.org/package=fitdistrplus
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4.3. Performance of the PMiD Parameters Using Simulation Study

For some finite sample sizes, we execute the simulation studies to test the long-run
accuracy of the MLEs of the PMiD parameters. We have generated samples of sizes
n = 100, 250, 500, 750, and 1000 from the PMiD using various sets of parameter values. The
R-code for generating the PMiD random samples for the specified parameter settings are
given in Appendix A. The iteration is conducted 1001 times in this case. As a consequence,
we calculated the average of the biases, mean squared errors (MSEs), coverage probabilities
(CPs), and average lengths (ALs) of each parameter estimate for all iterations in the relevant
sample sizes. The results are reported in Table 2. It can be seen that, as the sample size
increases, the MSEs and ALs were associated with each estimate decrease. Interestingly, the
CPs of the confidence intervals (CIs) for each parameter are relatively close to the nominal
95 percent level. This illustrates the steady performances of the MLEs.

Table 2. The simulation results for (α = 2.5, θ = 0.5).

Parameters n MLE Bias MSE CP AL

α 100 2.8296 0.3296 5.4612 0.8302 18.9348
250 2.9959 0.4959 4.3959 0.8701 12.1873
500 2.9402 0.4402 2.7254 0.9131 7.6664
750 2.8896 0.3896 2.1199 0.9171 5.9141

1000 2.8283 0.3283 1.5774 0.9181 4.8197

θ 100 0.4922 −0.0078 0.0019 0.9570 0.1855
250 0.4973 −0.0027 0.00075 0.9630 0.1161
500 0.4989 −0.0011 0.00038 0.9640 0.0816
750 0.4998 −0.00023 0.00025 0.9710 0.0666

1000 0.5003 0.00031 0.0002 0.9610 0.0578

5. PMiD Regression Model

In this section, we define a new count regression model based on the PMiD known
as a PMiD regression model. Let Y ∼ PMiD(α, θ). By considering the re-parametrization
α = θ2(µθ − 1)/(3− µθ), the pmf of the PMiD can be expressed in terms of the mean
E(Y) = µ > 0 and θ > 0, and it is given by

P(Y = y|µ, θ) =
θ(3− θµ)

2(1 + θ)y+1

[
1 +

θ2(θµ− 1)(y + 1)(y + 2)
2(3− θµ)(1 + θ)2

]
, y = 0, 1, 2, . . . (14)

The pmf in Equation (14) that defines a distribution is denoted as PMiD(µ, θ). Thus,
we have Y ∼ PMiD(µ, θ). Assume that the response variable Y satisfies Y ∼ PMiD(µ, θ),
and the covariates are in relation with the ith mean by the log-link function given as follows:

µi = E(Yi) = exp
(

vi
Tτ
)

, i = 1, 2, . . . , n, (15)

where vi
T =

(
1, vi1, vi2, . . . , vip

)
is the vector of covariates and τ =

(
τ0, τ1, . . . , τp

)T is the
unknown vector of regression coefficients. The log-likelihood function of the PMiD regres-
sion model is derived by inserting the log-link function of Equation (15) in Equation (14),
and is given by

log L(Θ) = n log(θ/2) +
n

∑
i=1

log(3− θµi)− log(1 + θ)
n

∑
i=1

(yi + 1)

+
n

∑
i=1

log
[

1 +
θ2(θµi − 1)(yi + 1)(yi + 2)

2(3− θµi)(1 + θ)2

]
,

(16)

where yi is the ith observations of Y, µi is given in Equation (15) for i = 1, 2, . . . , n, and
Θ = (τ, θ) are obtained by maximizing Equation (16) using optim function in the R software.
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6. INAR(1) Model with PMiD Innovations

The novel distribution is particularly well suited for modelling integer-valued time
series data.

The stochastic process, {Xt}t∈Z, is an INAR(1) process if it is given by

Xt = p ◦ Xt−1 + εt, t ∈ Z,

where p ∈ [0, 1) and εt is represented as the innovation process, thus composed of iid
integer-valued random variables, with mean E(εt) = µε and variance Var(εt) = σ2

ε . The
operator symbol ‘◦’ represents the binomial thinning operator, which is defined as

p ◦ Xt−1 =
Xt−1

∑
j=1

Bj,

where
{

Bj
}

j≥1 is a sequence of iid Bernoulli random variables with success probability, p.

