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Abstract: Stiff delay differential equations are frequently utilized in practice, but their numerical
simulations are difficult due to the complicated interaction between the stiff and delay terms. At the
moment, only a few low-order algorithms offer acceptable convergent and stable features. Exponential
integrators are a type of efficient numerical approach for stiff problems that can eliminate the influence
of stiffness on the scheme by precisely dealing with the stiff term. This study is concerned with two
exponential multistep methods of Adams type for stiff delay differential equations. For semilinear
delay differential equations, applying the linear multistep method directly to the integral form of
the equation yields the exponential multistep method. It is shown that the proposed k-step method
is stiffly convergent of order k. On the other hand, we can follow the strategy of the Rosenbrock
method to linearize the equation along the numerical solution in each step. The so-called exponential
Rosenbrock multistep method is constructed by applying the exponential multistep method to the
transformed form of the semilinear delay differential equation. This method can be easily extended
to nonlinear delay differential equations. The main contribution of this study is that we show that
the k-step exponential Rosenbrock multistep method is stiffly convergent of order k + 1 within the
framework of a strongly continuous semigroup on Banach space. As a result, the methods developed
in this study may be utilized to solve abstract stiff delay differential equations and can be served as
time matching methods for delay partial differential equations. Numerical experiments are presented
to demonstrate the theoretical results.

Keywords: stiff delay differential equations; exponential multistep methods; Rosenbrock methods;
convergence

MSC: 65L04; 65L06; 65L20

1. Introduction

Delay differential equations (DDEs) have received substantial attention in recent
decades. They are used to model many systems in science and engineering. In these
systems, the change of the unknown quantity depends not only on the present state but
also on the past state. A typical DDE takes the form of

y′(t) = F(t, y(t), y(t− τ)),

where y(t− τ) stands for the past effects, and τ is the time lag. Such equations arise
in various fields such as biology [1], control theory [2], population dynamics [3], and
others [4–7].

To solve delay differential equations numerically, the intuitive approach is to use
the mature method for ordinary differential equations (ODEs). Many numerical methods
originally designed for ODEs have been applied to DDEs. The reader is referred to the
monograph by Bellen and Zennaro [8] for a comprehensive review.
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In the last few years, exponential integrators have been getting a lot of attention in
the field of numerical solutions of ODEs. Exponential integrators eliminate the influence
of stiffness on the scheme by handling the stiff term precisely. The first two exponential
integrators of order two and three based on the Adams–Moulton method have been pre-
sented in [9]. Along with improving computational efficiency, considerable effort has been
directed at developing and analyzing exponential integrators for semilinear stiff ODEs.
Various exponential integrators have been investigated, such as exponential Runge–Kutta
methods [10,11], exponential multistep methods [12,13], exponential Rosenbrock meth-
ods [14–16], exponential Taylor methods [17], and exponential general linear methods [18].
A good exposition of exponential integrators can be found in [19].

However, a large number of numerical findings demonstrate that, when a method
designed for ODEs is directly applied to the DDEs, the method’s accuracy and stability
properties cannot be maintained. The majority of current theoretical results on the conver-
gence and stability of the classic methods have the following shortcomings. To preserve
the stiff convergent order of the original numerical methods for ODEs, the addition of
delay terms necessitates that the method fulfills more stiff convergence order conditions.
Moreover, the method’s stability conditions get more complicated. More and stronger sta-
bility conditions are required to ensure that the scheme meets certain stability requirements.
Integration of DDEs requires specifically designed methods other than the stand ODE
methods. Furthermore, the stability and convergence properties of numerical methods
should be thoroughly investigated.

Analysis of exponential integrators to DDEs has been addressed in the literature.
In [20], D–convergence and conditional GDN–the stability of implicit exponential Runge–
Kutta methods have been studied for semilinear DDEs. For exponential Runge–Kutta
methods, the sufficient conditions of D–convergence and conditional GDN–stability given
in [20] imply that the method must be implicit. In [21,22], the stiff convergence and condi-
tional DN–stability of explicit exponential Runge–Kutta methods have been investigated
for stiff DDEs. In view of the excellent properties of exponential integrators, the motivation
of this work is to develop efficient exponential integrators for DDEs. We aim to construct
exponential integrators that have fewer restrictions.

This study is concerned with two exponential multistep methods of Adams type for
stiff delay differential equations. For semilinear delay differential equations, applying the
linear multistep method directly to the integral form of the equation yields the exponential
multistep method. It is shown that the proposed k-step method is stiffly convergent of order
k. On the other hand, we can follow the strategy of the Rosenbrock method to linearize the
equation along the numerical solution in each step. The so-called exponential Rosenbrock
multistep method is constructed by applying the exponential multistep method to the
transformed form of the semilinear delay differential equation. This method can be easily
extended to nonlinear delay differential equations. The main contribution of this work is
that we show that the k-step exponential Rosenbrock multistep method is stiffly convergent
of order k + 1 because of the favorable features of the transformed form. The novelty of
this study is that the presented methods have fewer restriction conditions than classical
linear multistep methods. Moreover, the convergence analysis is carried out within the
framework of a strongly continuous semigroup on Banach space. As a result, the methods
developed in this study may be utilized to solve abstract stiff delay differential equations
and can be served as time matching methods for delay partial differential equations.

