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Abstract: In this work, we have analyzed data sets from various fields using a coupled Ornstein–
Uhlenbeck (OU) system of equations driven by Lévy processes. The Ornstein–Uhlenbeck model is
well known for its ability to capture stochastic behaviors when used as a predictive model. There’s
empirical evidence showing that there exist dependencies or correlations between events; thus, we
may be able to model them together. Here we show such correlation between data from finance,
geophysics and health as well as show the predictive performance when they are modeled with a
coupled Ornstein–Uhlenbeck system of equations. The results show that the solution to the stochastic
system provides a good fit to the data sets analyzed. In addition by comparing the results obtained
when the BDLP is a Γ(a, b) process or an IG(a,b) process, we are able to deduce the best choice out of
the two to model our data sets.

Keywords: Ornstein–Uhlenbeck equation; background driving Lévy process; gamma process; inverse
Gaussian process; coupled system; sample paths

1. Introduction

Since it was proposed in the 1930s, the Ornstein–Uhlenbeck model has been used
in many areas of application, including, but not limited to, fields such as health care [1],
nanotechnology/thermodynamics [2], geophysics [3] and finance [4–6]. Unlike its original
proposition, which involved a Brownian motion as its background driving process, there
have been many extensions or modifications to it in order to truly capture the behavior
of data sets, which otherwise could not be modeled rightly with Brownian motions [7,8].
Empirical results have shown evidence of non-Brownian behavior in many real-world
complex systems [5,9,10]. In fact, according to [9], statistics of the Lévy type is a ubiq-
uitous phenomenon observed in a wide variety of areas, including physics, seismology,
engineering to mention a few. Lévy motions constitute one of the important and funda-
mental families of random motions, which, unlike Brownian motions, have stationary and
independent increments.

Being able to understand and predict future behaviors of stock markets will, without
any doubt, be beneficial to individual investors and economic policymakers. It is for
this reason that there is always ongoing research into improving the forecasting models
of financial stock markets [3,5,10,11]. It is also of little surprise that there arise some
dependencies within stock markets. In studying market trends, one would realize more
often than not a positive relationship in the movements of stock portfolios, such as the
Dow Jones, the NASDAQ, the Russell, and the S&P500. With the knowledge of these
dependencies, we model a stochastic system of equations driven by Lévy processes to
predict future trends of the stock market from two different portfolios.
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Earthquakes, rock slides, and volcanic eruptions are known to be deadly disasters,
which, if not forecasted correctly in order for cities to take safety measures, can result in
unprecedented losses to life and property. The 1989–1990 Eruption of Mount Redoubt in
Alaska was reported to have caused damages worth USD 160 million plus an additional
USD 80 million for two planes that flew over it [12]. Meanwhile, the 1964 rock slide of Mt
Toc, Italy, was estimated to have destroyed property worth USD 200 million and the loss of
2000 lives [13]. The more recent earthquake in Tohoku, Japan, was believed to have resulted
in 18,000 deaths. Knowing the possibility of such devastating losses explains the many
research works devoted to forecasting such phenomena [10,13–17]. This work includes
an application of the model using volcanic eruption data obtained from the Bezymianny
seismic station.

In January 2020, the first case of COVID-19 infection was reported in the United States
of America, and since then, the entire year of 2020 and parts of 2021 were devoted to
battling the spread of the COVID-19 virus, which plagued the entire world for the entirety
of the year 2020. In the wake of this unprecedented pandemic, many researchers around
the world sought to model the spread of the COVID-19 virus in order to help officials
understand the severity of the situation as well as enact preventive measures to control
the spread [18–21]. In reading the literature on these models, we observed that most of
these models were in the class of compartmental models, which are mostly deterministic.
Introducing the stochasticity in the prediction of the spread of the COVID-19 disease has
the advantage of causing the disease to die out in scenarios where deterministic models
predict disease persistence.