For p ∈ [0, 1), the INAR(1) process is stationary, while, for the case p = 1, the process is
non-stationary. The INAR(1) process, according to [4,5], is a homogeneous Markov chain
with 1-step transition probabilities given by

P(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−i Pr(εt = k− i), k, l ≥ 0,

where p ∈ (0, 1). Therefore, in general, the mean, variance, and dispersion index of the
INAR(1) process are, respectively, given by

E(Xt) =
µε

1− p
, (17)

Var(Xt) =
pµε + σ2

ε

1− p2 , (18)

and
DIXt =

DIε + p
1 + p

, (19)

where µε, σ2
ε , and DIε are given in Equations (8)–(10), respectively. For the detailed infor-

mation on the INAR process, one can go through [17].
Now, in this section, based on the PMiD innovations, we present a new over-dispersed

INAR(1) model, and we call it the PMiD-INAR(1) process.

Definition 1. Assume that the innovation process {εt}t∈Z follows a PMiD. Then, the (one-step)
transition probability of the PMiD-INAR(1) process is given by

Pk,l = Pr(Xt = k|Xt−1 = l)

=
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−i θ3

(θ2 + α)(1 + θ)k−i+1

{
1 +

α(k− i + 1)(k− i + 2)
2(1 + θ)2

}
.

Now, using Equations (17)–(19), the mean, variance, and dispersion index of the
PMiD-INAR(1) process are respectively obtained as

µXt =
θ

(θ2 + α)(1− p)

(
1 +

3α

θ2

)
,

σ2
Xt

=
θ

(θ2 + α)(1− p2)

{(
1 +

3α

θ2

)[
p + 1− 1

(θ2 + α)

(
1 +

3α

θ2

)]
+ 2
(

1 +
6α

θ2

)}
,
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and

DIXt = 1 +
2

(1 + p)θ

[
θ2 + 6α

θ2 + 3α
− θ2 + 3α

2θ(θ2 + α)

]
. (20)

Since DIXt is clearly greater than 1, the process is appropriate for over-dispersed
integer valued autoregressive time series data. The conditional expectation and variance of
the PMiD-INAR(1) process are given by

E(Xt|Xt−1) = E[p ◦ Xt−1|Xt−1] + E[εt|Xt−1]

= pXt−1 +
θ

θ2 + α

(
1 +

3α

θ2

)
,

(21)

and

Var(Xt|Xt−1) = Var[p ◦ Xt−1|Xt−1] + Var[εt|Xt−1]

= p(1− p)Xt−1 + σ2
ε ,

(22)

where σ2
ε is given in Equation (9) (see [17,18]).

7. Estimation of the Parameters: PMiD-INAR(1) Process

In this section, the conditional maximum likelihood (CML), conditional least squares
(CLS), and Yule–Walker (YW) methods are used to investigate the inference of the PMiD-
INAR(1) process. To examine the efficiency of these three strategies, a simulation study is
also carried out.

7.1. Conditional Maximum Likelihood (CML) Estimation

Let X1, X2, . . . , XT be a random sample of the stationary PMiD-INAR(1) process,
and x1, x2, . . . , xT be observations of X1, X2, . . . , XT . Then, the conditional log-likelihood
function is given by

L(p, α, θ) =
T

∑
t=2

log P(Xt = xt|Xt−1 = xt−1)

=
T

∑
t=2

log

{
min(xt ,xt−1)

∑
i=0

(
xt−1

i

)
pi(1− p)xt−1−i θ3

(θ2 + α)(1 + θ)xt−i+1

[
1 +

α(xt − i + 1)(xt − i + 2)
2(1 + θ)2

]}
.

(23)

By applying the direct maximization technique on Equation (23), the respective CML
estimates, say p̂cls, α̂cls, and θ̂cls corresponding to the parameters of the PMiD-INAR(1)
process, p, α, and θ can be obtained using the optim function of the R software.