The paper is outlined as follows: in Section 2, exponential multistep methods are
constructed for semilinear DDEs. It is shown that the proposed k-step method is stiffly
convergent of order k. Section 3 is devoted to the exponential Rosenbrock multistep
methods. Based on the interpolation with a Hermite node at the beginning of each step, the
k-step exponential Rosenbrock multistep method is shown to be stiffly convergent of order
k + 1. Finally, numerical experiments are shown to demonstrate the theoretical findings.
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2. Exponential Multistep Methods

In this section, we consider the following semilinear delay differential equation:{
y′(t) = Ay(t) + g(t, y(t), y(t− τ)), 0 ≤ t ≤ T,
y(t) = φ(t), −τ ≤ t ≤ 0.

(1)

This form may arise from the space discretization of some semilinear delay parabolic
equations [15]. In this case, y ∈ Rd is the unknown function, A is a given matrix in Rd×d,
and g is a nonlinear continuous function. The methods presented in this paper are also
applicable to abstract delay differential equations in certain Banach space X with norm
‖ · ‖. In this instance, y ∈ X and A is a linear operator (can be unbounded) from X to X.

2.1. Construction of Exponential Multistep Methods

We divide the interval [0, T] by time step size h and denote tn = nh; then, for a given
integer s, applying the variation-of-constants formula to Equation (1) yields

y(tn+s) = eshAy(tn) +
∫ sh

0
e(sh−θ)Ag(tn + θ, y(tn + θ), y(tn + θ − τ)dθ. (2)

This is the starting point of the exponential multistep methods. Let yn denote the
approximation of exact solution y(t) at time t = tn. Similarly, ynτ is the numerical solution
at t = tn − τ. Exponential multistep methods are constructed by treating the integral part
in (2) numerically.

We approximate the nonlinear term g in Equation (2) by the Lagrange interpolation
polynomial pn through the points

(tn−k+1, Gn−k+1), (tn−k+2, Gn−k+2), . . . , (tn, Gn).

Here, we set Gi = g(ti, yi, yiτ) for simplicity. According to the Newton backward
interpolation formula, the polynomial pn can be expressed as follows:

pn(tn + θh) =
k−1

∑
j=0

(−1)j
(
−θ

j

)
∇jGn.

Here, ∇jGn denotes the jth backward difference, defined recursively by

∇0Gn = Gn, ∇jGn = ∇j−1Gn −∇j−1Gn−1, j = 1, 2, . . . .

Note that the delay terms ynτ are involved in the interpolation data Gn. For tn − τ ≤ 0,
we can simply set ynτ by the initial function, i.e., ynτ = φ(tnτ). When tn − τ > 0, we
approximate it by the Lagrange interpolation polynomial qnτ through points

(tn−m−v, yn−m−v), (tn−m−v+1, yn−m−v+1), . . . , (tn−m+r, yn−m+r).

Here, integer m satisfies τ = mh− δh, 0 ≤ δ < 1. r ≤ m is required to ensure that no
unknown values yk are used. The Lagrange interpolation polynomial qnτ can be expressed
as follows:

qnτ(tnτ) =
r

∑
`=−v

L`(δ)yn−m+`, L`(δ) =
r

∏
j=−v
j 6=`

δ− j
`− j

. (3)

We now have all of the pieces necessary to construct the exponential multistep methods.
This paper focuses on multistep methods of Adams type; hence, we set s = 1 in (2). The
numerical method is obtained by replacing the nonlinearity g in (2) by the interpolation
polynomial pn. Therefore, we can write
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yn+1 = ehAyn + h
∫ 1

0
e(1−θ)hA pn(tn + θh)dθ;

then, we have the k-step exponential multistep method for semilinear DDEs (1)

yn+1 = ehAyn + h
k−1

∑
j=0

β j(hA)∇jGn. (4)

The weights β j are defined as

β j(hA) = (−1)j
∫ 1

0
e(1−θ)hA

(
−θ

j

)
dθ, j ≥ 0. (5)

Remark 1. We remark that the proposed method can be viewed as a small perturbation of the
exponential Euler method, which is given by

yn+1 = ehAyn + β0(hA)Gn.

The weights β j given in (5) can be expressed as the linear combination of ϕ-functions,
which are defined as follows:

Definition 1. For any complex numbers z ∈ C, let ϕ0(z) = ez. For all integers j ≥ 1, define
ϕj(z) as

ϕj(z) =
∫ 1

0
e(1−θ)z θ j−1

(j− 1)!
dθ. (6)

Note that ϕ-functions enjoy the following recurrence relation:

ϕj+1(z) =
ϕj(z)− 1

j!

z
=

ϕj(z)− ϕj(0)
z

, for j ≥ 0.

