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1. Introduction

Recent years have shown the importance of evaluating singular and hypersingular
integrals with rapidly oscillating kernels in mathematical modeling of wave processes in
many areas of physics and technology: electrodynamics (waveguides, gyrotrons), aerody-
namics, geophysics (transformation of gravity and magnetic fields), etc.

Today, there are very few manuscripts devoted to approximate methods for evaluating
singular integrals with rapidly oscillating kernels. We are unaware of papers dealing with
approximate methods for evaluating hypersingular integrals with rapidly oscillating kernels.

In this paper, we construct an optimal with respect to order quadrature formulas for
evaluating singular and hypersingular integrals on Holder functions and differentiable
function classes.

The paper is organized as follows:

Section 1 contains the review of publications evaluating singular integrals with rapidly
oscillating functions. In this section, we give the definitions of singular and hypersingular
integrals and optimal algorithms for their evaluation.

In Section 2, Levin’s method is extended to singular and hypersingular integrals.

In Section 3, we introduce an optimal with respect to order quadrature formulas for
calculating singular integrals with oscillating functions.

In Section 4, we present methods for evaluating the hypersingular integrals with
rapidly oscillating functions.

In Section 5, we give the conclusions of our study.

1.1. Literature Review

An extensive literature exists regarding approximate methods for singular and hyper-
singular integral evaluation. Detailed reviews are given in [1-8]. Very few publications
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concentrate on approximate methods for evaluating singular integrals with oscillating
kernels [9-17].

Here, we give a brief overview of the manuscripts considering singular integrals with
oscillating kernels.

The chapter “Oscillatory Singular Integrals” in [18] is devoted to the study of oscilla-
tory singular integrals. The authors consider singular integrals of the form

Tf(x) = p.v. / ePENK (x — y) f(y)dy, (1)

n

where

(i) KisaC! function away from the origin;
(i) Kis homogeneous of degree -n;
(iii) the mean value of K on the unit sphere vanishes;
(ilii) p(x,y) is a real-value polynomial on R" x R".
The boundedness of the operator T is investigated in a number of function spaces.
Integrals of the form (1) are widely used in the Radon transform.
The paper [11] deals with approximate methods for evaluating the integral

I(f,w) = /_11 @ coswxdx, 2)

where f(x) is an analytic function in [—1;1], w € R\ {0}. The integral (2) is converted to

the form
I coswx —1

f(x)dxﬁh/jl @dleo(f)-f-l(f). 3)

Philon’s method is used for the integral Iy(f).

The second method proposed in [11] consists in approximating the function f(x) in
Ip(f) by segment of the Taylor series. The well-known methods are used to approximate
the integral I(f) [19].

In [20], Levin’s method [21,22] for evaluating integrals with oscillating kernels was
extended to weakly singular integrals with logarithmic singularities.

Approximate methods for evaluating singular integrals with oscillating kernels of
the form

1f,0) = |

1 x

K(f, w)(t) = / b f) 4 @

-1 x—t

have been studied in [9].
In [16], quadrature formulas are constructed for evaluating singular integrals of

the form ) ,
_ elZUX f(x)
I(w,a)-/f1 1_x2x—adx’ )

where w is a large positive number, —1 < a < 1.

To construct a quadrature formula, the function f (x) is approximated by interpolation
polynomial P,(f,x) on nodes x1,x,...,Xx,,a, and a does not match x1,x,...,x,. Asa
result, the integral (5) is approximated by the quadrature formula

1 piwxp (f x)
I(w,a :/ — 7 dx + Ru(f,a).

(.a) -1 V1—x2(x —a) n(f:0)
The estimate for R, (f,a) is given in [16].

1.2. Definitions of Singular and Hypersingular Integrals

Recall the definitions of function classes.
Let y be the unit circle centered at the origin in the plane of the complex variable. Let
A=[-1,1]or A=1.
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Definition 1. Holder function class Hy(M; A)(0 < a < 1) consists of functions f(x) defined on
A satisfying the inequality | f (x") — f(x")] < M|x" — x|~

Definition 2. The class W' (M; A), r = 1,2,..., consists of functions f € Cla, b] which have
absolutely continuous derivatives of orders j = 0,1, ...,r — 1 and a piecewise continuous derivative
£ satisfying || £ (x)]| < M.

Definition 3. The class W"Hy (M; A) consists of functions f(x) belonging to the class W' (M; A)
and satisfying the additional condition f")(x) € Hy(M, A).