7.2. Conditional Least Squares (CLS) Estimation

By using Equation (21), the CLS estimates of the PMiD-INAR(1) process parameters
ζ = (p, α, θ) are obtained by minimizing the function given below:

S(ζ) =
T

∑
t=2

[xt − E(Xt|Xt−1 = xt−1)]
2

=
T

∑
t=2

[
xt − pxt−1 −

θ

θ2 + α

(
1 +

3α

θ2

)]2
.
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As a result, by solving ∂
∂ζ S(ζ) = 0, the system of equations based on the estimates can

be derived. The CLS estimate of α is obtained as

p̂CLS =

(T − 1)
T
∑

t=2
xtxt−1 −

T
∑

t=2
xt

T
∑

t=2
xt−1

(T − 1)
T
∑

t=2
x2

t−1 −
(

T
∑

t=2
xt−1

)2 .

Hence, in S(ζ), p is switched with p̂CLS, and the resultant function S(α, θ) should be
minimized by concerning α and θ to obtain their CLS estimates. Since α̂CLS and θ̂CLS do not
have the closed-form expression, we utilize optim function of the R software to obtain it
numerically by minimizing S(α, θ).

7.3. Yule–Walker (YW) Estimation

The concept of the YW approach is to synchronously solve the theoretical moments
with the empirical ones. Because of the autocorrelation function (ACF) of the INAR(1)
process at lag τ is ρx(τ) = pτ , the YW estimate of p is given by

p̂YW =

T
∑

t=2
(xt − x̄)(xt−1 − x̄)

T
∑

t=1
(xt − x̄)2

.

Now, the theoretical mean and dispersion index of the PMiD-INAR(1) process is then
solved with their empirical equivalents to derive the YW estimates of α and θ. When the
theoretical mean is equated to the empirical mean, the YW estimate α̂YW of α is calculated
as follows:

α̂YW =
θ̂2

YW
[
X̄θ̂YW(1− p̂YW)− 1

]
3− X̄θ̂YW(1− p̂YW)

, (24)

where x̄ = 1
N ∑T

t=1 xt. Then, substituting α̂YW with Equation (24) in Equation (20) and
equating Equation (20) to the empirical value of the dispersion index (D̂IXt ), we obtain the
YW estimate θ̂YW of θ. Since θ̂YW does not have the closed-form expression, we utilize the
uniroot function available in the R software to obtain it numerically.

7.4. Simulation: PMiD-INAR(1) Process

In this section, a simulation study is conducted for the comprehensive assessment
of the long-standing performances of CML, YW, and CLS estimates of the PMiD-INAR(1)
process parameters. We have generated samples of sizes n = 100, 250, 500, 750, and 1000
using values of the parameter setting (p = 0.5, α = 0.6, θ = 0.7), and the iteration process is
conducted 1001 times. The simulation results are analyzed using estimated biases, MSEs,
and mean relative errors (MREs), and are presented in Table 3. The following formulae are
used to determine these values:

Average bias =
1

1001

1001

∑
i=1

(ζ̂i − ζ), Average MSE =
1

1001

1001

∑
i=1

(ζ̂i − ζ)2,

Average MRE =
1

1001

1001

∑
i=1

ζ̂i
ζ

,

where ζ = (p, α, θ).
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Table 3. Simulation results for (p = 0.5, α = 0.6, θ = 0.7).

ζ n
CML CLS YW

Bias MSE MRE Bias MSE MRE Bias MSE MRE

p 100 −0.0029 0.0021 0.9943 0.0366 0.0079 0.9269 −0.0674 0.0181 0.8653
250 −0.0017 0.00095 0.9966 −0.0137 0.0030 0.9725 −0.0246 0.0047 0.9508
500 −0.0015 0.00054 0.9984 −0.0069 0.0016 0.9862 −0.0101 0.0019 0.9799
750 −0.0012 0.00035 0.9966 −0.0056 0.0011 0.9888 −0.0070 0.0013 0.9859