By introducing the ϕ-functions, the weights of the k-step exponential multistep meth-
ods up to k = 7 are given by

β0(z) = ϕ1(z),

β1(z) = ϕ2(z),

β2(z) = ϕ3(z) +
1
2

ϕ2(z),

β3(z) = ϕ4(z) + ϕ3(z) +
1
3

ϕ2(z),

β4(z) = ϕ5(z) +
3
2

ϕ4(z) +
11
12

ϕ3(z) +
1
4

ϕ2(z),

β5(z) = ϕ6(z) + 2ϕ5(z) +
7
4

ϕ4(z) +
5
6

ϕ3(z) +
1
5

ϕ2(z),

β6(z) = ϕ7(z) +
5
2

ϕ6(z) +
17
6

ϕ5(z) +
15
8

ϕ4(z) +
137
180

ϕ3(z) +
1
6

ϕ2(z).

(7)

Remark 2. It is obvious that efficiently computing the ϕ-functions is critical for the implementation
of exponential multistep methods. Several efforts have been made on this line; see [23–26]. For
large-scale problems, it is more efficient to compute the product of a matrix exponential function
with a vector directly without the explicit form of the matrix exponential.

Remark 3. For multistep methods, the starting values y1, y2, . . . , yk−1 are unknown. Normally,
they are obtained by one-step methods. Here, we take the method proposed in [12]. The details are
listed in Appendix A.
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2.2. Stiff Convergence of Exponential Multistep Methods

In this subsection, we investigate the stiff convergence of the k-step exponential
multistep method (4). Stiff convergence refers to the error bounds being of form Chp, where
the constant C is independent of the stiffness and the step size h. The analysis is carried out
under the framework of semigroup. The following assumptions on the semilinear DDEs (1)
are suggested.

Assumption 1. Let X be a Banach space with norm ‖ · ‖. The solution y(t) of Equation (1) is
sufficiently smooth. The linear operator A : X → X is the infinitesimal generator of a strongly con-
tinuous semigroup etA on X. The nonlinearity g : [0, T]×X×X → X is Frechet differentiable in a
strip along the exact solution y(t). All occurring derivatives are supposed to be uniformly bounded.

Under this assumption, there exists a Lipschitz constant L such that

‖g(t, µ1, ν1)− g(t, µ2, ν2)‖ ≤ L(‖µ1 − µ2‖+ ‖ν1 − ν2‖)

holds in a neighborhood of the exact solution. Moreover, the following parabolic smoothing
property holds:

‖etA‖+ ‖AetA‖ ≤ C. (8)

For the ϕ−functions defined by (6), we have

‖ϕj(hA)‖ ≤
∫ 1

0
‖e(1−τ)hA‖ τ j−1

(j− 1)!
dτ ≤ C

j!
.

It follows that the weights β j(hA) are bounded operators.
The main result is the following.

Theorem 1. Apply the k−step exponential multistep method (4) to the semilinear DDE (1) sat-
isfying Assumption 1. If the Lagrange interpolation (3) satisfies r + v = k− 1 and the starting
values satisfy

‖yj − y(tj)‖ ≤ c0hk, j = 1, . . . , k− 1,

then the error bound

‖yn − y(tn)‖ ≤ Chk sup
0≤t≤tn

‖ dk

dtk g(t, y(t), y(t− τ))‖ (9)

holds uniformly for n such that 0 ≤ nh ≤ T. The constant C depends on T, but not on ‖A‖, n,
and h.

Proof. Let en = yn − y(tn) denote the error of the method at time tn. It is easy to see that
e0 = 0. The first step is to build the error equation for en.

Note that the exact solution y(tn) of (1) has the similar form as the numerical solution
yn. Indeed, according to the variation-of-constants formula, the solution of (1) has the form

y(tn+1) = ehAy(tn) + h
∫ 1

0
eh(1−θ)A f (tn + θh)dθ (10)

with f (t) = g(t, y(t), y(t− τ)) for simplicity. Denote p̃n as the interpolation polynomial
through the exact data

(tn−k+1, f (tn−k+1)), (tn−k, f (tn−k)), . . . , (tn, f (tn)).
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It easily follows that

p̃n(tn + θh) =
k−1

∑
j=0

(−1)j
(
−θ

j

)
∇j f (tn),

and the interpolation error is

f (tn + θh)− p̃n(tn + θh) = hk(−1)k
(
−θ

k

)
f (k)(ζ(θ)). (11)

Here, ζ(θ) is a certain intermediate time in the interval [tn−k+1, tn+1]. Inserting (11)
into (10), we obtain

y(tn+1) = ehAy(tn) + h
∫ 1

0
eh(1−θ)A p̃n(tn + θh)dθ + δn+1. (12)

Here, the defect δn+1 is

δn+1 = h
∫ 1

0
eh(1−θ)A( f (tn + θh)− p̃n(tn + θh))dθ.

Subtracting (4) from (12) gives the error recursion

en+1 = ehAen + h
∫ 1

0
eh(1−θ)A(pn(tn + θh)− p̃n(tn + θh))dθ − δn+1.