Consider the integral

b
i_c(f)tdr, a<t<hb. 6)

Definition 4. The Cauchy principal value of the singular integral (6) is called the limit

lim
n—0

O 4oy [ 1D

c—
T—¢C
a

c+n

Recall the definitions of hypersingular integrals. Hadamard [23] introduced a new
type of integral, hypersingular integrals:

Definition 5. The integral of the type

b
A(x)dx
/ (b — x)pte )

for an integer p and 0 < a < 1 defines a value of the above integral (“finite part”) as the limit of
the sum

/x A@dt ,  B)

(b_t)erzx (b—x)p”‘*l’

a

as x — b if one assumes that A(x) has p derivatives in the neighborhood of point b. Here, B(x) is
any function that satisfies the following two conditions:

(i) The above limit exists;
(ii) B(x) has at least p derivatives in the neighborhood of a point x = b.

An arbitrary choice of B(x) does not depend on the value of the limit in (i). Condition
(ii) defines the values of first (p — 1) derivatives of B(x) at point b. An arbitrary additional

term in the numerator is infinitesimal, of order (b — x)P.

Notation 1. Hadamard [24] gave a fascinating report of various aspects of the creative process in
solving mathematical problems and, in particular, on his discovery of hypersingular integrals.

Chikin [25] introduced the definition of the Cauchy-Hadamard type integral that
generalized a singular integral in the Cauchy principal and Hadamard sense.

Definition 6. The Cauchy—Hadamard principal sense of the following integral

CE a<c<b

/b p(T)dt
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is defined as the limit of the expression

4

jwﬂﬁ:mlfwﬂw+j¢@w+am

) (T—c)? 00 (t—c)P U(T—C)p pp—1

where &(v) is a function chosen so as to provide the existence of the limit above.

In some cases, it is more convenient to use the following definition of hypersingular
integrals, which is equivalent to Definition 6.

Definition 7. Let f(t) € WHy(M;[—-1,1]),r = 1,2,...,0 < a < 1. A hypersingular integral
with order of p + 1 singularity, p < r, is defined by

j(ﬂﬂ KA g (P

T —t)Ptl p! otP

1.3. Optimal Quadrature Formulas for Calculating Singular and Hypersingular Integrals

Formulation of the problem of constructing the best quadrature formula belongs
to Kolmogorov. Bakhvalov introduced [26] the concepts of asymptotically optimal and
optimal with respect to order passive algorithms for solving problems in numerical analysis.
Other approaches to determine optimal passive algorithms are given in [27-29].

We give now the definition of optimal quadrature formulas for singular integrals.

Consider the quadrature rule

N P
Cop = =), Z )(te) + RN (@, t, P, tre).- (8)
k=11=0

Le—
e
G

The error (8)is

Rn(@, pa t) = sup  [Rn(o,t, pr, t)l-

—1<t<1

The error of (8) on ¥ class is

RN(Y, i tr) = sup Ry (@, pri, t)l-
peY

We introduce the functional

IN[¥] = inf RN(Y, ps te),
ity
where the lower bound takes over all the nodes t;, —1 < f; < 1, and the coefficients py;,
k=12,...,N,1=0,1,...,p.

The quadrature Formula (8) is defined by a set of nodes t;, k = 1,2,...,N, and
coefficients p;;, k =1,2,...,N,1 =0,1,...,p, called optimal, asymptotically optimal and
optimal with respect to order if {5 [¥]/Rn(pj;, tf, ¥) = 1,~ 1, < 1, respectively.

In a similar way, the concept of optimal, asymptotically optimal and optimal with
respect to order quadrature formulas for evaluating hypersingular integrals is introduced.

Remark 1. Let ¥ = W'([—1,1],1). Let the integral C¢ be evaluated with quadrature formula

Cop= Z Zpkl J(t) + R (@, t, pra, tr)
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with fixed nodes ty, k = 1,2,..., N, and fixed coefficients py(t), k =1,2,...,N,1=0,1,...,p.
In this case, the functional Rx (Y, px1, tr) is equivalent to the Peano constant. Theory of the Peano
constants is a very important part of classical numerical theory (see [30]). Comparing the definitions
of the Peano constant and optimal quadrature formulas, one can observe that the Peano constant
theory is a special case of optimal algorithms theory.

