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Abstract: The author devotes this paper to defining a new class of soft open sets, namely soft Rω-open
sets, and investigating their main features. With the help of examples, we show that the class of soft
Rω-open sets lies strictly between the classes of soft regular open sets and soft open sets. We show
that soft Rω-open subsets of a soft locally countable soft topological space coincide with the soft
open sets. Moreover, we show that soft Rω-open subsets of a soft anti-locally countable coincide
with the soft regular open sets. Moreover, we show that the class of soft Rω-open sets is closed under
finite soft intersection, and as a conclusion, we show that this class forms a soft base for some soft
topology. In addition, we define the soft δω-closure operator as a new operator in soft topological
spaces. Moreover, via the soft δω-closure operator, we introduce soft δω-open sets as a new class of
soft open sets which form a soft topology. Moreover, we study the correspondence between soft
δω-open in soft topological spaces and δω-open in topological spaces.

Keywords: soft regular-open sets; soft δ-open sets; Rω-open sets; δω-open sets; soft ω-regularity; soft
generated soft topological spaces; soft induced topological spaces

1. Introduction

Some of the problems that confront us in engineering, medicine, sociology, economics
and other fields have their own uncertainties. Therefore, we are unable to deal with these
problems by traditional methods. Several mathematical tools for dealing with uncertainties
were introduced in [1–3] and others. In 1999, Molodtsov [4] introduced soft set theory as a
mathematical tool for dealing with uncertainty.

General topology, as one of the important branches of mathematics, is the basis for
other branches of topology such as geometric topology, algebraic topology, and differential
topology. Soft topology as a new branch of topology that combines soft set theory and
topology is introduced in [5]. Mathematicians then transferred many topological concepts to
include soft topology in [6–23] and others, and substantial contributions can still be made.

Topologists have used closure and interior operators to give rise to several different
new classes of sets. Some are a generalized form of open sets while a few others are the
so-called regular sets. Researchers have discovered applications for these regular sets not
only in mathematics but even in a variety of fields outside of mathematics [24–26].

Soft regular open sets and δ-open sets are defined and investigated in [27,28], respectively.
The targets of this work are to scrutinize the behaviors of soft Rω-open sets via soft

topological spaces, to introduce the soft topology of soft δω-open as a new soft topology,
and to open the door to redefine and investigate some of the soft topological concepts
such as soft compactness, soft correlation, soft class axioms, soft assignments, etc., via soft
Rω-open sets.

The author devotes this paper to defining a new class of soft open sets, namely soft Rω-
open sets, and investigating their main features. With the help of examples, we show that
the class of soft Rω-open sets lies strictly between the classes of soft regular open sets and
soft open sets. We show that soft Rω-open subsets of a soft locally countable soft topological
space coincide with the soft open sets. Moreover, we show that soft Rω-open subsets of a
soft anti-locally countable coincide with the soft regular open sets. Moreover, we show that
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the class of soft Rω-open sets is closed under finite soft intersection, and as a conclusion,
we show that this class forms a soft base for some soft topology. In addition, we define
the soft δω-closure operator as a new operator in soft topological spaces. Furthermore, we
use the soft δω-closure operator to introduce soft δω-open sets as a new class of sets and
we prove that this class of sets forms a soft topology that coincides with the soft topology
generated by soft Rω-open sets as a soft base. Moreover, we study the correspondence
between soft δω-open in soft topological spaces and δω-open in topological spaces.

The arrangement of this article is as follows:
In Section 2, we collect the main definitions and results that will be used in this research.
In Section 3, we define and investigate soft Rω-open sets as a class of soft sets which

lies strictly between the classes of soft regular open sets and soft open sets. We introduce
several results regarding soft Rω-open sets. In particular, we show that the class of soft
Rω-open sets forms a soft base for some soft topology. In addition, we study the cor-
respondence between soft Rω-open sets in soft topological spaces and Rω-open sets in
topological spaces.

In Section 4, we define the soft δω-closure operator and we use it to define soft δω-
open sets. We study relationships between soft δω-open sets and other types of soft open
sets. Moreover, we show that the collection of soft δω-open sets forms a soft topology.
In addition, we study the correspondence between soft δω-open sets in soft topological
spaces and δω-open sets in topological spaces.

In Section 5, we give some conclusions and possible future work.

2. Preliminaries

In this paper, we follow the notions and terminologies as they appear in [29,30].
Throughout this paper, topological space and soft topological space will be denoted by ST
and STS, respectively. Let (X, ξ, A) be an STS, (W, µ) be a TS, M ∈ SS(Y, B), and T ⊆ W.
Throughout this paper, ξc will denote the collection of all soft closed sets of (X, ξ, A),
and µc will denote the collection of all closed sets of (W, µ), with Clξ(M), Clµ(T), Intξ(M),
Intµ(T), and Extξ(M) denoting the soft closure of M in (X, ξ, A), the closure of T in (W, µ),
the soft interior of M in (X, ξ, A), the interior of T in (W, µ), and the soft exterior of M in
(X, ξ, A), respectively.

The following definitions and results will be used in the sequel:

Definition 1. Let (Y, µ) be a TS and let S ⊆ Y. Then
a. Ref. [31] S is called a regular-open set in (Y, µ) if Intµ(Clµ(S)) = S. The family of all

regular-open sets in (Y, µ) will be denoted by RO(Y, µ).
b. Ref. [31] S is called a regular-closed set in (Y, µ) if Y− S ∈ RO(Y, µ). The family of all

regular-closed sets in (Y, µ) will be denoted by RC(Y, µ).
c. Ref. [32] S is called an Rω-open set in (Y, µ) if Intµ(Clµω (S)) = S. The family of all

Rω-open sets in (Y, µ) will be denoted by RωO(Y, µ).
d. Ref. [32] S is called an Rω-closed set in (Y, µ) if Y− S ∈ RωO(Y, µ). The family of all

Rω-closed sets in (Y, µ) will be denoted by RωC(Y, µ).