The Ornstein–Uhlenbeck model and its variants have been used to analyzed various
data sets in the literature [22–24]. In this work, we extend its application by develop-
ing an intrafield and interfield coupled system with both Γ(a, b) and IG(a,b) background
driving processes. In our model, we have also used the R package stochvol [25] to esti-
mate the volatility parameters, which we use in the coupled Ornstein–Uhlenbeck system
of equations.

A common factor among the data sets being analyzed are their direct impact on human
lives and properties. A financial crush has the potential of crippling economies and increas-
ing poverty; a volcanic eruption affects human lives and property; and a disease outbreak
affects human lives. In [26], authors showed that how complexity science is essential in
modeling these events, which translates to the saving of human lives and property.

In this work, we applied a coupled system of Ornstein–Uhlenbeck stochastic differ-
ential equations (SDE) driven by Lévy processes (BDLP) to model three different areas of
application. The applications presented include applications to financial data, volcanic
eruptions data, and the U.S.A. COVID-19 data. For the financial data, we consider the
Dow Jones, the NASDAQ, the S&P500, and the Russel. The volcanic eruptions data were
obtained from the Bezymianny seismic station and the COVID-19 data from the New York
Times database.

Using the three data sets, we model four different applications. The first three we term
as intra-dependent field applications, which implies modeling two data sets collected from
the same field. The last application we term as an interdependent field application deals
with modeling a combination of two different fields, which in this paper refers to modeling
the financial data with the COVID-19 data. Various works in the literature have shown the
occurrence of such phenomena, where the actions of one event trigger specific behaviors
in another. In [13], the author presented scenarios where volcanic eruptions preceded an
earthquake from up to 120 miles away. It goes without saying that the financial market was
greatly affected in the wake of the COVID-19 pandemic. Our model derives the correlation
parameter, which shows the correlation between the COVID-19 daily cases and deaths
with the stock market, thus helping us model the two different fields of data sets with one
system of SDE.
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For the BDLP, we consider two Lévy processes, namely the Γ(a, b) process and the
IG(a,b) process. This affords us the ability to compare model performance based on the
choice of BDLP to ascertain the desirable option.

The outline of the paper is as follows, we introduce the coupled system of Ornstein–
Uhlenbeck equations in Section 2 in addition to the Γ(a, b) and the inverse Gaussian(a,b)
process. In Section 3, we present the data used in addition to the estimation of relevant
parameters from the data. Section 4 deals with the four different applications of our model
and presents results from running simulations on the data using the model. We show
the estimated errors when our model is used for predictions. In Section 5, we discuss the
results observed from our simulation in Section 4, and finally, in Section 6, we present some
conclusions as well as possible future works based on the current work and its results.

2. Model

Assume two stochastic (Z1(λt), Z2λ2) processes relative to two time series data col-
lected within a specified time period. Suppose the data sets have some correlation, i.e.,
their correlation coefficient is non-zero. We further assume the stochastic processes to be
Lévy driven and simulate the model using either a Γ(a, b) process or an IG(a,b) process for
comparison purposes. Then, we can model a coupled system of Ornstein–Uhlenbeck SDE
as shown below in Equations (1) and (2)

dX(t) = −λ1X(t)dt + σ11dZ1(λ1t)t≥0 + σ12dZ2(λ2t)t≥0 (1)

dY(t) = −λ2Y(t)dt + σ21dZ1(λ1t)t≥0 + σ22dZ2(λ2t)t≥0 (2)

where λ1 and λ2 are the intensity parameters, σ11 and σ22 determine volatility, and σ12 and
σ21 describe the correlation between the data sets. Now, we observe that when σ12 = σ21 =
0, we end up with a decoupled system and thus conclude that the two occurrences do
not have any correlation. When σ12 = σ21 = σ22 = σ11 = 0, we end up with a decoupled
deterministic system, and each equation can be solved independently. Z1 and Z2 are the
background driving Lévy processes for the system; we assume both Z1 and Z2 are either
Γ(a, b) processes or IG(a,b) processes.