1000 −0.0011 0.00029 0.9979 −0.0027 0.0008 0.9946 −0.0037 0.0008 0.9927

α 100 0.0701 0.1251 1.1169 0.0826 0.0248 1.1377 1.8696 20.5181 4.1161
250 0.0628 0.0957 1.1047 0.0517 0.0107 1.0862 0.9482 7.7421 2.5804
500 0.0483 0.0740 1.0805 0.0456 0.0071 1.0760 0.4234 1.8246 1.7056
750 0.0456 0.0617 1.0760 0.0427 0.0053 1.0712 0.2460 0.7204 1.4099

1000 0.0421 0.0566 1.0785 0.0384 0.0044 1.0641 0.1495 0.2579 1.2492

θ 100 −0.0203 0.0120 0.9710 −0.0151 0.0049 0.9784 0.0291 0.1533 1.0416
250 −0.0092 0.0058 0.9868 −0.0016 0.0020 0.9979 −0.0083 0.0236 0.9881
500 −0.0057 0.0038 0.9918 0.0014 0.0011 1.0022 −0.0047 0.0091 0.9933
750 −0.0032 0.0021 0.9954 0.0011 0.0008 1.0038 −0.0040 0.0044 0.9943

1000 −0.0011 0.0018 0.9984 0.0009 0.0006 1.0067 −0.0021 0.0035 0.9970

8. Applications and Empirical Study

To show the usage of the PMiD model, we utilize three real datasets in this section:
the first is COVID-19 data, the second is hospital length of stay, and the third is the number
of earthquakes data.

8.1. COVID-19 Data: Armenia

First, we utilize the dataset of the daily new deaths in Armenia due to the COVID-19
disease. The data are available at https://www.worldometers.info/coronavirus/country/
armenia/ accessed on the 10 January 2021 and are also studied by [19]. They contain the
daily new COVID cases between 15 February 2020 and 4 October 2020. To demonstrate the
PMiD’s potential benefit, the distributions given in Table 4 are considered for comparison.

Table 4. The considered competitive distributions.

Distribution Abbreviation Reference

Discrete generalized Lindley DGLi [19]
Poisson–Xgamma PXGD [13]
Discrete Poisson–Lindley DPLi [9]
Discrete Lindley DLi [20]
New Poisson-weighted exponential NPWE [21]
Poisson-transmuted exponential PTE [22]
Poisson P -

We compare the competitive distributions to the suggested distribution using the
statistical techniques provided, namely the negative log-likelihood (− log L), Akaike In-
formation Criterion (AIC), Bayesian Information Criterion (BIC), χ2 statistic, and p-value.
Tables 5 and 6 display the corresponding MLEs (with standard errors (SEs) and CIs) and
goodness-of-fit (GOF) results, respectively. The PMiD’s GOF statistics values are less than
the other examined distributions, as shown in these tables. As a result, the suggested model
is the most appropriate for modelling the given COVID-19 data. Now, the empirical mean,
variance, and DI of this Armenia dataset are 4.1931, 18.7944, and 4.4822, respectively, and
the theoretical values for the mean, variance, and DI measures of the PMiD are 4.1931,
19.6659, and 4.6900. It is observed that the empirical and the theoretical means are exactly
the same, and the empirical and the theoretical values of variances, and DIs are the closest
to each other. The empirical cdf, pmf, and P-P plots for the Armenia dataset are respectively
given in Figures 4–6. It again gives some better-shaped curves for those fitted in the PMiD.

https://www.worldometers.info/coronavirus/country/armenia/
https://www.worldometers.info/coronavirus/country/armenia/
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Table 5. Armenia dataset: MLEs of the parameters.

Distribution
α θ

MLE SE CI MLE SE CI

PMiD 0.1029 0.0586 (−0.0121, 0.2178) 0.4162 0.0463 (0.3254, 0.5070)
PXGD 0.5431 0.0275 (0.4892, 0.5969) - - -
DGLi 0.2477 0.0843 (0.0825, 0.4128) 0.7763 0.0316 (0.7144, 0.8382)
DPLi 0.41001 0.0227 (0.3656, 0.4545) - - -
DLi 0.6914 0.0121 (0.6677, 0.7151) - - -
NPWE 0.2167 3.1158 (−5.8903, 6.3236) 0.1008 15.8322 (−30.9297, 31.1313)
PTE 0.0001 0.2144 (−0.4202, 0.4202) 0.2385 0.0303 (0.1790, 0.2980)
P 4.1931 0.1342 (−3.9302, 4.4561) - - -

Table 6. Armenia dataset: Goodness-of-fit test.