Definition 2. Let (Y, µ) be a TS and let S ⊆ Y. Then
a. Ref. [33] The δ-closure of S in (Y, µ) is denoted by Clµ

δ (S) and defined as follows:
y ∈ Clµ

δ (S) if and only if for each S ∈ µ with y ∈ S, we have Intµ(Clµ(S)) ∩ S 6= ∅.
b. Ref. [34] The δω-closure of S in (Y, µ) is denoted by Clµ

δω
(S) and defined as follows:

y ∈ Clµ
δω
(S) if and only if for each S ∈ µ with y ∈ S, we have Intµ(Clµω (S)) ∩ S 6= ∅.

c. Ref. [33] S is called a δ-closed set in (Y, µ) if S = Clµ
δ (S).

d. Ref. [34] S is called a δω-closed set in (Y, µ) if S = Clµ
δω
(S).

e. Ref. [33] S is called a δ-open set in (Y, µ) if Y− S is δ-closed set in (Y, µ).
f. Ref. [34] S is called a δω-open set in (Y, µ) if Y− S is δω-closed set in (Y, µ).
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For any TS (Y, µ), denote the collection of all δ-open sets (resp. δω-open sets) in (Y, µ)
by µδ (resp. µδω

).

Theorem 1 ([34]). Let (Y, µ) be a TS. Then (Y, µδ) and (Y, µδω ) are TSs with µδ ⊆ µδω
⊆ µ.

Definition 3 ([27]). Let (Y, σ, B) be an STS and let M ∈ SS(Y, B). Then
a. M is called a soft regular-open set in (Y, σ, B) if Intσ(Clσ(M)) = M. The family of all

soft regular-open sets in (Y, σ, B) will be denoted by RO(Y, σ, B).
b. M is called a soft regular-closed set in (Y, σ, B) if 1B −M ∈ RO(Y, σ, B). The family of

all soft regular-closed sets in (Y, σ, B) will be denoted by RC(Y, σ, B).

Definition 4 ([28]). Let (Y, σ, B) be an STS and let K ∈ SS(Y, B).
a. The soft δ-closure of K in (Y, σ, B) is denoted by Clσ

δ (K) and defined as follows:
by∈̃Clσ

δ (K) if and only if for each S ∈ σ with by∈̃S, we have Intσ(Clσ(S))∩̃K 6= 0B.
b. K is called a soft δ-closed set in (Y, σ, B) if K = Clσ

δ (K).
c. K is called a soft δ-open set in (Y, σ, B) if 1B − K is a soft δ-closed set in (Y, σ, B).

For any STS (Y, σ, B), denote the collection of all soft δ-open sets in (Y, σ, B) by σδ.

Theorem 2 ([28]). Let (Y, σ, B) be an STS. Then (Y, σδ, B) is an STS with σδ ⊆ σ.

Definition 5 ([35]). An STS (Y, σ, B) is soft ω-regular if whenever K ∈ σ and by∈̃K, there exists
F ∈ σ such that by∈̃F⊆̃Clσω (F)⊆̃K.

3. Soft Rω-Open Sets

In this section, we define soft Rω-open sets as a new class of soft open sets. With the
help of examples, we will show that the class of soft Rω-open sets lies strictly between the
classes of soft regular open sets and soft open sets. We will show that soft Rω-open subsets
of a soft locally countable soft topological space coincide with the soft open sets. Moreover,
we will show that soft Rω-open subsets of a soft anti-locally countable coincide with the
soft regular open sets. Moreover, we will show that the class of soft Rω-open sets is closed
under finite soft intersection, and as a conclusion, we show that this class forms a soft base
for some soft topology.

Definition 6. Let (Y, σ, B) be an STS and let M ∈ SS(Y, B). Then
a. M is called a soft Rω-open set in (Y, σ, B) if Intσ(Clσω (M)) = M. The family of all soft

Rω-open sets in (Y, σ, B) will be denoted by RωO(Y, σ, B).
b. M is called a soft Rω-closed set in (Y, σ, B) if 1B −M ∈ RωO(Y, σ, B). The family of all

soft Rω-closed sets in (Y, σ, B) will be denoted by RωC(Y, σ, B).

Theorem 3. Let (Y, σ, B) be an STS. Then RO(Y, σ, B) ⊆ RωO(Y, σ, B) ⊆ σ.

Proof. To see that RO(Y, σ, B) ⊆ RωO(Y, σ, B), let M ∈ RO(Y, σ, B). Then M =
Intσ(Clσ(M)). Since Clσω (M)⊆̃Clσ(M), then Intσ(Clσω (M))⊆̃Intσ(Clσ(M)) = M. On the
other hand, since M⊆̃Clσω (M) and M ∈ σ, then M⊆̃Intσ(Clσω (M)). It follows that
Intσ(Clσω (M)) = M. Hence, M ∈ RωO(Y, σ, B). The inclusion RωO(Y, σ, B) ⊆ σ
is obvious.

The following two examples will show that each of the inclusions in Theorem 3 cannot
be replaced by equality, in general:

Example 1. Consider (R, σ,N) where σ =
{

0N, 1N, C[0,1]

}
. Then Intσ

(
Clσω (C[0,1])

)
=

Intσ(1N) = 1N 6= C[0,1]. Thus, C[0,1] ∈ σ− RωO(Y, σ, B).
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Example 2. Consider (R, σ,N) where σ = {0N, 1N, CZ}. Then Intσ(Clσω (CZ)) = Intσ(CZ) =
CZ and Intσ(Clσ(CZ)) = Intσ(1N) = 1N 6= CZ. Thus, C[0,1] ∈ RωO(Y, σ, B)− RO(Y, σ, B).

Theorem 4. For any STS (Y, σ, B), σ ∩ (σω)
c ⊆ RωO(Y, σ, B).

Proof. Let M ∈ σ ∩ (σω)
c. Since M ∈ (σω)

c, then Clσω (M) = M, and so Intσ(Clσω (M)) =
Intσ(M). Since M ∈ σ, then Intσ(Clσω (M)) = Intσ(M) = M. Therefore, M ∈
RωO(Y, σ, B).