In matrix form, the system of the OU equation can be written as

dX(t) = AX(t)dt +
2

∑
i=1

Bi(t)dZ(λt)

where

X =

(
X1
X2

)

A =

(
λ2 0
0 −λ2

)
B1 =

(
σ11 0
0 σ21

)
(3)

B2 =

(
σ21 0
0 σ22

)
and

Z(λt) =
(

Z1(λt)
Z2(λt)

)
The solution to this system was obtained in [5] with a clear step-by-step proof, and

hence the proof is omitted in this work. The solution is thus given as

X(t) = eAtX(0) +
∫ t

0
eA(t−s)B1dZ(λs) +

∫ t

0
eA(t−s)B2dZ(λs) (4)
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2.1. Γ(a, b) and IG(a,b) Process

In this section, we briefly define the Γ(a, b) process and the IG(a,b) process.

2.1.1. Γ(a, b) Process

Definition 1. The gamma process is a stochastic process X = Xt, t ≥ 0 with parameters a and b
which satisfies the following conditions:

• X0 = 0.
• The process has independent increments.
• For s < t, the random variable Xt − Xs has a Γ(a(t− s), b) distribution.

A random variable X has a gamma distribution Γ(a, b) with rate and shape parameters, a > 0
and b > 0, respectively, if its density function is given by

fx(x; a, b) =
ba

Γ(a)
xa−1e−bx, ∀x > 0 (5)

2.1.2. IG(a,b) Process

Definition 2. The IG process Y(t); t ≥ 0 is defined as the stochastic process satisfying the following
properties:

• Y(t) has independent increments.
• Y(t)−Y(s) follow an inverse Gaussian distribution IG()Λ(t)−Λ(s), η[Λ(t)−Λ(s)]2) for

all t > s ≥ 0.

Here, Λ(t) is a monotone increasing function and IG(a,b), a, b > 0 denotes the IG distribution
with probability density function,

f IG(y; a, b) =

√
b

2πy3 eẋp
[
− b(y− a)2

2a2y

]
, y > 0 (6)

The inverse Gaussian distribution is infinitely divisible, thus we redefine IG(a,b) as a stochastic
process X with parameters a,b to be the process that starts at zero and has independent and stationary
increments such that

E = φ(z; at, b) (7)

= exp(−at(
√
−2iz + b2 − b)).

3. Data

In this section, we present the data sets used for analysis. Three different types of data
are used in the analysis, namely U.S. stock market data, U.S. COVID-19 data, and data
from volcanic eruptions. In addition, parameters deduced from the data sets are shown,
including the process used in deriving them.

3.1. Volcanic Data

The volcanic data used were recorded by seismic stations belonging to the Bezymianny
Volcano Campaign Seismic Network (PIRE). Data were requested for 10 days before and
5 days after the published time of the volcanic eruptions. The seismic stations used were
BEZB and BELO. In total, eight different eruptions were recorded from two seismic stations,
namely the BEZB and the BELO. Volcanic eruption 2 was from BEZB and volcanic eruptions
4 and 8 were from BELO.

3.2. U.S.A. Stock Market Data

The four main stock indexes, namely the Dow Jones, the Standard and Poor 500,
the NASDAQ, and the Russell, were downloaded from Yahoo finance. For the purposes
of analysis, we used the daily closing values. The data were collected for the period of 19
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February 2020 to 16 April 2021. As the market was closed during the weekends, those dates
had missing values and were subsequently removed from the data sets.

3.3. U.S.A. COVID-19 Data

The U.S. COVID-19 data used were downloaded from the New York Times COVID-19
data website [27]. The data consist of daily cumulative reports on cases and deaths in the
entire U.S.A., states, and counties. For the purpose of this work, we only use the data
covering the entire U.S.A. Since the data are cumulative, we convert them to a daily report
of new cases and deaths. The period of interest used for analysis is between 19 February
2020 and 16 April 2021.