2. Levin’s Method for Evaluating Singular and Hypersingular Integrals with Rapidly
Oscillating Kernels

We present an application of Levin’s method for evaluating hypersingular integrals
with rapidly oscillating kernels.
Consider the integral

f uug
/ T_t T, l<t<1,p=12,... )

The integral (9) is associated with the differential equation

i[x(f)eiwg(T)] _ f(x)es®)

dt (t—t)p '
where t is a parameter.

Differentiating the left-hand side, we have

x/(T)eiwg(T) +iwg/(T)x(T)ei“'g(T) _ M/

(T—1)P

moreover, it is enough to consider the equation

X (1) +iwg (T)x(T) = (f(r) (10)

T— )P’
If it is possible to find an analytical solution of Equation (10), then

zwg

1
| f L dr = f d[x(7)ews(M] =
-1

- x(1) wg( ) — x( 1)eiws(=1),

(11)

Note that when solving the differential Equation (11), the singularity can be avoided
fort =t.
Indeed, by the definition of the hypersingular integral, we have

1 7)elws () 4 i,

| 3;; —,;grg)[f Ry

- (12)
- f a1

The function ¢(7) has continuous derivatives up to p — 1 order in a neighborhood of
zero and is chosen such that the limit exists.

Taking the integrals separately on the right-hand side of (12) and applying the for-
mula (11) to each of them, we have

[ @ gy [x(1)eiwg(1> + x(t — p)eiwst=n) —
e n—0

—x(t+ 1)ei w8t — x(—1)elws(=1) 4 17’5 ﬂ
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The functions x(t & 7)e“8 (1) can be represented as a sum:
x(t+ ﬂ)eiwg(tﬂ:'?) =x(t+ U)eiwg(fin) +x(t+ U)eiwg(tj:;y),

where the first term tends to infinity as # — 0, and the second term tends to the finite limit.
Obviously,

f f(r)eiws(™ar = lim |:x(1)eiwg(l) + XZ(t _ W)eiwg(tfﬂ)_
e n—0

—xp(t -+ )eies ) — x(—1)eies(-D)]

(13)

eiwg T)dT .
W 1S con-
-1

(
tinuous at t € (—1,1) [4]. Then, lim, ,o(x2(t — 1) 81 — o (£ 4 )ews(tH1)) = 0 and
from (13) the final formula follows:

1
Assuming that f(t), g(t) € WF([—1,1], M), the function ¢(t) = [ o
(

1
/f Tujgt x(l)ei‘*’g(l) —x(—l)ei“’g(*l).

Thus, the analogue of the Newton—Leibniz formula for hypersingular integrals has
been obtained. The application of the Newton-Leibniz formula for hypersingular integrals
for certain function classes has been shown in [31].

It follows from the above that for evaluating hypersingular integrals with rapidly oscil-
lating kernels, one can use numerical methods for solving ordinary differential equations.

3. Quadrature Formulas for Evaluating Singular Integrals with Rapidly
Oscillating Functions

In this section, we study methods for evaluating the following types of singular
integrals with rapidly oscillating functions

_ go )yt"dT
_m/ Tit ten, (14)
27 .
_ s mo g—s
(Ho)(s) = [ p(@){ o Yetg”do, s € [0,2m), (15)
0

where m is a natural number.
Note that integral (14) is reduced by the Hilbert transformation to integral (15). There-
fore, in this section we can restrict ourselves to considering the integral (15).

3.1. Lower Bound Estimates for Quadrature Formula Errors

First, we find a lower bound estimate for the quadrature formula errors using N values
of integrands.
The integral (15) will be evaluated using the quadrature formula

(Ho)(s) = )_ pj(s)p(wj) + Rn(s, pj(s), wj, ¢)- (16)

M=

1

]

We find a lower bound estimate of the error for (16) provided that ¢ € H;([0,27],1).

In doing so, we generalize the method for constructing optimal quadrature formulas
for evaluating singular integrals proposed in [1,3].

There are two cases: (1) N < 2m; (2) N > 2m.

First, assume N < 2m.
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Introduce the nodes t, = 2kt/N,k=0,1,...,N,s; =1In/m,l =0,1,...,2m. Note
to = tN, S0 = Som-

Letv; formaunionofnodesty, k =0,1,...,N,w;,i=1,2,...,N,ands;, [ =0,1,...,2m.
Without loss of generality, assume the sets of nodes t;, k =0,1,...,N, w;, i =1,2,...,N,
ands; =0,1,...,2m, do not intersect.

It follows from below that when some nodes coincide, the lower bound error of the
quadrature formula does not decrease. Thus, we assume that the number of nodes vj,
j=0,1,...,n—1,isequal to n = 2m + 2N.