Corollary 1. For any STS (Y, σ, B), σ ∩ CSS(Y, B) ⊆ RωO(Y, σ, B).

Proof. This follows from Theorem 4 of this paper and Theorem 2 (d) of [30].

Theorem 5. For any soft locally countable STS (Y, σ, B), RωO(Y, σ, B) = σ.

Proof. By Theorem 3, RωO(Y, σ, B) ⊆ σ. To see that σ ⊆ RωO(Y, σ, B), let M ∈
σ. Then Intσ(M) = M. Since (Y, σ, B) is soft locally countable, then by Corollary 5
of [30], Clσω (M) = M. Therefore, Intσ(Clσω (M)) = Intσ(M) = M. Hence, M ∈
RωO(Y, σ, B).

Theorem 6. For any soft anti-locally countable STS (Y, σ, B), RO(Y, σ, B) = RωO(Y, σ, B).

Proof. By Theorem 3, RO(Y, σ, B) ⊆ RωO(Y, σ, B). To see that RωO(Y, σ, B) ⊆ RO(Y, σ, B),
let M ∈ RωO(Y, σ, B). Then Intσ(Clσω (M)) = M. Since (Y, σ, B) is soft anti-locally countable,
then by Theorem 14 of [30], Clσω (M) = Clσ(M). Therefore, Intσ(Clσ(M)) = Intσ(Clσω (M)) =
M. Hence, M ∈ RO(Y, σ, B).

Theorem 7. For any STS (Y, σ, B), RωO(Y, σω, B) = RO(Y, σω, B)

Proof. By Theorem 3, we have RO(Y, σω, B) ⊆ RωO(Y, σω, B). To see that RωO(Y, σω, B) ⊆
RO(Y, σω, B), let M ∈ RωO(Y, σω, B). Then Intσω

(
Cl(σω)ω

(M)
)
= M. However, by Theo-

rem 5 of [30], (σω)ω = σω . Therefore, Intσω (Clσω (M)) = M. Hence, M ∈ RO(Y, σω, B).

Theorem 8. Let (Y, σ, B) be an STS and let M, N ∈ RωO(Y, σ, B). Then M∩̃N ∈ RωO(Y, σ, B).

Proof. Let M, N ∈ RωO(Y, σ, B). Then Intσ(Clσω (M)) = M and Intσ(Clσω (N)) = N.
Since M, N ∈ σ, then M∩̃N ∈ σ, and so M∩̃N = Intσ

(
M∩̃N

)
⊆̃Intσ

(
Clσω (M∩̃N)

)
. Con-

versely, since Clσω (M∩̃N) ⊆ Clσω (M)∩̃Clσω (N), then

Intσ

(
Clσω (M∩̃N)

)
⊆̃Intσ

(
Clσω (M)∩̃Clσω (N)

)
= Intσ(Clσω (M))∩̃Intσ(Clσω (N))

= M∩̃N.

Therefore, M∩̃N = Intσ

(
Clσω (M∩̃N)

)
, and hence M∩̃N ∈ RωO(Y, σ, B).

The following example will show that RωO(Y, σ, B) need not be closed under finite
soft unions:

Example 3. Let Y = R, µ be the usual topology on R, and B be any set of parameters. Let
M = C(0,1) and N = C(1,2). Then M, N ∈ RωO(Y, σ, B), while Intσ

(
Clσω (M∪̃N)

)
=

Intσ(C(0,2)) = C(0,2) 6= M∪̃N, and hence M∪̃N /∈ RωO(Y, σ, B).

Theorem 9. Let (Y, σ, B) be an STS and let M ∈ SS(Y, B). Then Intσ(Clσω (M)) ∈ RωO(Y, σ, B).
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Proof. Let K = Intσ(Clσω (M)). Since K = Intσ(Clσω (M))⊆̃Clσω (M), then Clσω (K)⊆̃Clσω

(M) and thus, Intσ(Clσω (K))⊆̃Intσ(Clσω (M)) = K. Moreover, since K ∈ σ, then K =
Intσ(K)⊆̃
Intσ(Clσω (K)). Therefore, K = Intσ(Clσω (K)). Hence, Intσ(Clσω (M)) ∈ RωO(Y, σ, B).

Theorem 10. Let (Y, σ, B) be an STS and let M ∈ SS(Y, B). Then M ∈ RωC(Y, σ, B) if and
only if M = Clσ(Intσω (M)).

Proof. Necessity. Let M ∈ RωC(Y, σ, B). Then 1B −M ∈ RωO(Y, σ, B), and so 1B −M =
Intσ(Clσω (1B −M)). Thus,

M = 1B − Intσ(Clσω (1B −M))

= 1B − Extσ(1B − Clσω (1B −M))

= 1B − (1B − Clσ(1B − Clσω (1B −M)))

= Clσω (1B − Clσω (1B −M))

= Clσ(Extσω (1B −M))

= Clσ(Intσω (M)).

Sufficiency. Suppose that M = Clσ(Intσω (M)). We are going to show that 1B −M =
Intσ(Clσω (1B −M)).

As M = Clσ(Intσω (M)), then

1B −M = 1B − Clσ(Intσω (M))

= Extσ(Intσω (M))

= Intσ(1B − Intσω (M))

= Intσ(1B − Extσω (1B −M))

= Intσ(Clσω (1B −M)).

Theorem 11. For any STS (Y, σ, B), σc ∩ σω ⊆ RωC(Y, σ, B).

Proof. Let M ∈ σc ∩ σω. Since M ∈ σω, then Intσω (M) = M, and so Clσ(Intσω (M)) =
Clσ(M). Since M ∈ σc, then Clσ(M) = M. Hence, Clσ(Intσω (M)) = M. Therefore,
by Theorem 10, M ∈ RωC(Y, σ, B).

Definition 7. A STS (Y, σ, B) is called saturated if T(b) 6= ∅ for all T ∈ σ− {0B} and b ∈ B.