3.4. Derivation of Parameters
3.4.1. Correlation Matrix Results for the Data Sets

From the model in Section 2, we need to find the parameters σ11 and σ22, which
are the volatility parameters as well as σ12 and σ21, which are the correlation parameters.
To estimate these parameters, we make use of the MATLAB and R software. With the
MATLAB software, we compute the correlations (see Tables 1–4) between the data sets,
while with the R software, using the astsa and stochvol packages, we estimate the volatilities
(see Table 5) within the data at a 95% confidence interval. The results from our estimations
are shown in the tables below. We also show that graphs showing the estimated volatilities
are also shown in the section.

Table 1. Correlation matrix for volcanic eruptions.

Eruption 2 Eruption 4 Eruption 8

Eruption 2 1 0.0626 −0.0754

Eruption 4 0.0626 1 0.0127

Eruption 8 −0.0754 0.0127 1

Table 2. Correlation matrix for stock markets.

Stock Markets Dow Jones S&P500 NASDAQ Russell

Dow Jones 1 0.9942 0.9618 0.9590

S&P500 0.9942 1 0.9840 0.9596

NASDAQ 0.9618 0.9840 1 0.9258

Russell 0.9590 0.9596 0.9258 1

Table 3. Correlation matrix U.S.A. COVID-19 cases and deaths.

U.S.A. COVID-19 Cases U.S.A. COVID-19 Deaths

USA COVID-19 Cases 1 0.6755

USA COVID-19 Deaths 0.6755 1

Table 4. Correlation matrix for stock markets and U.S.A. COVID-19 cases and deaths.

Stock Markets U.S.A. COVID-19 Cases U.S.A. COVID-19 Deaths

Dow Jones 0.5576 0.3829

S&P500 0.5861 0.4202

NASDAQ 0.6219 0.4539

Russell 0.5741 0.4858
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Table 5. lVolatility Values Estimated Using R stochvol package.

Data Volatility (σii)

Dow Jones −5.123718

S&P500 −5.255099

NASDAQ −5.444095

Russell −5.120774

Eruption 2 −7.906

Eruption 4 −7.967

Eruption 8 −7.84

U.S.A. COVID-19 Cases 0.006128

U.S.A. COVID-19 Deaths −1.116847

3.4.2. Volatility Parameter

In this section, we show the results obtained for the volatilities using the stockvol
package in R [25]. Figures 1–8 show the estimated volatilities with a 5%, 50% and 95%
posterior quantiles, from which we chose our values from the 95% posterior quantile.

Figure 1. Graph showing estimated volatility for eruption 2.

Figure 2. Graph showing estimated volatility for eruption 4.
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Figure 3. Graph showing estimated volatility for the Russell.

Figure 4. Graph showing estimated volatility for the Dow Jones.

Figure 5. Graph showing estimated volatility for the NASDAQ.
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Figure 6. Graph showing estimated volatility for the S&P500.

Figure 7. Graph showing estimated volatility for U.S. COVID-19 cases.

Figure 8. Graph showing estimated volatility for U.S. COVID-19 deaths.



Axioms 2022, 11, 160 9 of 17

4. Model Applications

This section presents the four different model applications carried out in this work.
We present the error estimates when we run predictions with our model on the volcanic
eruptions, the financial data, the U.S. COVID-19 data, and a combination of financial data
and the U.S. COVID-19 data.

4.1. Error Analysis

In this section, we briefly discuss the errors generated from the model results. Four
different error calculations are made to ascertain the accuracy of predictions using the OU
system to model multiple data sets. We calculate the root mean squared errors (RMSE),
the mean absolute percentage errors (MAPE), the mean absolute errors (MAE), and the
average relative percentage errors (ARPE). Formulas used in computing the respective
error estimates are explained below. Three sample paths, each with their means, are also
graphed below for volcanic eruptions 2 and 8, the NASDAQ and Russell, and the daily
U.S. COVID-19 cases and deaths. In addition, six of the data sets are chosen, and three
sample paths are graphed for the selected data sets with their means computed and shown
on the graphs.

Error Formulas

Suppose y is the true value, p is the predicted value, and n is the number of data
points, then we have the following.