Let A be segments Ay = [vg, v, 1], k=0,1,...,n—1,v, = vy.

To eachnode t;, k = 0,1,..., N — 1, we assign the following function

(sgn(sinms)) min(|s — v;l, [v;41 —3]), 8 € [0, 041, [0, vi11] C [t tjsal,

j=k k+1,...k+[N/2—1;
¢r(s) = ¢ — (sgn(sinms)) min(|s — v;|, [viy1 —8[), s € [03,0i11], [0, 0i41] C [t tj4a], (17)
i=k+[N/2]+1 k+[N/2] +2,...k+N—1;

0,s€k+ t[N/2]71/k+ f[N/z]Jrﬂ.

Then,
(Hog)(t f i (o) sinmoctg e do >
[N/2]-2 fl+k+1 ;
> Y [ ¢lo)sinmoctg®sEdo+
=1 gy

N—1 t+kn .
+ X [ ¢i(o)sinmoctg™5k >
I=[N/2H41

[N/2]-2 (1+1) bk
> Y et T g o) | sinme o
=1 bk
N—1 lfz+k+1
+ Y gl [ |ek(o)||sinmo|do.
1=[N/2]+1 bk

Let us average the previous inequality over k, k = 0,1,..., N — 1. We have

max (qul)(tl) i (Her)(tr) >

0<I<N—1 =
1 N= 1[N/2]—
35T et " gy o) sinmodo+
k 0 I=1 ik
N 1 N-1 ltl+k+1 .
+5 L X g™ [ |eklo)]|sinmo|do =
k=0 [N/Z]—H tk as)
(N/2)-2 (1+1) 27
=45 L g™ [ ¢*(0)|sinmo|do+
=1
N-—1 27'[0
+% )y Ctg%l fqo*(a)|sinma|da:
I=[N/2]+1
N/2]-2
(1+o0(1 f ¢*(0)|sinmo|de Y ctg%,

Here, ¢*(¢) = min(|o — v;|, |vi1 — 0l), 0 € [v;,0i44],i=0,1,...,n
7T
Estimate from below the integral [ ¢*(c)|sin mo|do under the following conditions:

0
(1) the function ¢*(c) € Hi([0,27],1); (2) the function ¢*(¢) is non-negative; (3) the
function ¢* (o) vanishes at points vy, k = 0,1,...,n — 1.
The set of nodes {vy } is a union of three sets {t;},i =0,1,..., N—-1,{w;},i=1,2,...,N,
{s]-},j =0,1,...,2m—1.
Let N < m/2.
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Then, there are at least 2m — 2N segments [s;, 5, 1], in which there are no nodes from
the sets {wj},j =1,2,...,N,and {t;},i =0,1,..., N — 1. We call such segments marked.
It is easy to see that in the marked segments

S1+1 w/2m w/m ’
/ ¢*(0)|sinmo|do = / osinmodo + / (% — o) sinmodo = Pt (19)
S 0 T/2m
Thus, for N < m /2, we have the estimate
2r C C
* : > _ = —_ =
/qo (0)|sinmo|do > (2m 2N)m2 -
0
From this estimate and the inequality (18), we have
N-2
k + 1 _C
Rn(H 1,1], ctg —InN. 2
N(Hi ([~ Z =_In (20)

Here, and below C, are the constants independent of N and m.
For 3 < N < 2m, we must change the proof Let {v },i=0,1,...,n be a union of
node sets {wi},k=1,2,...,Nand {s;},i =0,1,.
Let
¢*(s) = min(|s — v;|, [v;41 — s|),s € [v;,vi+1],i =0,1,...,n —1.

Each node s; is associated with the function

(sgn(sinms)) min(|s — v;|, |viy 1 — /), s € [vi, vit1],
[0;,0i41] C [s,8j41), j =L1+1,...,m—1;
—(sgn(sinms)) min(|s — vil, [vi41 = s[), s € [0j,0i11],
[vi,vi11] C [sj,8j41],j =m+1,...,2m — 1.

@1(s) =

Then,
m(k+1 .
(Hoy)(s1) > L2 ctg ™ ) f:lljkk“ |1 (0)|| sinmo|do+
t
+Zizmi1 Ctgkm ftllfkk“ |§01 )|| sinmo|do.