Theorem 12. Let (Y, σ, B) be a saturated STS. Let M ∈ σ and K ∈ σc. Then for each b ∈ B
we have

(a) Clσb(M(b)) = (Clσ(M))(b).
(b) Intσb(K(b)) = (Intσ(K))(b).
(c) (Intσ(Clσ(M)))(b) = Intσb(Clσb(M(b))).

Proof. (a) By Proposition 7 of [5], Clσb(M(b)) ⊆ (Clσ(M))(b). To show that (Clσ(M))(b) ⊆
Clσb(M(b)), let y ∈ (Clσ(G))(b) and let V ∈ σb such that y ∈ V. Choose S ∈ σ such that
S(b) = V. Then we have by∈̃Clσ(M)∩̃S, and hence M∩̃S 6= 0B. Since (Y, σ, B) is saturated,
then

(
M∩̃S

)
(b) = M(b) ∩ S(b) = M(b) ∩V 6= ∅. Therefore, y ∈ Clσb(M(b)).

(b) Since 1B − K ∈ σ, then by (a), Clσb((1B − K)(b)) = (Clσ(1B − K))(b). And so,

Y− Clσb((1B − K)(b)) = Y− (Clσ(1B − K))(b)).

However, Y−Clσb((1B − K)(b)) = Y−Clσb(Y− K(b)) = Intσb(K(b)),and Y− (Clσ(1B − K))
(b)) = (1B − Clσ(1B − K))(b) = (Intσ(K))(b). Hence, Intσb(K(b)) = (Intσ(K))(b).
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(c) Since Clσ(M) ∈ σc, then by (b), (Intσ(Clσ(M)))(b) = Intσb((Clσ(M))(b)). Since
M ∈ σ, then by (a), (Clσ(M))(b) = Clσb(M(b)). Thus,

(Intσ(Clσ(M)))(b) = Intσb((Clσ(M))(b))

= Intσb(Clσb(M(b))).

Theorem 13. Let (Y, σ, B) be a saturated STS and let M ∈ σ. Then M ∈ RO(Y, σ, B) if and only
if M(b) ∈ RO(Y, σb) for all b ∈ B.

Proof. Necessity. Let M ∈ RO(Y, σ, B) and let b ∈ B. Since M ∈ RO(Y, σ, B), then
M = Intσ(Clσ(M)), and so M(b) = (Intσ(Clσ(M)))(b). However, by Theorem 12(c),
(Intσ(Clσ(M)))
(b) = Intσb(Clσb(M(b))). Therefore, Intσb(Clσb(M(b))) = M(b), and hence M(b) ∈
RO(Y, σb).

Sufficiency. Suppose that M(b) ∈ RO(Y, σb) for all b ∈ B. Then for every b ∈ B,
M(b) = Intσb(Clσb(M(b))). However, by Theorem 12(c), (Intσ(Clσ(M)))(b) = Intσb(Clσb(M(b)))
for all b ∈ B. Therefore, (Intσ(Clσ(M)))(b) = M(b) for all b ∈ B, and hence M =
Intσ(Clσ(M)). Thus, M ∈ RO(Y, σ, B).

Corollary 2. Let (Y, σ, B) be saturated and soft anti-locally countable STS. Let M ∈ σ. Then
M ∈ RωO(Y, σ, B) if and only if M(b) ∈ RωO(Y, σb) for all b ∈ B.

Proof. This follows from Theorems 6 and 13.

Corollary 3. Let (Y, µ) be a TS and B be any set of parameters. Let Z ∈ P(Y)− {∅}. Then
Z ∈ RO(Y, µ) if and only if CZ ∈ RO(Y, C(µ), B)

Proof. It is clear that (Y, C(µ), B) is saturated. So, the result follows from Theorem 13.

Corollary 4. Let (Y, µ) be an anti-locally countable TS and B be any set of parameters. Let
Z ∈ P(Y)− {∅}. Then Z ∈ RωO(Y, µ) if and only if CZ ∈ RωO(Y, C(µ), B).

Proof. It is clear that (Y, C(µ), B) is saturated and soft anti-locally countable. So, the result
follows from Corollary 2.

Theorem 14. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then M ∈ RO(Y,⊕b∈Bµb, B) if and
only if M(b) ∈ RO(Y, µb) for all b ∈ B.

Proof. Necessity. Let M ∈ RO(Y,⊕b∈Bµb, B) and let b ∈ B. Since M ∈ RO(Y,⊕b∈Bµb, B),
then M = Int⊕b∈Bµb(Cl⊕b∈Bµb(M)) and so M(b) =

(
Int⊕b∈Bµb(Cl⊕b∈Bµb(M))

)
(b). How-

ever, by Lemma 4.9 of [7],
(

Int⊕b∈Bµb(Cl⊕b∈Bµb(M))
)
(b) = Intµb(Clµb(M(b)). Therefore,

M(b) ∈ RO(Y, µb).
Sufficiency. Let M(b) ∈ RO(Y, µb) for all b ∈ B. Then for every b ∈ B, M(b) =(

Intµb(Clµb(M(b)))
)
. However, by Lemma 4.9 of [7], Intµb(Clµb(M(b))) =

(
Int⊕b∈Bµb(Cl⊕b∈Bµb

(M)))(b) for all b ∈ B. Hence, M ∈ RO(Y,⊕b∈Bµb, B).

Corollary 5. Let (Y, µ) be a TS and B be any set of parameters. Let M ∈ SS(Y, B). Then
M ∈ RO(Y, τ(µ), B) if and only if M(b) ∈ RO(Y, µ) for every b ∈ B.

Proof. For each b ∈ B, put µb = µ. Then τ(µ) = ⊕b∈Bµb and the result follows from
Theorem 14.
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Theorem 15. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then M ∈ RωO(Y,⊕b∈Bµb, B) if and
only if M(b) ∈ RωO(Y, µb) for all b ∈ B.