X OF
Expected Frequency

PMiD PXGD DGLi DPLi DLi NPWE PTE P

0 56 45.1654 35.4419 43.6875 33.6739 28.4819 44.8674 44.8672 3.5181
1 31 35.0039 31.4999 35.8015 33.7917 33.0940 36.2276 36.2274 14.7516
2 22 28.0128 28.7071 29.2575 30.9936 32.1465 29.2515 29.2514 30.9278
3 25 22.8835 25.7701 23.8497 26.9655 28.6318 23.6187 23.6186 43.2281
4 11 18.8974 22.5056 19.3972 22.6594 24.2248 19.0706 19.0705 45.3153
5 14 15.6646 19.0995 15.7433 18.5775 19.8108 15.3983 15.3982 38.0026
6 14 12.9730 15.7909 12.7535 14.9535 15.8141 12.4331 12.4331 26.5583
7 10 10.7033 12.7614 10.3135 11.8663 12.3974 10.0389 10.0390 15.9089
8 11 8.7834 10.1133 8.3269 9.3101 9.5833 8.1058 8.1059 8.3385
9 3 7.1637 7.8812 6.7131 7.2372 7.3255 6.5449 6.5450 3.8850
10 10 5.8053 6.0535 5.4045 5.5826 5.5485 5.2846 5.2846 1.6290
11 7 4.6746 4.5919 4.3455 4.2783 4.1706 4.2670 4.2670 0.6210
12 4 3.7409 3.4454 3.4898 3.2605 3.1147 3.4453 3.4453 0.2170
13 5 2.9762 2.5607 2.7995 2.4729 2.3133 2.7819 2.7818 0.0700
14 2 2.3547 1.8870 2.2434 1.8676 1.7099 2.2462 2.2462 0.0210
15 2 1.8534 1.3802 1.7960 1.4053 1.2586 1.8136 1.8140 0.0059
≥16 6 6.3439 3.5106 7.0775 4.1044 3.3744 7.6048 7.6049 0.0020

Total 233 233 233 233 233 233 233 233

− log L 590.3751 596.7075 592.6174 598.9318 605.3913 592.7991 592.7991 827.4472
AIC 1184.750 1195.415 1189.235 1199.864 1212.783 1189.598 1189.598 1656.894
BIC 1191.652 1198.866 1196.137 1203.315 1216.234 1196.500 1196.500 1660.345
χ2 9.3187 25.1615 12.3710 28.1328 45.7236 12.0550 12.0549 483.1912
df 6 7 6 8 7 6 6 7
p value 0.1564 <0.001 0.0542 0.0004 <0.001 0.0608 0.0607 <0.001
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Figure 4. Empirical cdfs of the fitted distributions for the Armenia dataset.
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Figure 5. Empirical pmfs of the fitted distributions for the Armenia dataset.
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Figure 6. Empirical PP plots of the fitted distributions for the Armenia dataset.

The next goal is to use the Bayesian technique to estimate the parameters of the PMiD
using the above-mentioned COVID-19 dataset. The analysis was carried out using the
MHA of the MCMC technique with 1000 iterations in this perspective. For comparison
purposes, both the Bayesian and MLE estimates of the PMiD parameters for the real dataset
are given in Table 7. R programming is used to perform the numerical computations.

Table 7. MLEs and Bayes estimates of the PMiD parameters on the COVID-19 dataset.

Parameter ML Bayes

α 0.1029 0.1688
θ 0.4162 0.4515
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8.2. Length of Hospital Stay

By applying the PMiD regression model to an actual dataset, we can confirm its
prominence. The dataset is about the 1991 Arizona cardiovascular patients (AZPRO
data), which is available in COUNT package of the R software. The goal of this study is
to investigate the combined relationship between the length of hospital stay (yi) with the
covariates xi1- the cardiovascular procedures (CABG = 1, PTCA = 0), xi2- the sex of the patients
(male = 1, f emale = 0), xi3- the type of the admission (urgent = 1, elective = 0), and xi4- the
age of the patients ((age > 75) = 1, (age ≤ 75) = 0). The fitted nonlinear regression model
is given by

µi = exp(τ0 + τ1xi1 + τ2xi2 + τ3xi3 + τ4xi4).