Solving this recursion with e0 = 0, we find that

en = h
n−1

∑
j=0

e(n−j−1)hA
(∫ 1

0
eh(1−θ)A(pj(tj + θh)− p̃j(tj + θh))dθ − 1

h
δj+1

)
. (13)

We will now show that the error en indeed satisfies the bound (9).
First, for the defect δn+1, we infer from (8) and (11) that

‖δn+1‖ ≤ Chk+1M, M = sup
0≤t≤tn+1

‖ f (k)(t)‖.

Next, we have to estimate the term ‖pj(tj + θh)− p̃j(tj + θh)‖. Note that functions
pj and p̃j contain the information of the delay terms. To this end, let q̃nτ denote the
interpolation polynomial through the exact history data

(tn−m−v, y(tn−m−v)), (tn−m−v+1, y(tn−m−v+1)), . . . , (tn−m+r, y(tn−m+r)).

Then, there exists a polynomial q(δ) of degree r + v + 1 such that

4nτ = y(tnτ)− q̃nτ(tnτ) = hr+v+1q(δ)y(r+v+1)(ζ(θ)),

where ζ(θ) ∈ [tn−m−v, tn−m+r]. Similarly, in the case of δn+1, we see that

‖4nτ‖ ≤ CM̃hr+v+1, M̃ = sup
0≤t≤tn+1

‖y(r+v+1)(t)‖.
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Now, we are in the position to estimate the error ‖pj(tj + θh)− p̃j(tj + θh)‖.

‖pj(tj + θh)− p̃j(tj + θh)‖

≤ C
j

∑
`=j−k+1

‖g(t`, y`, y`τ)− g(t`, y(t`), y(t`τ)‖

≤ CL
j

∑
`=j−k+1

(‖y` − y(t`)‖+ ‖q`τ(t`τ)− q̃`τ(t`τ)‖+ ‖4`τ‖)

≤ CL
j

∑
`=j−k+1

(
‖e`‖+

r

∑
i=−ν

‖e`−m+i‖+ M̃hr+v+1

)
.

Combining the above estimation with (13) yields

‖en‖ ≤ C max
j=1,2,...,k−1

‖ej‖+ Ch
n−1

∑
j=0

(‖ej‖+
1
h
‖δj‖+ M̃hr+v+1).

Here, the bound (8) is involved. Using the discrete Gronwall’s lemma, we have

‖en‖ ≤ C max
j=1,2,...,k−1

‖ej‖+ C
n−1

∑
j=0
‖δj‖+ CM̃hr+v+1

≤ C max
j=1,2,...,k−1

‖ej‖+ C max{M, M̃}hmin{k,r+v+1}.

The assertion is obtained by setting r + v = k− 1.

3. Exponential Rosenbrock Multistep Methods

In the last section, we designed the exponential multistep methods for semilinear
DDEs and investigated their stiff convergence. However, in some instances, the numerical
results indicate that this treatment may cause certain issues. Especially when the initial
state is far from the equilibrium point, the scheme must take a very tiny time step to make
sure it stays stable. This reduces the method’s computational efficiency.

In this section, we follow the strategy of the Rosenbrock method [14] to linearize the
equation along the numerical solution in each step. The so-called exponential Rosenbrock
multistep method is constructed by applying the exponential multistep method to the
transformed form of the delay differential equation. This method can be easily extended
to nonlinear delay differential equations. Furthermore, we can show that the k-step expo-
nential Rosenbrock multistep method is stiffly convergent of order k + 1 because of the
favorable features of the transformed form.

3.1. Construction of Exponential Rosenbrock Multistep Methods

To advance the semilinear DDE (1) from tn to tn+1, we perform the following transfor-
mation based on the state (tn, yn, ynτ). Let d, J, and Jτ be the Jacobians of the right-hand
side of Equation (1) with respect to the first term t, the second term y, and the third term yτ ,
respectively, i.e.,

d(t, µ, ν) =
∂g
∂t

(t, µ, ν),

J(t, µ, ν) = A +
∂g
∂y

(t, µ, ν),

Jτ(t, µ, ν) =
∂g
∂yτ

(t, µ, ν).



Axioms 2022, 11, 185 8 of 17

We evaluate at state (tn, yn, ynτ) and denote by

dn = d(tn, yn, ynτ), Jn = J(tn, yn, ynτ), Jnτ = Jτ(tn, yn, ynτ).

Then, we rewrite the semilinear DDE (1) as{
y′(t) = Jny(t) + dnt + Jnτy(t− τ) + rn(t, y(t), y(t− τ)), 0 ≤ t ≤ T,
y(t) = φ(t), −τ ≤ t ≤ 0.

(14)

Here, the reminder rn is given by

rn(t, y(t), y(t− τ)) = Ay(t) + g(t, y(t), y(t− τ))− Jny(t)− dnt− Jnτy(t− τ).