Proof. Necessity. Let M ∈ RωO(Y,⊕b∈Bµb, B) and let b ∈ B. Since M ∈ RωO(Y,⊕b∈Bµb, B),
then M = Int⊕b∈Bµb(Cl(⊕b∈Bµb)ω

(M)). By Theorem 8 of [30], (⊕b∈Bµb)ω = ⊕b∈B(µb)ω

and so M = Int⊕b∈Bµb(Cl⊕b∈B(µb)ω
(M)). Hence, M(b) =

(
Int⊕b∈Bµb(Cl⊕b∈B(µb)ω

(M))
)
(b).

However, by Lemma 4.7 of [7],
(

Int⊕b∈Bµb(Cl⊕b∈B(µb)ω
(M))

)
(b) = Intµb(Cl(µb)ω

(M(b)).
Therefore, M(b) ∈ RωO(Y, µb).

Sufficiency. Let M(b) ∈ RωO(Y, µb) for all b ∈ B. Then for every b ∈ B,
M(b) =

(
Intµb(Cl(µb)ω

(M(b)))
)

. However, by Lemma 4.7 of [7], Intµb(Cl(µb)ω
(M(b)) =(

Int⊕b∈Bµb(Cl⊕b∈B(µb)ω
(M))

)
(b) =

(
Int⊕b∈Bµb(Cl(⊕b∈Bµb)ω

(M))
)
(b) for all b ∈ B. Hence,

M ∈ RωO(Y,⊕b∈Bµb, B).

Corollary 6. Let (Y, µ) be a TS and B be any set of parameters. Let M ∈ SS(Y, B). Then
M ∈ RωO(Y, τ(µ), B) if and only if M(b) ∈ RωO(Y, µ) for every b ∈ B.

Proof. For each b ∈ B, put µb = µ. Then τ(µ) = ⊕b∈Bµb and the result follows from
Theorem 15.

4. The Soft Topology of Soft δω-Open Sets

In this section, we define the soft δω-closure operator and use it to define soft δω-
open sets as a new class of soft open sets which form a soft topology. Moreover, we will
study the correspondence between soft δω-open in soft topological spaces and δω-open in
topological spaces.

Definition 8. Let (Y, σ, B) be an STS and let K ∈ SS(Y, B). The soft δω-closure of K in (Y, σ, B)
is denoted by Clσ

δω
(K) and defined as follows:

by∈̃Clσ
δω
(K) if and only if for each S ∈ σ with by∈̃S, we have Intσ(Clσω (S))∩̃K 6= 0B.

Remark 1. Let (Y, σ, B) be an STS and let K ∈ SS(Y, B). Then by∈̃Clσ
δω
(K) if and only if for

each M ∈ RωO(Y, σ, B) with by∈̃M, we have M∩̃K 6= 0B.

Definition 9. Let (Y, σ, B) be an STS and let K ∈ SS(Y, B). Then K is called
a. a soft δω-closed set in (Y, σ, B) if K = Clσ

δω
(K).

b. a soft δω-open set in (Y, σ, B) if 1B − K is a soft δω-closed set in (Y, σ, B).

The family of all soft δω-open sets in (Y, σ, B) will be denoted by σδω
.

Theorem 16. Let (Y, σ, B) be an STS and let M ∈ SS(Y, B). Then
a. Clσ(M)⊆̃Clσ

δω
(M)⊆̃Clσ

δ (M).
b. If M is a soft δ-closed set in (Y, σ, B), then M is a soft δω-closed set in (Y, σ, B).
c. If M is a soft δω-closed set in (Y, σ, B), then M is a soft closed set in (Y, σ, B).

Proof. Point (a) follows from the definitions and Theorem 3.
Points (b) and (c) follow from the definitions and part (a).

Theorem 17. Let (Y, σ, B) be an STS and let M, N ∈ SS(Y, B). Then
a. If M⊆̃N, then Clσ

δω
(M)⊆̃Clσ

δω
(N).

b. Clσ
δω

(
M∪̃N

)
= Clσ

δω
(M)∪̃Clσ

δω
(N).

c. Clσ
δω
(M) ∈ σc.

d. If M ∈ σω, Clσ
δω
(M) = Clσ(M).

e. If M ∈ σ, Clσ
δ (M) = Clσ

δω
(M) = Clσ(M).
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Proof. (a) Let by∈̃Clσ
δω
(M) and let S ∈ σ such that by∈̃S. Then Intσ(Clσω (S))∩̃M 6= 0B.

Since M⊆̃N, then Intσ(Clσω (S))∩̃N 6= 0B. Thus, by∈̃Clσ
δω
(N).

(b) By (a), Clσ
δω
(M)⊆̃Clσ

δω

(
M∪̃N

)
and Clσ

δω
(N)⊆̃Clσ

δω

(
M∪̃N

)
. Thus, Clσ

δω
(M)∪̃Clσ

δω
(N)

⊆̃Clσ
δω

(
M∪̃N

)
. Toshowthat Clσ

δω

(
M∪̃N

)
⊆̃Clσ

δω
(M)∪̃Clσ

δω
(N), let by∈̃Clσ

δω

(
M∪̃N

)
−Clσ

δω
(M).

We are going to show that by∈̃Clσ
δω
(N). Let K ∈ RωO(Y, σ, B) such that by∈̃K. Since

by∈̃1B − Clσ
δω
(M), then there exists L ∈ RωO(Y, σ, B) such that by∈̃L and L∩̃M = 0B.

By Theorem 8, K∩̃L ∈ RωO(Y, σ, B). Since by∈̃K∩̃L and by∈̃Clσ
δω

(
M∪̃N

)
, then

(
K∩̃L

)
∩̃(

M∪̃N
)
6= 0B. However,(

K∩̃L
)
∩̃
(

M∪̃N
)

=
(
K∩̃L∩̃M

)
∪̃
(
K∩̃L∩̃N

)
= 0B∪̃

(
K∩̃L∩̃N

)
⊆̃K∩̃N

Therefore, K∩̃N 6= 0B. Hence, by∈̃Clσ
δω
(N).