In Table 8, we compare the performance of the PMiD regression model with the
Poisson regression model, the NPWE regression model, and the PXGD regression model
and also display the summaries due to the real dataset, which include the SEs, p-value,
negative log-likelihood, AIC, and BIC values. Table 8 points out that the PMiD regression
model has the lowest values across all the model selection criteria, indicating that it is the
better count regression model than all the Poisson, NPWE, and PXGD regression models.

Table 8. Regression results on the length of the hospital stay dataset (Standard errors in brackets).

Covariates
Poisson NPWE PXGD PMiD

Estimate (SE) p-Value Estimate (SE) p-Value Estimate (SE) p-Value Estimate (SE) p-Value

τ0 1.4560 (0.0159) <0.001 1.3871 (0.0458) <0.001 1.3996 (0.0349) <0.001 2.1007 (0.0228) <0.001
τ1 0.9604 (0.0122) <0.001 0.9982 (0.0363) <0.001 0.9721 (0.0270) <0.001 0.3693 (0.0789) <0.001
τ2 −0.1240 (0.0118) <0.001 −0.1276 (0.0380) <0.001 −0.1269 (0.0280) <0.001 −0.0553 (0.0130) <0.001
τ3 0.3266 (0.0121) <0.001 0.4047 (0.0376) <0.001 0.1201 (0.0298) <0.001 0.2087 (0.0220) <0.001
τ4 0.1222 (0.0125) <0.001 0.1189 (0.0405) <0.001 0.3732 (0.0280) <0.001 0.0309 (0.0108) <0.001
θ − 0.5311 (1.4829×103) 0.9997 − 0.3296 (0.0054) <0.001
− log L 11,189.90 11,194.01 10,569.80 10,382.38
AIC 22,389.80 22,400.02 21,149.60 20,776.76
BIC 22,420.72 22,437.13 21,180.60 20,813.88

8.3. Japan Earthquake Data

We use data from the ETAS package of R software to calculate annual counts of
earthquakes with a magnitude of 4.5 or higher that occurred in Japan between the years
1926 and 2007. The data comprise 82 observations. For more details on this package,
one can go through [23]. In addition, Figure 7 depicts the Japan earthquake catalog. The
spatial distribution of earthquakes in the study area is depicted in the top-left picture.
The three figures in the right half of Figure 7 depict variations in the latitude, longitude,
and magnitude of the earthquakes over time. The two figures in the bottom-left corner
of Figure 7 depict the earthquake catalog’s completeness and time stationarity. Here, the
number of earthquakes having a magnitude higher than or equal to m is represented by
Nm. If the plot of log(Nm) versus m exhibits a linear trend, it reflects the completeness of
the earthquake catalog. Furthermore, the time stationarity of the catalog can be determined
by looking at the plot of Nt versus t, where Nt is the total number of occurrences in the
catalog up to time t. The earthquake time series is stationary if the plotted points of Nt
versus t have a functional form in such a way that Nt = λ0t, where λ > 0.

We calculated the CML estimates of parameters, as well as the negative log-likelihood
(− log L), AIC, and BIC of the PMiD-INAR(1) as well as the INAR(1) with the innovations,
new Poisson-weighted exponential (INAR-NPWE(1)), Poisson-transmuted exponential
(INAR-PTE(1)), discrete Poisson–Lindley (INAR-DPLi(1)), and Poisson (PINAR(1)), for the
comparison. For more details of these innovations, see Table 4. Now, Table 9 displays the
results corresponding to the earthquake data. We see that the − log L, AIC, and BIC values
of the PMiD-INAR(1) model is smaller than those of the other compared INAR(1) models,
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and we conclude that the PMiD-INAR(1) is the most suitable model for the earthquake
data compared to that of the other models.
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Figure 7. The plots of the earthquake catalog of Japan.