Root mean squared error: √
n

∑
i=1

yi − pi
n

(8)

Mean absolute percentage error:

1
n

n

∑
i=1

∣∣∣∣ (yi − pi)
2

n

∣∣∣∣ (9)

Mean absolute error:

n

∑
i=1

∣∣∣∣yi − pi
n

∣∣∣∣ (10)

Average relative percentage error:

1
n

n

∑
i=1

|yi − pi|
n

(11)

4.2. Application to Volcanic Data

In this section, we present the results obtained from applying our model to volcanic
eruptions data. The volcanic eruption data were modeled with both the IG(a,b) coupled
OU system and Γ(a, b) coupled OU system. Three out of the eight eruptions were used for
analysis, i.e., eruption 2, eruption 4, and eruption 8. The results are presented in Tables 6
and 7 for both BDLPs.

Table 6. Results from system of gamma(a,b) OU model. The results reported are the best results from
modeling a combination of eruptions 2, eruptions 4 and eruptions 8.

Eruptions RMSE MAPE MAE ARPE

Eruption 2 0.7654 0.0049 34,685.5 1.3275

Eruption 4 1.3218 6.5506 156.69 13.33

Eruption 8 0.8088 0.8212 2419.4 4.6206
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Table 7. Results from system of IG(a,b) OU model. The results reported are the best results from
modeling a combination of eruptions 2, eruptions 4 and eruptions 8.

Eruptions RMSE MAPE MAE ARPE

Eruption 2 0.3927 0.0013 8518.93 0.3411

Eruption 4 1.8168 4.547 18.597 0.926

Eruption 8 0.5839 0.0646 216.49 0.3633

We observe that the errors from the system of IG(a,b) OU model shown in Table 7
are smaller compared to that of the system of gamma(a,b) OU model in Table 6. Thus, we
obtain lower error estimates from the volcanic eruption data when the BDLP of the coupled
OU-system is the inverse Gaussian process.

4.3. Application to U.S. Stock Markets

In this section, we applied the model to the four main financial portfolios from the U.S.
stock market, namely the Dow Jones, the NASDAQ, the S&P500, and the Russell. In the
parameter estimations section, we observed that these data sets were highly correlated with
correlation coefficients close to 1. Data used were the daily closing values observed from
19 February 2020 to 16 April 2021. We also note that these dates omit the weekends since
the stock market is closed during weekends. The results in Tables 8 and 9 show the error
estimates obtained from predictions run using our model with either an IG(a,b) BDLP or a
Γ(a, b) BDLP.

Table 8. Results from system of Γ(a, b) OU model. The results reported are the best results from
modeling a combination of the Dow Jones, the S&P500, the NASDAQ and the Russell.

Stock Markets RMSE MAPE MAE ARPE

Dow Jones 0.1798 0.0014 3950.69 0.1385

S&P500 0.1574 0.0111 446.16 0.1318

NASDAQ 0.2428 0.0046 2009.52 0.1838

Russell 0.2219 0.0338 320.85 0.1992

Table 9. Results from system of IG(a,b) OU model. The results reported are the best results from
modeling a combination of the Dow Jones, the S&P500, the NASDAQ and the Russell.

Stock Markets RMSE MAPE MAE ARPE

Dow Jones 0.1259 0.001 2773.07 0.1027

S&P500 0.1360 0.0095 365.58 0.1125

NASDAQ 0.1762 0.0038 1547.44 0.1495

Russell 0.2235 0.0334 319.25 0.1967

We observe that the errors from the system of IG(a,b) OU model shown in Table 9 are
smaller compared to that of the system of gamma(a,b) OU model in Table 8. Again, we
obtain lower error estimates from the stock market data when the BDLP of the coupled
OU-system is the inverse Gaussian process.

4.4. Application to U.S. COVID-19 Data

In this section, we applied the model to the U.S. COVID-19 data obtained from the
New York times between the dates 19 February 2020 and 16 April 2021. We used the
model to run predictions on both daily reported cases and daily reported deaths. Results in
Tables 10 and 11 show the error estimates obtained when the BDLP in the model was either
a Γ(a, b) process or an IG(a,b) process.
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Table 10. Results from system of Γ(a, b) OU model.