(c) We will show that 1B − Clσ
δω
(M) ∈ σ. Let by ∈ 1B − Clσ

δω
(M). Then we find

S ∈ RωO(Y, σ, B) such that by∈̃S but S∩̃M = 0B. Thus, S∩̃Clσ
δω
(M) = 0B. Hence, 1B −

Clσ
δω
(M) ∈ σ.
(d) Suppose that M ∈ σω. By Theorem 16 (a), Clσ(M)⊆̃Clσ

δω
(M). To see that

Clσ
δω
(M)⊆̃Clσ(M), suppose to the contrary that there exists by∈̃

(
Clσ

δω
(M)

)
∩̃(1B − Clσ(M)).

Since we have by∈̃(1B − Clσ(M)) ∈ σ and by∈̃Clσ
δω
(M), then Intσ(Clσω (1B − Clσ(M)))∩̃M 6=

0B, and so Clσω (1B − Clσ(M))∩̃M 6= 0B. Choose by∈̃Clσω (1B − Clσ(M))∩̃M. Since M ∈ σω ,
then (1B − Clσ(M))∩̃M 6= 0B which is a contradiction.

(e) Suppose that M ∈ σ. By Theorem 16 (a), it is sufficient to show that Clσ
δ (M)⊆̃Clσ(M).

Suppose to the contrary that there exists by∈̃
(
Clσ

δ (M)
)
∩̃(1B − Clσ(M)). Since we have

by∈̃(1B − Clσ(M)) ∈ σ and by∈̃Clσ
δ (M), then Intσ(Clσ(1B − Clσ(M)))∩̃M 6= 0B, and so

Clσ(1B − Clσ(M))∩̃M 6= 0B. Choose by∈̃Clσ(1B − Clσ(M))∩̃M. Since M ∈ σ, then
(1B − Clσ(M))∩̃M 6= 0B which is a contradiction.

Theorem 18. Let (Y, σ, B) be an STS and letA be the family of all soft δω-closed sets in (Y, σ, B). Then
a. 0B, 1B ∈ A.
b. If M, N ∈ A, then M∪̃N ∈ A.
c. If {Mα : α ∈ Γ} ⊆ A, then ∩̃

α∈Γ
Mα ∈ A.

Proof. a. Obvious.
b. Let M, N ∈ A. Then M = Clσ

δω
(M) and N = Clσ

δω
(N). Thus, by Theorem 17 (b),

M∪̃N = Clσ
δω
(M)∪̃Clσ

δω
(N) = Clσ

δω
(M∪̃N). Therefore, M∪̃N ∈ A.

c. Let {Mα : α ∈ Γ} ⊆ A. Then for each α ∈ Γ, Mα = Clσ
δω
(Mα). It is clear that

∩̃
α∈Γ

Mα⊆̃Clσ
δω
( ∩̃

α∈Γ
Mα). On the other hand, by Theorem 17 (a), we have Clσ

δω
( ∩̃

α∈Γ
Mα)⊆̃Clσ

δω

(Mβ) = Mβ for all β ∈ Γ. Hence, Clσ
δω
( ∩̃

α∈Γ
Mα)⊆̃ ∩̃

α∈Γ
Mα.

Theorem 19. For any STS (Y, σ, B), (Y, σδω
, B) is a STS.

Proof. This follows directly from Theorem 18.

Theorem 20. Let (Y, σ, B) be an STS and let K ∈ SS(Y, B). Then the following are equivalent:
a. K ∈ σδω

.
b. For any by∈̃K, there exists S ∈ σ such that by∈̃Intσ(Clσω (S))⊆̃K.
c. For any by∈̃K, there exists M ∈ RωO(Y, σ, B) such that by∈̃M⊆̃K.
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Proof. (a) −→ (b): Let by∈̃K. Since by (a) K ∈ σδω
, then Clσ

δω
(1B − K) = 1B − K, and so

by∈̃
(

1B − Clσ
δω
(1B − K)

)
. Thus, there exists S ∈ σ such that by∈̃S and Intσ(Clσω (S))∩̃

(1B − K) = 0B . Hence, by∈̃Intσ(Clσω (S))⊆̃K.
(b) −→ (c): Let by∈̃K. Then by (b), there exists S ∈ σ such that by∈̃Intσ(Clσω (S))⊆̃K.

Put M = Intσ(Clσω (S)). Then by Theorem 9, M ∈ RωO(Y, σ, B), which ends the proof.
(c) −→ (a) Suppose to the contrary that K /∈ σδω

. Then Clσ
δω
(1B − K) 6= 1B − K,

and so there exists by∈̃Clσ
δω
(1B − K) − (1B − K). Since by∈̃K, then by (c), there exists

M ∈ RωO(Y, σ, B) such that by∈̃M⊆̃K, and thus M∩̃(1B − K) = 0B. Hence, by∈̃1B −
Clσ

δω
(1B − K) which is a contradiction.

Corollary 7. For any STS (Y, σ, B), RωO(Y, σ, B) is a soft base for (Y, σδω
, B).

Theorem 21. For any STS (Y, σ, B), σδ ⊆ σδω
⊆ σ.

Proof. Since RO(Y, σ, B) and RωO(Y, σ, B) are soft bases for (Y, σδ, B) and (Y, σδω
, B),

respectively, and RO(Y, σ, B) ⊆ RωO(Y, σ, B), then σδ ⊆ σδω
. Moreover, by Theorem 3 and

Corollary 7, we have σδω
⊆ σ.

Theorem 22. For any soft locally countable STS (Y, σ, B), σδω
= σ.

Proof. This follows from Theorem 5 and Corollary 7.

Theorem 23. For any soft anti-locally countable STS (Y, σ, B), σδ = σδω
.

Proof. This follows from Theorem 6, Corollary 7, and the fact that RO(Y, σ, B) is a soft
base for (Y, σδ, B).

Theorem 24. If (Y, σ, B) is soft regular, then σδ = σδω
= σ.