It enjoys

∂

∂t
rn(tn, yn, ynτ) = 0,

∂

∂y
rn(tn, yn, ynτ) = 0,

∂

∂yτ
rn(tn, yn, ynτ) = 0. (15)

As will be indicated in Section 3.2, these properties are critical in deriving the conver-
gence order of the exponential Rosenbrock multistep method.

Remark 4. It appears that the semilinear DDE has been changed into a more complicated form.
Nevertheless, the Lipschitz constant of the remainder rn in (14) is smaller than that of the nonlinear
term g in (1). The numerical results presented in Section 4 indicate that the exponential multistep
method based on (14) is more accurate than that based on the original form (1). Indeed, we will show
that the k-step exponential Rosenbrock multistep method is stiffly convergent of order k + 1. The
order of this method is higher than that of the exponential multistep method.

We now construct the exponential Rosenbrock multistep method for semilinear
DDE (1) based on the form (14).

The exact solution of (14) can be expressed by the following variation-of-constants
formula:

y(tn+1) = ehJn y(tn) + h
∫ 1

0
e(1−θ)hJn [(tn + θh)dn + Jnτy(tn + θh− τ)

+ rn(tn + θh, y(tn + θh), y(tn + θh− τ)]dθ.

With the ϕ-functions defined by (6), we arrive at

y(tn+1) = ehJn y(tn) + hϕ1(hJn)tndn + h2 ϕ2(hJn)dn

+ h
∫ 1

0
e(1−θ)hJn Jnτy(tn + θh− τ)dθ

+ h
∫ 1

0
e(1−θ)hJn rn(tn + θh, y(tn + θh), y(tn + θh− τ)dθ.

(16)

The exponential Rosenbrock multistep method is obtained by replacing y(tn + θh− τ)
and rn(tn + θh, y(tn + θh), y(tn + θh− τ) with suitable approximations.

For y(tn + θh− τ), we use the interpolation polynomial η̂n through points

(tnτ , ynτ), (tn−1,τ , yn−1,τ), . . . , (tn−k,τ , yn−k,τ).

and evaluate it at tn + θh− τ. That is,

y(tn + θh− τ) ≈ η̂n(tn + θh− τ) =
k

∑
j=0

(−1)j
(
−θ

j

)
∇jynτ .
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For the reminder term rn, we approximate it by the interpolation polynomial p̂n
through points

(tn−k+1, rn(tn−k+1, yn−k+1, yn−k+1,τ)), . . . , (tn, rn(tn, yn, ynτ)).

Noting the property (15), for the given data, we have r′n(tn) = 0. Hence, we further
require that p̂′n(tn) = 0. In other words, we employ an incomplete Hermite interpolation to
approximate rn. This is the source for the k + 1 order convergent of a k-step exponential
Rosenbrock multistep method. Denoting R̂n

i = rn(ti, yi, yiτ) for simplicity, the Hermite
interpolation polynomial p̂n reads

p̂n(tn + θh) = R̂n
n +

k−1

∑
j=1

[
(−1)j

(
−θ

j

)
− k

j
(−1)k

(
−θ

k

)]
∇jR̂n

n.

Replacing the delay term y(tn + θh− τ) and the reminder term rn in (16) by polyno-
mials η̂n and p̂n, respectively, gives

yn+1 = ehJn yn + hϕ1(hJn)tndn + h2 ϕ2(hJn)dn + h
k

∑
j=1

β j(hJn)Jnτ∇jynτ

+ hϕ1(hJn)R̂n
n + h

k−1

∑
j=1

(
β j(hJn)−

k
j

βk(hJn)

)
∇jR̂n

n.

(17)

Here, ϕj(z) and β j(z) are defined by (6) and (7).
This is the exponential Rosenbrock multistep method for semilinear DDE (1). The

procedure for determining the stating values y1, y2, . . . , yk−1 are sketched in Appendix B.

Remark 5. The exponential multistep method can be easily extended to a nonlinear delay differential
equation {

y′(t) = F(t, y(t), y(t− τ)), 0 ≤ t ≤ T,
y(t) = φ(t), −τ ≤ t ≤ 0.

The exponential Rosenbrock multistep method is based on the transformed form{
y′(t) = ∂F

∂y y(t) + ∂F
∂t t + ∂F

∂yτ
y(t− τ) + rn(t, y(t), y(t− τ)), 0 ≤ t ≤ T,

y(t) = φ(t), −τ ≤ t ≤ 0

with the corresponding reminder rn. All of the derivatives take values at state (tn, yn, ynτ).

3.2. Stiff Convergence of Exponential Rosenbrock Multistep Methods

This subsection is devoted to investigating the stiff convergence of the exponential
Rosenbrock multistep methods for semilinear DDEs (1).

Under Assumption (1), these Jacobians satisfy the Lipschitz condition:

‖d(t, µ1, ν1)− d(t, µ2, ν2)‖ ≤ L(‖µ1 − µ2‖+ ‖ν1 − ν2‖),
‖J(t, µ1, ν1)− J(t, µ2, ν2)‖ ≤ L(‖µ1 − µ2‖+ ‖ν1 − ν2‖),
‖Jτ(t, µ1, ν1)− Jτ(t, µ2, ν2)‖ ≤ L(‖µ1 − µ2‖+ ‖ν1 − ν2‖).