Averaging the previous inequality over [,/ =0,1,...,2m — 1, we have

maXoci<an- 1(H<Pz)(51) > Ly otg™IE [ o (o) | sin mo|do+
2 Dk 185 [ ¢ (o) sin mo\da = (21)
— (140(1))L *( )| sinme|do Y2 ctg ™D

Estimate from below the integral

271
/ ¢*(0)| sinmo|do.
0

The integral takes the smallest value if in each interval (s;, s;1) there is at most one
node w;,j =1,2,...,N.
It was shown above (19) that if there are no nodes w;,j = 1,2,..., N in (s;,s;;1), then

[ @) sinmolio = 2 @)
o)|sinmo|do = —.
Si q) mz

Next, consider the case when the interval (s;,s;;1) contains more than one node from
{wj}, j=1,2,...,N. Without loss of generality, we assume N = 2m.
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First, let the interval (s;,s;,1) contain one node from the set {wj}, ji=12,...,N.
Obviously,

f;"“ ¢*(0)| sinmo|de > 2fsi+477’r”(‘7— si)|sinmo|do+

2fs’+2"’ (si + 57 — 0)| sinmo|do =

— 2s l+2m
= W’Z smmT

— sinms; — smm(si + %)‘ = (23)
= 2 |2sinm(s; + %) — sinms; — sinm(s; +
= >[2cosimsin § — (cosim)sin 7| =
= ,,le( D'V2 - (-1)] = HIV2 -1 = 3041
Assume now that the interval (s;, s;41) contains two nodes from {w;},j =1,2,...,N.
This means there is an interval (s;,s;,1), which does not contain nodes from
{w},j=12,..,N.
From (22) and (23), we have
f;j’“ ¢*(0)|sin ma|d(7 + fs’“ ¢*(0)|sinmo|do =
=2+ fsl“ smm(f|da > 2,0.82.

Thus, the minimum of the integral fozn ¢*(0)|sinmo|do is achieved under the as-
sumption that each interval has at most one node {w]} ji=12,...,N.

Other cases for the distribution of nodes wj ,j =1,2,...,N over intervals (s;,s;11),
i=0,1,...,2m — 1 are studied s1m11arly

Thus, from (21)—(23), we have for 7 < N < 2m

cmn? (k+1)m C C

From this estimate and the inequality (20), we have for N < 2m

Rn(Hi([-1,1],1 iz k“) %mN. (24)

For the second case, consider N > 2m. It is enough to introduce additional nodes
ty = 2kn/q,k =0,1,...,9,g = 3N. Let theset vy, vy = 0,1,...,n,n = N+2m+q =
4N + 2m, be the union of nodes w;,i = 1,2,...,N, $i,j=0,1,...,2m, t;,1=0,1,...,q. Each
node t, k =0,1,...,q — 1, is associated with the function ¢ (s), constructed by analogy with
the function ¢ (s) (see (17)). It is easy to see that there are at least N intervals (¢, £, 1), in
which there are no nodes from the sets s;, i = 0,1,...,2m, and w]-,]' =1,2,...,N.

Repeating the above arguments yields

k+ ik +1) %lnN. (25)

Ry N2 Z ctg
From the inequalities (24) and (25), the next statement follows.

Theorem 1. Let ¢(t) € Hy(1). For all possible quadrature formulas of the form (16) using N
nodes, the following estimate holds

CllnN N < 2m;

RN(Hl([OIZT[]’l)) > { CZlnN N > 2m

(26)

where Cq, Cy are constants independent of N.

Making the proof more difficult yields the following statement.
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Theorem 2. Let be ¢(t) € Hy(1), 0 < a < 1. For all possible quadrature formulas of the form (16)
using N nodes, the following estimate holds:

C; N N < 2m;

CIuN N > 2m.

Ry (Hq([0,27],1)) = { (27)

Estimate from below the error of quadrature formulas of (16) on the W"([0,27],1),
r=1,2,...class.

In order to simplify the presentation, we give the proof for N/2 < m only.

We introduce the nodes {t;}, ty = 2kn/N,k=0,1,...,N —1; wj,j=1,2,...,N; {sr},
k=0,1,...,2m—1; {v]-},j =1,2,...,n,n=2N +2m.