U.S. COVID-19 Data RMSE MAPE MAE ARPE

Daily Cases 1.648 0.3874 51,573.23 106.74

Daily Deaths 3.1713 7.5384 28,204.32 40.40

Table 11. Results from system of IG(a,b) OU model.

U.S. COVID-19 Data RMSE MAPE MAE ARPE

Daily Cases 1.648 0.3874 51,573.23 106.74

Daily Deaths 1.4193 3.1076 828.20 16.65

We observe that the errors from the system of IG(a,b) OU model shown in Table 11 are
smaller compared to those of the system of the gamma(a,b) OU model in Table 10. Thus,
we obtain lower error estimates from data representing daily U.S. COVID-19 cases and
deaths when the BDLP of the coupled OU-system is the inverse Gaussian process.

4.5. Applications to Coupled U.S. COVID-19 and Stock Markets Data

In this section, the system is used to model a combination of stock portfolios and the
U.S. COVID-19 data. In the heightened period of the pandemic when infections and death
tolls increased, stock prices dropped due to the panic of investors who feared a market
crash was imminent. In Section 3, Tables 3 and 4 show a non-zero correlation between the
financial data sets and the daily reported cases and deaths. We model each financial data
with the daily reported U.S. COVID-19 cases and the daily reported U.S. COVID-19 deaths.
Again, we consider here both BDLPs in order to compare the model performance based on
the Lévy process used. Results from the error estimates are shown below in Tables 12–15.

Table 12. Results from system of Γ(a, b) OU model. The results reported are the best results from
modeling a combination of U.S.A. COVID-19 cases with the stock market data.

Data RMSE MAPE MAE ARPE

Daily Cases 1.6481 0.3874 51,525.03 106.74

Dow Jones 0.2684 0.0027 6071.4 0.2052

S&P500 0.5678 0.0631 2516.53 0.7486

NASDAQ 0.182 0.0041 1551.14 0.1598

Russell 0.5211 0.1057 1133.73 0.6226

Table 13. Results from system of IG(a,b) OU model. The results reported are the best results from
modeling a combination of U.S.A. COVID-19 cases with the stock market data.

Data RMSE MAPE MAE ARPE

Daily Cases 1.6481 0.3874 51,530.41 106.74

Dow Jones 0.1259 0.0015 2773.07 0.1027

S&P500 0.136 0.0095 365.56 0.1125

NASDAQ 0.1762 0.0038 1547.44 0.1495

Russell 0.2235 0.0334 319.25 0.1967

We observe that the errors from the system of IG(a,b) OU model shown in Table 13 are
smaller compared to that of the system of the gamma(a,b) OU model in Table 12. Thus, we
obtain lower error estimates from the coupled data from U.S. COVID-19 cases and stock
markets when the BDLP of the coupled OU-system is the inverse Gaussian process.
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Table 14. Results from system of Γ(a, b) OU model. The results reported are the best results from
modeling a combination of U.S.A. COVID-19 deaths with the stock market data.

Data RMSE MAPE MAE ARPE

Daily Deaths 1.4192 3.1049 823.32 16.64

Dow Jones 0.1820 0.0014 4002.92 0.14

S&P500 0.1612 0.0011 456.29 0.1347

NASDAQ 0.267 0.0058 2535.05 0.2263

Russell 0.389 0.0537 537.49 0.3092

Table 15. Results from system of IG(a,b) OU model. The results reported are the best results from
modeling a combination of U.S.A. COVID-19 deaths with the stock market data.

Data RMSE MAPE MAE ARPE

Daily Deaths 1.4192 3.1076 828.20 16.65

Dow Jones 0.1259 0.0010 2773.07 0.103

S&P500 0.136 0.0095 365.58 0.1125

NASDAQ 0.1762 0.0038 1547.44 0.1495

Russell 0.2235 0.0334 319.25 0.1967

We observe that the errors from the system of IG(a,b) OU model shown in Table 15 are
smaller compared to those of the system of the gamma(a,b) OU model in Table 14. Thus,
we obtain lower error estimates from the coupled data from U.S. COVID-19 deaths and
stock markets when the BDLP of the coupled OU-system is the inverse Gaussian process.