Note that the nonlinear operator J can be viewed as a perturbation of g. We infer from
Assumption (1) and the perturbation result in [27] that J generates a strongly continuous
semigroup etJ . Hence, there exist constants C, ω, such that

‖etJn‖ ≤ Ceωt, ‖JnetJn‖ ≤ C (18)
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hold uniformly in a neighborhood of the exact solution. It further implies that ϕj(hJn) and
β j(hJn) are bounded operators. Indeed, we have

‖ϕj(hJn)‖ ≤
∫ 1

0
‖e(1−τ)hJn‖ τ j−1

(j− 1)!
dτ ≤ C max{1, eωh}

j!
.

We are now in a position to state our main result on the convergence of the exponential
Rosenbrock multistep methods. In contrast to the case of exponential multistep methods,
the Jacobians vary with each step. Hence, the proof is more involved.

Theorem 2. Apply the k−step exponential Rosenbrock multistep method (17) to the semilinear
DDE (1) satisfying Assumption 1. If the Lagrange interpolation (3) satisfies r + v = k and the
starting values satisfy

‖yj − y(tj)‖ ≤ c1hk+1, j = 1, . . . , k− 1,

then the error bound

‖yn − y(tn)‖ ≤ Chk+1 sup
0≤t≤tn

(
‖ f (k+1)(t)‖+ ‖yk+1(t)‖

)
holds uniformly for n such that 0 ≤ nh ≤ T. The constant C depends on T, but not on ‖A‖, n
and h.

Proof. Let en = yn − y(tn) denote the error of the method at time tn.
The semilinear DDE (1) are recast into the form of (14) at t = tn. Then, the variation-

of-constants formula allows us to write the solution of (14) as

y(tn+1) = ehJn y(tn) + hϕ1(hJn)tndn + h2 ϕ2(hJn)dn

+ h
∫ 1

0
e(1−θ)hJn Jnτy(tn + θh− τ)dθ + h

∫ 1

0
e(1−θ)hJn fn(tn + θh)dθ

(19)

with fn(t) = rn(t, y(t), y(t− τ)) for simplicity.
For fn(t), we consider the Hermite interpolation polynomial pn(t) through the exact

data
(tn−k+1, fn(tn−k+1)), (tn−k+2, fn(tn−k+2)), . . . , (tn, fn(tn))

and satisfies p′n(tn) = f ′n(tn). Then, the interpolation error can given by

fn(tn + θh)− pn(tn + θh) = hk+1(−1)kθ

(
−θ

k

)
f (k+1)
n (ζ(θ))

k + 1

Here, ζ(θ) is a certain intermediate time in the interval [tn−k+1, tn].
On the other hand, for delay term y(tn + θh − τ), we introduce the interpolation

polynomial ηn based on the exact data

(tnτ , y(tnτ)), (tn−1,τ , y(tn−1,τ)), . . . , (tn−k,τ , y(tn−k,τ)).

In this case, we have the interpolation error

y(tn + θh− τ)− ηn(tn + θh− τ) = hk+1(−1)k+1
(

θ

k + 1

)
y(k+1)(ξ(θ))

for certain intermediate time ξ(θ) ∈ [tn−k,τ , tnτ ].
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Replacing the nonlinearity term fn(t) and the delay term y(tn + θh− τ) in (19) by pn
and ηn respectively yields

y(tn+1) = ehJn y(tn) + hϕ1(hJn)tndn + h2 ϕ2(hJn)dn

+ h
∫ 1

0
e(1−θ)hJn Jnτηn(tn + θh− τ)dθ

+ h
∫ 1

0
e(1−θ)hJn pn(tn + θh)]dθ + ρn+1 + σn+1.

(20)

This means that the exact solution y(tn+1) can be expressed in a similar form as the
numerical solution. Here, the defects ρn+1 and σn+1 are

ρn+1 = h
∫ 1

0
eh(1−θ)Jn Jnτ(y(tn + θh− τ)− ηn(tn + θh− τ))dθ,

σn+1 = h
∫ 1

0
eh(1−θ)A( f (tn + θh)− pn(tn + θh))dθ.

Thus, we have the error recursion by taking the difference between (17) and (20):

en+1 = ehJn en + h
∫ 1

0
eh(1−θ)Jn Jnτ(η̂n(tn + θh− τ)− ηn(tn + θh− τ))dθ

+ h
∫ 1

0
eh(1−θ)Jn( p̂n(tn + θh− τ)− pn(tn + θh− τ))dθ − ρn+1 − σn+1.

Solving this recursion and using e0 = 0 gives

en = h
n−1

∑
j=0

e(n−j−1)hA
(∫ 1

0
eh(1−θ)Jj Jjτ(η̂j(tj + θh− τ)− η j(tj + θh− τ))dθ

+
∫ 1

0
eh(1−θ)Jj( p̂j(tj + θh)− pj(tj + θh))dθ − 1

h
ρj+1 −

1
h

σj+1

)
.