Proof. According to Theorem 21, it is sufficient to show that σ ⊆ σδ. Let M ∈ σ and let by∈̃M.
Since (Y, σ, B) is soft regular, then there exists N ∈ σ such that by∈̃N⊆̃Clσ(N)⊆̃M and so
by∈̃Intσ(Clσ(N))⊆̃M. However, Intσ(Clσ(N)) ∈ RO(Y, σ, B). This implies that M ∈ σδ.

Theorem 25. If (Y, σ, B) is soft ω-regular, then σδω
= σ.

Proof. According to Theorem 21, it is sufficient to show that σ ⊆ σδω
. Let M ∈ σ and let

by∈̃M. Since (Y, σ, B) is soft ω-regular, then there exists N ∈ σ such that by∈̃N⊆̃Clσω (N)⊆̃M,
and so by∈̃Intσ(Clσω (N))⊆̃M. This implies that M ∈ σσω .

The assumption that (Y, σ, B) is soft anti-locally countable in Theorem 23 is not super-
fluous, as the following example shows:

Example 4. Let Y be any non-empty set, B be any set of parameters, and by ∈ SP(Y, B). Let
σ = {0B}∪

{
M ∈ SS(Y, B) : by∈̃M

}
. Then (Y, σ, B) is soft locally countable. So, by Theorem 22,

σδω
= σ. Since σc = {1B} ∪

{
K ∈ SS(Y, B) : by∈̃1B − K

}
, then for every M ∈ σ − {0B},

Clσ(M) = 1B. This shows that σδ = {0B, 1B} 6= σδω
.

The assumption that (Y, σ, B) is soft ω-regular in Theorem 25 is not superfluous, as the
following example shows:

Example 5. Let Y = R and B = Z. Let σ =
{

0B, 1B, CR−Q
}

. Then (Y, σ, B) is soft anti-locally
countable. So, by Theorem 23, σδω

= σδ = {0B, 1B} 6= σ.

Theorem 26. For any STS (Y, σ, B), (σω)δ = (σω)δω
.
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Proof. Since RO(Y, σω, B) and RωO(Y, σω, B) are soft bases for (Y, (σω)δ, B) and
(

Y, (σω)δω
,

B), respectively, and by Theorem 7, RO(Y, σω, B) = RωO(Y, σω, B), then (σω)δ = (σω)δω
.

Remark 2. Let (Y, σ, B) be an STS and let K ∈ SS(Y, B). Then Clσ
δω
(K) = Clσδω

(K).

Theorem 27. If (Y, σ, B) is soft locally countable, then (σδω )δω
= σδω

.

Proof. By Theorem 22, σδω
= σ and thus, (σδω )δω

= σδω
.

Theorem 28. If (Y, σ, B) is soft ω-regular, then (σδω )δω
= σδω

.

Proof. By Theorem 25, σδω
= σ and thus, (σδω )δω

= σδω
.

Corollary 8. If (Y, σ, B) is soft regular, then (σδω )δω
= σδω

.

Theorem 29. For any STS (Y, σ, B), (σδ)δ
= σδ.

Proof. By Theorem 21, (σδ)δ
⊆ σδ. To show that σδ ⊆ (σδ)δ

, let M ∈ σδ and let by∈̃M. Then
there exists K ∈ σ such that by∈̃K⊆̃Intσ(Clσ(K))⊆̃M. Put S = Intσ(Clσ(K)). Then S ∈ σδ

with by∈̃S⊆̃Intσδ
(Clσδ

(S)). By Theorem 4.5 (e), Clσδ
(M) = Clσ

δ (M) = Clσ(M). Thus, by
Theorem 21, by∈̃S⊆̃Intσδ

(Clσδ
(S))⊆̃Intσ(Clσ(S))⊆̃M. It follows that M ∈ (σδ)δ

.

Corollary 9. If (Y, σ, B) is soft anti-locally countable, then (σδω )δω
= σδω

.

Proof. It follows form Theorems 23 and 29.

Theorem 30. Let (Y, σ, B) be a saturated STS. Then (σδ)b = (σb)δ for all b ∈ B.

Proof. Let b ∈ B. To show that (σδ)b ⊆ (σb)δ, let U ∈ (σδ)b and let y ∈ U. Choose
M ∈ σδ such that U = M(b). Then by∈̃M, and so there exists S ∈ RO(Y, σ, B) such
that by∈̃S⊆̃M. Thus, y ∈ S(b) ⊆ M(b) = U and by Theorem 3.17, S(b) ∈ RO(Y, σb).
To show that (σb)δ ⊆ (σδ)b, let U ∈ (σb)δ and let y ∈ U. Then there exists V ∈ σb such
that y ∈ V ⊆ Intσb(Clσb(V) ⊆ U. Choose M ∈ σ such that M(b) = V. Then we have
y ∈ M(b) ⊆ Intσb(Clσb(M(b))) ⊆ U. However, by Theorem 12 (c), Intσb(Clσb(M(b))) =
(Intσ(Clσ(M)))(b). Moreover, since M ∈ σ, then Intσ(Clσ(M)) ∈ σδ. It follows that
U ∈ (σδ)b.

Corollary 10. Let (Y, σ, B) be saturated and soft anti-locally countable STS. Then (σδω )b =
(σb)δω

for all b ∈ B.

Proof. This follows from Theorems 23 and 29.

Corollary 11. Let (Y, µ) be a TS and B be any set of parameters. Then ((C(µ))δ)b = µδ for all
b ∈ B.

Proof. It is clear that (Y, C(µ), B) is saturated. So, by Theorem 30, ((C(µ))δ)b = ((C(µ))b)δ
for all b ∈ B. However, (C(µ))b = µδ for all b ∈ B. This ends the proof.

Theorem 31. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then (⊕b∈Bµb)δ = ⊕b∈B(µb)δ.