Table 9. The CML estimates of the fitted INAR(1) models and corresponding GOF statistics.

Model Parameters Estimate SE − log L AIC BIC

INAR-PMiD(1)
p 0.2813 0.0293
α 0.6869 2.8522 446.0982 898.1965 905.4166
θ 0.0247 0.0019

INAR-NPWE(1)
p 0.3503 0.0204
α 0.0068 0.0043 465.8715 937.7431 944.9632
θ 0.3408 0.8622

INAR-PTE(1)
p 0.0320 0.0293
α −0.9999 0.2543 451.1948 908.3896 915.6098
θ 0.0130 0.00124

INAR-DPLi(1) p 0.3179 0.0238 450.902 905.804 910.6174
α 0.0172 0.0015

PINAR(1) p 0.0592 0.0145 1418.918 2841.836 2846.65
α 158.6002 2.7801
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The residual analysis is done to make sure the fitted model is accurate for the earth-
quake data. To do so, the Pearson residuals for the PMiD-INAR(1) process are computed
using the following formula:

rt =
xt − E(Xt|Xt−1 = xt−1)

Var(Xt|Xt−1 = xt−1)1/2 ,

where E(Xt|Xt−1 = xt−1) and Var(Xt|Xt−1 = xt−1) can be found in Equations (21) and (22),
respectively. In general, the mean and variance of Pearson residuals should be near zero and
one, respectively, and the computed Pearson residuals should not have any autocorrelation
issues if the fitted INAR(1) process is statistically accurate. Here, the obtained Pearson
residuals of the PMiD-INAR(1) process have a mean and variance of 0.0012 and 1.1612,
respectively, which were quite close to the anticipated values. Therefore, the PMiD-INAR(1)
process is well judged for the given earthquake data. Now, the fitted PMiD-INAR(1) process
is obtained as follows:

Xt = 0.2813 ◦ Xt−1 + εt,

where the innovation process εt ∼ PMiD(0.6869, 0.0247). Now, we can calculate the pre-
dicted number of earthquakes in Japan via

X̂1 =
θ̂

(θ̂2 + α̂)(1− p̂)

(
1 +

3α̂

θ̂2

)
= 168.8961

X̂t = p̂xt−1 +
θ̂

θ̂2 + α̂

(
1 +

3α̂

θ̂2

)
= 0.2813xt−1 + 121.3856.

9. Discussion
9.1. Context

Discovering new count models is inevitable in the scenario of overdispersion, which
will provide more possibilities for superiorly fitting the real datasets by choosing the right
models according to the situations. In that sense, we proposed a new overdispersed count
model, discussed its regression aspects, and constructed an INAR(1) process based on them.
The main motivation behind the construction of this model is also discussed. In all the
aspects, we found that the proposed model outperforms the compared models.

9.2. This Work

The Poisson–Mirra distribution (PMiD), a novel two-parameter discrete distribution,
is introduced and thoroughly investigated. We delivered specific expressions for the fac-
torial moments, mean, variance, dispersion index, skewness, kurtosis, mode, probability
generating function, moment generating function, characteristic function, and the entropy
measures. The distribution parameters were estimated by using the classical maximum
likelihood and Bayesian estimation methods and were also studied in their real-data analy-
sis. A simulation study on MLE was also conducted. A new regression model for count
data based on the PMiD is proposed and compared with its competitive regression models
based on a real dataset. More importantly, we introduced the integer-valued autoregressive
model based on the PMiD, known as the PMiD-INAR(1) process. The parameter estimation
problems, which include the conditional maximum likelihood, conditional least squares,
and the Yule–Walker estimation procedures for the PMiD-INAR(1) process, are discussed,
and simulation studies based on these three estimation procedures are also conducted. In
total, three real-world datasets were used to demonstrate the use of the novel model, the
first regarding COVID-19 data, the second regarding the length of hospital stay, and the
third concerning earthquake data.

9.3. Contributions and Limitations

The article thus developed the new distribution PMiD from which we derived a new
count model, its regression model, and the first-order integer-valued autoregressive model.
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The proposed distribution, we believe, is ideal for researching data from COVID-19 related
areas, biology, and earthquake-related fields, and we hope the PMiD applies to other fields
of study also. The absence of a bimodal feature is the possible limitation of the proposed
distribution.