5. Discussion

We ran our model simulation with four different applications and showed that with
the data sets modeled, our model prediction gives a good fit for the data sets when we
observe the values obtained from the error estimates. In Tables 6 and 7, we observe an
improvement in the MAPE, MAE, and ARPE error estimates with all three eruptions when
the BDLP is an IG(a,b) process. However, we observe that the RMSE for eruption 4 with
the Γ(a, b) process gave better results. For the application to the financial data, we observe
in Tables 8 and 9 from the error estimates that for the IG(a,b) as BDLP, our predictions
are slightly better compared to those of the Γ(a, b). In Tables 10 and 11, where we model
the U.S. COVID-19 cases and deaths, we observe in Tables 11 and 12 that we obtain the
same error estimates with the IG(a,b) and the Γ(a, b) as BDLPs when we consider the daily
cases; however, for the daily deaths, the IG(a,b) BDLP gives a better error estimate. Finally,
when we consider Tables 12–15, we observe good estimates for both IG(a,b) and Γ(a, b)
BDLP when the financial data were modeled with the U.S. COVID-19 cases compared to
when they were modeled with the U.S. COVID-19 deaths. This is explained from the strong
correlation observed in Table 4 between the financial data and the daily US COVID-19 cases
compared to that of the financial data and the daily U.S. COVID-19 deaths. In addition,
the three sample paths shown in Figures 9–14 for the selected data sets show expected
discontinuous paths, making the choice of a Lévy process as the BDP the proper choice.
Comparing the sample paths to the original time series, we observe the solution path that
best models the data with a mean comparatively closer to that of the time series data.
In addition, by modeling the U.S. COVID-19 data using a stochastic SDE, we observe from
the three sample paths drawn in Figures 13 and 14 that the disease would potentially die
out at some point after it has peaked (both reported cases and deaths) once or multiple
times, thus showing that there exist scenarios where the disease will die out.
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Figure 9. Graph showing three sample paths and time series plot for eruption 2. We observe from the
sample paths that sample path 3 closely predicts the time series and see by comparison of the means
that sample path 3 is closer in value to the mean of the time series data.

Figure 10. Graph showing three sample paths and time series plot for eruption 8. We notice that
eruption 8 has 2 extreme values, which may affect the model’s performance. For this time series, we
again see that sample path 3 closely predicts it and by comparison of the means, sample path 3 is
closer in value to the mean of the time series data.



Axioms 2022, 11, 160 14 of 17

Figure 11. Graph showing three sample paths and time series plot for the Russell index. For this time
series, we see that sample path 2 closely predicts it and by comparison of the means, sample path 2 is
closer in value to the mean of the time series data.

Figure 12. Graph showing three sample paths and time series plot for the NASDAQ index. For this
time series, we see that sample path 2 closely predicts it and by comparison of the means, sample
path 2 is closer in value to the mean of the time series data.
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Figure 13. Graph showing three sample paths and time series plot for the U.S. COVID-19 cases.
For this time series, we see that sample path 1 closely predicts it and by comparison of the means,
sample path 1 is closer in value to the mean of the time series data.

Figure 14. Graph showing three sample paths and time series plot for the U.S. COVID-19 deaths.
For this time series, we see that sample path 1 closely predicts it and by comparison of the means,
sample path 1 is closer in value to the mean of the time series data.

6. Conclusions

In this work, we applied a coupled system of Ornstein–Uhlenbeck SDEs to various
data sets. The results show our model to give good predictions for the data sets under
study. With the results from this work, we plan to conduct additional research, using events
that may be triggered by a different nearby event. For instance, it is believed that volcanic
eruptions can be triggered by nearby earthquakes. We can further research into modeling
the system such that Z1(λt) and Z2(λt) are different Lévy BDPs in order to help improve
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model predictions since some data sets are best modeled with Γ(a, b) BDPs while others
are best modeled with IG(a,b) BDP.
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