(21)

Under Assumption 1, it follows from (18) that defects ρn+1 and σn+1 are bounded by

‖ρn+1‖ ≤ Chk+2M, ‖σn+1‖ ≤ Chk+2M (22)

with
M = sup

0≤t≤tn+1

(
‖ f (k+1)(t)‖+ C‖y(k+1)(t)‖

)
.

To bound the terms η̂j(tj + θh− τ)− η j(tj + θh− τ) and p̂j(tj + θh)− pj(tj + θh) in
error Equation (21), we proceed in the same manner as for the term pj(tj + θh)− p̃j(tj + θh)
in Theorem 1. In fact, we have

‖η̂j(tj + θh− τ)− η j(tj + θh− τ)‖

≤C(k + 1)
r

∑
`=k−v

(
‖ej−m−`‖

)
+ CM(k + 1)hr+v+1

and

‖ p̂j(tj + θh)− pj(tj + θh)‖

≤CL
j

∑
`=j−k+1

(
‖e`‖+

r

∑
i=−ν

‖e`−m+i‖
)
+ C(k + 1)LMhr+v+1.

Here, we have taken r + v = k.
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Gathering the above bounds with (22), we infer from (18) that

‖en‖ ≤ C max
j=1,2,...,k−1

‖ej‖+ C(k + 1)h
n−1

∑
j=0

(‖ej‖+ CMhk+1).

The result follows now from the application of the discrete Gronwall’s lemma. This
completes the proof.

4. Numerical Experiments

In this section, we present some experiments to demonstrate the theoretical results.

Example 1. We consider the following semilinear delay reaction diffusion equation on interval
x ∈ [0, 1]

∂u(x,t)
∂t = D ∂2u

∂x2 (x, t)− σu(x,t)
(1+au(x,t)+bu(x,t)2+cu(x,t−0.1) + f1(x, t), t ∈ [0, 10],

u(0, t) = u(1, t) = 0, t ∈ [0, 10],
u(x, t) = x(1− x)et, t ∈ [−0.1, 0],

(23)

where D is the diffusion coefficient, σ, a, b, and c are positive constants. The added term f1(x, t) is
specified so that the exact solution is u(x, t) = x(1− x)et.

The space derivative is approximated by the standard second order central difference method
with the mesh size of 0.01. For time discretization, the exponential multistep method (4) and the
exponential Rosenbrock multistep method (17) are employed. The relative L2 errors of the proposed
methods are displayed in Figures 1 and 2. We conclude that the k-step exponential multistep method
gives a kth order of accuracy, while the k-step exponential Rosenbrock multistep method provides
an accuracy of order k + 1. Moreover, the error of the exponential Rosenbrock multistep method is
smaller than that of the exponential multistep method when the step size is the same.

10-2 10-1

Time step

10-12

10-10

10-8

10-6
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k=2
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k=4

 slope=1

 slope=2

 slope=3

 slope=4

Figure 1. Errors of k-step exponential multistep method for problem (23). k = 1, 2, 3, 4. D = σ = a =

b = c = 1.
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Figure 2. Errors of k-step exponential Rosenbrock multistep method for problem (23). k = 1, 2, 3, 4.
D = σ = a = b = c = 1.

To demonstrate the superiority of the proposed exponential methods over the classical meth-
ods, we measure the computing times of different methods. Adams linear multistep methods (see,
e.g., [28]), exponential multistep methods, and exponential Rosenbrock multistep methods are
compared in terms of computational times. The CPU times in seconds when all of the methods
achieve a common error tolerance 10−8 are recorded in Table 1. The results reported here show that
exponential methods are more efficient than linear multistep methods. Furthermore, the advantages
of high order methods over low order methods are proven clearly.

Table 1. CPU times of all the methods achieving error tolerance 10−8 for problem (23).

k = 2 k = 3 k = 4

Adams linear multistep methods 55.844 40.141 34.344
exponential multistep method 11.048 5.1875 1.3281
exponential Rosenbrock multistep method 4.7969 1.7813 1.2656

Example 2. Next, we consider the following reaction diffusion system with delay{
∂u1(x,t)

∂t = D1
∂2u1
∂x2 (x, t) + r1u1(x, t)(1− a1u1(x, t− 1) + b1u2(x, t− 1)) + f1(x, t),

∂u2(x,t)
∂t = D2

∂2u2
∂x2 (x, t) + r2u2(x, t)(1 + b2u1(x, t− 1)− a2u2(x, t− 1)) + f2(x, t).

(24)

We solve this problem on [0, 1]× [−1, 15] with initial conditions{
u1(x, t) = x(1− x) sin2(t),−1 ≤ t ≤ 0,
u2(x, t) = x(1− x) cos2(t),−1 ≤ t ≤ 0.