Proof. To see that (⊕b∈Bµb)δ ⊆ ⊕b∈B(µb)δ, let M ∈ (⊕b∈Bµb)δ. Let b ∈ B. We will
show that M(b) ∈ (µb)δ. Let y ∈ M(b). Then by∈̃M ∈ (⊕b∈Bµb)δ. So, there exists S ∈
RO(Y,⊕b∈Bµb, B) such that by∈̃S⊆̃M and hence, y ∈ S(b) ⊆ M(b). Now, by Theorem 14,
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S(b) ∈ RO(Y, µb). It follows that M(b) ∈ (µb)δ. To see that ⊕b∈B(µδ)b ⊆ (⊕b∈Bµb)δ, let
M ∈ ⊕b∈B(µb)δ and let by∈̃M. Then y ∈ M(b) ∈ (µb)δ. So, there exists U ∈ RO(Y, µb)

such that y ∈ U ⊆ M(b). Let T = bU . Then by∈̃T⊆̃M. On the other hand, since T(b) =
U ∈ RO(Y, µb) and T(a) = ∅ ∈ RO(Y, µa) for all a ∈ B − {b}. Thus, by Theorem 14,
T ∈ RO(Y,⊕b∈Bµb, B). It follows that M ∈ (⊕b∈Bµb)δ.

Theorem 32. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then ((⊕b∈Bµb)δ)b = (µb)δ for all
b ∈ B.

Proof. Let b ∈ B. To see that ((⊕b∈Bµb)δ)b ⊆ (µb)δ, let U ∈ ((⊕b∈Bµb)δ)b and let y ∈ U.
Choose M ∈ (⊕b∈Bµb)δ such that M(b) = U. By Theorem 31, M ∈ ⊕b∈B(µb)δ and so
M(b) = U ∈ (µb)δ. To see that (µb)δ ⊆ ((⊕b∈Bµb)δ)b, let U ∈ (µb)δ. Then bU ∈ ⊕b∈B(µb)δ.
So, by Theorem 31, bU ∈ (⊕b∈Bµb)δ. Hence, (bU)(b) = U ∈ ((⊕b∈Bµb)δ)b.

Corollary 12. Let (Y, µ) be a TS and B be any set of parameters. Let M ∈ SS(Y, B). Then
((τ(µ))δ)b = µδ for all b ∈ B.

Proof. For each b ∈ B, put µb = µ. Then τ(µ) = ⊕b∈Bµb and the result follows from
Theorem 32.

Theorem 33. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then (⊕b∈Bµb)δω
= ⊕b∈B(µb)δω

.

Proof. To see that (⊕b∈Bµb)δω
⊆ ⊕b∈B(µb)δω

, let M ∈ (⊕b∈Bµb)δω
. Let b ∈ B. We will

show that M(b) ∈ (µb)δω
. Let y ∈ M(b). Then by∈̃M ∈ (⊕b∈Bµb)δω

. So, there exists
S ∈ RωO(Y,⊕b∈Bµb, B) such that by∈̃S⊆̃M and so, y ∈ S(b) ⊆ M(b). Now, by Theorem 15,
S(b) ∈ RωO(Y, µb). It follows that M(b) ∈ (µb)δω

. To see that ⊕b∈B(µδω )b ⊆ (⊕b∈Bµb)δω
,

let M ∈ ⊕b∈B(µb)δω
and let by∈̃M. Then y ∈ M(b) ∈ (µb)δω

. So, there exists U ∈
RωO(Y, µb) such that y ∈ U ⊆ M(b). Let T = bU . Then by∈̃T⊆̃M. On the other hand,
since T(b) = U ∈ RωO(Y, µb) and T(a) = ∅ ∈ RωO(Y, µa) for all a ∈ B − {b}. Thus,
by Theorem 15, T ∈ RωO(Y,⊕b∈Bµb, B). It follows that M ∈ (⊕b∈Bµb)δω

.

Theorem 34. Let {(Y, µb) : b ∈ B} be a collection of TSs. Then
(
(⊕b∈Bµb)δω

)
b
= (µb)δω

for
all b ∈ B.

Proof. Let b ∈ B. To see that
(
(⊕b∈Bµb)δω

)
b
⊆ (µb)δω

, let U ∈
(
(⊕b∈Bµb)δω

)
b

and let

y ∈ U. Choose M ∈ (⊕b∈Bµb)δω
such that M(b) = U. By Theorem 33, M ∈ ⊕b∈B(µb)δω

and so M(b) = U ∈ (µb)δω
. To see that (µb)δω

⊆
(
(⊕b∈Bµb)δω

)
b
, let U ∈ (µb)δω

.

Then bU ∈ ⊕b∈B(µb)δω
. So, by Theorem 33, bU ∈ (⊕b∈Bµb)δω

. Hence, (bU)(b) = U ∈(
(⊕b∈Bµb)δω

)
b
.

Corollary 13. Let (Y, µ) be a TS and B be any set of parameters. Then
(
(τ(µ))δω

)
b
= µδω

for
all b ∈ B.

Proof. For each b ∈ B, put µb = µ. Then τ(µ) = ⊕b∈Bµb and the result follows from
Theorem 34.

5. Conclusions

The growth of topology has been supported by the continuous supply of topological
space classes, examples, properties, and relationships. As a result, expanding the structure
of soft topological spaces in the same way is important.

The targets of this work are to scrutinize the behaviors of soft Rω-open sets via soft
topological spaces, to introduce the soft topology of soft δω-open as a new soft topology,
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and to open the door to redefine and investigate some of the soft topological concepts
such as soft compactness, soft correlation, soft class axioms, soft assignments, etc., via soft
Rω-open sets.

In this paper, soft Rω-open sets as a strong form of soft open sets are introduced. We
show that the family of soft Rω-open sets forms a soft basis for some soft topology that
lies between the soft topologies of soft regular-open sets and soft open sets. In addition,
the soft δω-closure operator as a new operator in soft topological spaces is defined. Via the
soft δω-closure operator, soft δω-open sets as a strong form of open sets and a weaker form
of soft Rω-open sets are introduced. Moreover, the correspondence between soft δω-open
in soft topological spaces and δω-open in topological spaces is studied.

In the upcoming work, we plan to: (1) Introduce some soft topological concepts using
soft Rω-open sets such as soft continuity and soft sepapration axioms; and (2) investigate
the behavior of soft δω-open sets under product soft topological spaces.
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