9.4. Future Work

This research could take another route if the bivariate version of the PMiD and the
associated BINAR(1) process are built. This work needs considerable modifications and
studies, which we shall delegate to future research.

10. Conclusions

In this article, we fitted three real datasets and concluded that the PMiD model
outperforms all the compared models in all aspects. We anticipate that the proposed model
will increase its prevalence and have a wider variety of applications in the modelling of
positive integer-valued real-world datasets from different study areas such as physics,
astronomy, survival analysis, and so on.
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Abbreviations
The following abbreviations are used in this manuscript:

INAR(1) First-order Integer-valued Autoregressive
NB Negative Binomial
PL Poisson–Lindley
PMiD Poisson–Mirra Distribution
MiD Mirra Distribution
XGD Xgamma Distribution
pdf Probability Density Function
cdf Cumulative Distribution Function
sf Survival Function
hf Hazard Function
pmf Probability Mass Function
PXGD Poisson–Xgamma Distribution
DI Dispersion Index
pgf Probability Generating Function
mgf Moment Generating Function
cf Characteristic Function
MLE Maximum Likelihood Estimate
hC half-Cauchy
MHA Metropolis–Hastings Algorithm
MCMC Markov Chain Monte Carlo
MSE Mean Squared Error
CP Coverage Probability
AL Average Length
CML Conditional Maximum Likelihood
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CLS Conditional Least Squares
YW Yule–Walker
ACF Autocorrelation Function
MRE Mean Relative Error
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
GOF Goodness-of-Fit
DGLi Discrete Generalized Lindley
DPLi Discrete Poisson–Lindley
DLi Discrete Lindley
NPWE New Poisson-Weighted Exponential
PTE Poisson-Transmuted Exponential
SE Standard Error
CI Confidence Interval
df Degrees of Freedom

Appendix A

R-code for generating the PMiD random samples is given by

ppmid <- function(q, alpha, theta){
p <- (1/(2*(alpha+theta^2))) * ((theta+1)^(-q-3)) *
(alpha*(2*((theta+1)^(q+3)) - theta*(q+3)*(theta*(q+2)+2)-2) +
2*(theta^2)*((theta+1)^2)* (((theta+1)^(q+1)) - 1))
return(p)
}

rpmid <- function(n, alpha, theta)
{
U <- runif(n)
X <- rep(0,n)
for(i in 1:n)
{
if(U[i] < ppmid(0, alpha, theta))
{
X[i] <- 0
} else
{
B = FALSE
I = 0
while(B == FALSE)
{
int <- c( ppmid(I, alpha, theta), ppmid(I+1, alpha, theta) )
if( (U[i] > int[1]) & (U[i] < int[2]) )
{
X[i] <- I+1
B = TRUE
} else
{
# If not, continue the while loop and increase I by 1
I=I+1
}
}
}
}
return(X)
}.
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R-code for finding the MLEs and GOF statistics values of the PMiD is given by

library(fitdistrplus)

dpmid <- function(x, alpha, theta){
d <- (theta^3)/((theta^2)+alpha) * 1/((1+theta)^(x+1)) *
(1 + (alpha*(x+1)*(x+2))/(2*(1+theta)^2))
return(d)
}

ppmid <- function(q, alpha, theta){
p <- (1/(2*(alpha+theta^2))) * ((theta+1)^(-q-3)) *
(alpha*(2*((theta+1)^(q+3)) - theta*(q+3)*(theta*(q+2)+2)-2) +
2*(theta^2)*((theta+1)^2)* (((theta+1)^(q+1)) - 1))
return(p)
}

pre <- prefit(x, "pmid", "mle", list(alpha=0.3, theta=0.3),
lower=c(0, 0), upper = c(Inf, Inf))

fit.pmid <- fitdist(x, "pmid",
start = list(alpha = pre$alpha, theta = pre$theta),
optim.method = "L-BFGS-B", lower=c(0, 0), upper = c(Inf, Inf),
discrete = TRUE)

summary(fit.pmid)
gofstat(fit.pmid).
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