The numerical solutions are obtained by the methods used in Example 1. The relative L2 errors
are presented in Figures 3 and 4. Clearly, all the methods achieve their theoretical convergence
order. It also confirms that the exponential Rosenbrock multistep methods are more accurate than
the exponential multistep methods.
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Figure 3. Errors of k-step exponential multistep method for problem (24). k = 1, 2, 3, 4. D1 = a1 =

b1 = r2 = b2 = a2 = 1, D2 = r1 = 2.
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Figure 4. Errors of k-step exponential Rosenbrock multistep method for problem (24). k = 1, 2, 3, 4.
D1 = a1 = b1 = r2 = b2 = a2 = 1, D2 = r1 = 2.

5. Conclusions

In this paper, we propose the Adams type exponential multistep methods for semilin-
ear stiff delay differential equations. The exponential multistep methods are obtained by
applying the linear multistep method directly to the integral form of the equation, while
the exponential Rosenbrock multistep methods are constructed by applying the exponen-
tial multistep methods to a transformed form of the equation. We show that the k-step
exponential multistep method is stiffly convergent of order k and the stiff convergence
order of the k-step exponential Rosenbrock multistep method is k + 1. We demonstrate that
the exponential Rosenbrock multistep methods are superior to the exponential multistep
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methods in terms of accuracy. In summary, for semilinear stiff delay differential equations,
this work provided efficient numerical methods with fewer restriction conditions.

Finally, we point out that, while the proposed exponential Rosenbrock multistep
methods can be easily applied to nonlinear DDEs, the convergence analysis is restricted
to semilinear stiff DDEs. The convergence property of the methods for nonlinear DDEs
should be investigated in future research. Moreover, fractional [29] and stochastic [30]
differential equations are also widely used in a variety of fields of applied mathematics.
The exponential integrators for these problems need to be validated in the future.
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Appendix A

To determine the starting values y1, y2, . . . , yk−1 for a k-step exponential multistep
method, we approximate g in the integral form (2) by the interpolation polynomial p0
through the points (t0, G0), (t1, G1), . . . , (tk−1, Gk−1). Then, we have

p0(t0 + θh) =
k−1

∑
j=0

(
θ

j

)
4jG0.

Here,4jGn denotes the jth forward difference, which defined recursively by

40Gn = Gn, 4jGn = 4j−1Gn+1 −4j−1Gn, j ≥ 1.

Replacing g by polynomial p0 gives the desired starting values

ys = eshAy0 + h
k−1

∑
j=0

γs,j(hA)4jG0, s = 1, 2, . . . , k− 1. (A1)

The coefficients γs,j are defined as

γs,j(z) =
∫ s

0
e(s−θ)hA

(
θ

j

)
dθ = s

∫ 1

0
es(1−θ)hA

(
sθ

j

)
dθ. (A2)

Compared (A2) with (5), the coefficients γs,j can also be expressed as the linear combi-
nation of the ϕ-functions. For k up to 7, we have
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γs,0(z) = sϕ1(sz),

γs,1(z) = s2 ϕ2(sz),

γs,2(z) = s3 ϕ3(sz)− 1
2

s2 ϕ2(sz),

γs,3(z) = s4 ϕ4(sz)− s3 ϕ3(sz) +
1
3

s2 ϕ2(sz),

γs,4(z) = s5 ϕ5(sz)− 3
2

s4 ϕ4(sz) +
11
12

s3 ϕ3(sz)− 1
4

s2 ϕ2(sz),

γs,5(z) = s6 ϕ6(sz)− 2s5 ϕ5(sz) +
7s4

4
ϕ4(sz)− 5s3

6
ϕ3(sz) +

1
5

s2 ϕ2(sz),

γs,6(z) = s7 ϕ7(sz)− 5s6

2
ϕ6(sz) +

17s5

6
ϕ5(sz)− 15s4

8
ϕ4(sz) +

137s3

180
ϕ3(z)−

1
6

s2 ϕ2(z).

As pointed out in [12], under appropriate assumptions, the nonlinear system (A1) has
a unique solution. The solution can be obtained by fixed point iteration.

Appendix B

For the exponential Rosenbrock multistep method (17), the starting values y1, y2, . . . ,
yk−1 are approximated by replacing the nonlinearity r0 in (16) by the Hermite interpolation
polynomial p̂0, namely, by

p̂0(t0 + θh) = R̂0
0 +

k−1

∑
j=1

[(
θ

j

)
− k

j

(
θ

k

)]
4jR̂0

0.

Together with the interpolation polynomial η̂0 for y(t0 + θh− τ), for s = 1, 2, . . . , k− 1,
the starting value ys is computed by

ys = eshJ0 yn + shϕ1(shJ0)t0d0 + s2h2 ϕ2(shJ0)d0 + h
k

∑
j=0

γs,j(hJ0)J0τ∇jy0τ

+ shϕ1(shJ0)R̂0
0 + h

k−1

∑
j=1

(
γs,j(hJ0)−

k
j
γs,k(hJ0)

)
∇jR̂0

0.
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