To eachnode t;, k =0,1,..., N — 1 we assign the function

A (S_UI)YEZ;IH —s)

: sgnsinms, s € [vi, Vi), [Vi, Viqa]) € [t 1]

= kkt Lk [N/2 -1
Pr(s) = - A%ngnsinms, s € [vi,vipal, [vi, vig] € [t 441]
j=k+n/2]+1,k+[N/2]+2,...,k+ N—-1;
0, s € [Okn/2)—1) [Pkt [N /2)+1)

h[ = |Z)1+1 —Ul|,l =0,1,...,n—1.
Estimating the integral

27

/ @i (o) sinmoctg
0

U_tkda'

and then averaging the result over k, k = 0,1,..., N — 1, we obtain the required estimate
for N/2 < m.

Theorem 3. Let ¢ € W'([0,2],1). For all possible quadrature formulas of the form (16) using
N nodes, the following estimate holds:

C1oN, N < 2m;

RN(W},([OIZTE]’l)) 2 { CzlnN N > Zm
N7 7 - .

(28)

3.2. Quadrature Formulas

Let us construct quadrature formulas for evaluating integrals of (15).
We start by considering singular integrals with the Hilbert kernel:

1 27 cos mo oc—s
E/o f(g){ sinmo }ctg 2 a0,

where f € W'([0,27t], M), M is an integer.
First, we consider the integral

1 27 —
Hf = 27 f(o) sinmactg%da.

The function f(s) is approximated by the interpolation polynomial

2n
fu(s) =Y fsi)wi(s),
=0
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sin 201 (s—sy)

S5
2

where ;. (s) = 2n1+1

. = 27z+1(1+2cos(s—sk)+ .+ 2cosn(s—sg)).
We have form > n

Hf = ﬁ Z%”:O (sk)% fom sinmoctg 52 do+
—l—ﬁ E%H:O (sk)% 027r Y qcosl(oc— sk)smmactg S52do + Ru(f) =
= Zrzlﬁ Yo f(sk) cos ms + ﬁ it f(sk) 2= 0 Y [(sin(m +1)o)(cos Isg) —
—(cos(m + 1)) (sinls;)+
+(sin( —1)o)(coslsy) — (cos(m — 1)) (sin Isy)]ct ‘72st+ Ry(f) =
= 2T Liko f (k) cos ms + by YR f (i) Xy [(cos(m + 1)s) (cos Isy )+ (29)
+(sin(m +1)s)(sinlsg) + (cos(m —1)s)(cos Isg) + sin(m — I)s) (sinlsy)] + R, (f) =

= 5t Yl f (s) [cos ms+
+2Y 1 1 [(cosms)(cosls)(coslsy) + (cos ms)(sinls)(sinlsy)]] =

= by |cos ms T f(si)[1+2 K0 cosl(s —si)]| =
= cosms Yo f(sk)Px(s) = (cosms) fu(s).
Above, we used ([32], p.36)

0,m=0

1 /7 oc—s .
2—/ e”"‘rctgi2 do = e, m >0
TJ—n —ie'™S m < 0

for m integer .
Next, consider the integral

1 27 c—s
Kf—ﬂ ; f(a)cosm(fcthda.

As above, the function f(s) is approximated by the interpolation polynomial f;(s).
Obviously, for m > n,

Kf = 5tg Y2l o f(50) o= fo cos moctg TS do+
+2nlﬁ2i’lo {Z; 17 fo cos (o — s) cosmoctg? Sd(r} +Ru(f) = (30)

:fﬁzjkzof(sk) {smms—cosmscosecs2 [cos 4k+cosz”2+1( )H + Ry (f).

Now, we study error estimates for constructed quadrature formulas. It is enough to
consider the quadrature Formula (29). It is easy to see that the error of (29) is estimated by
the inequality

IR (f)| = ‘% fozn%( ) sinmoctg? sda‘ <
< ﬁ 027r Pu(0) —an(S))SlnmUCthst‘ + ’%lpn(s) fozn sinmoctg?52do| =

(
= Li(s) + L(s).
Here, P (s) = f(s) — fu(s).

Evaluate each term separately,

I)(s) = |¢u(s) cosms| < CE,(f)Inn,



Axioms 2022, 11, 150

12 of 22

where E, (f) is the best approximation in the uniform metric for the function f by nth-order
trigonometric polynomials

<|& ) |¢n<>f w($) 1Pl (0) — 9 (5) P sin e ctg 75 |dr| <
27r
0

é\% [90(0) = ()Pl + 0l — ><a—s>>|ﬁ|ctg%|do\<
< C(m axO<s<2n|¢n<>\>1 B(maxo<scar [ ()P Ji" (o Empdr <
< § (maxocsar [ (5)])' P (maxocs<ar [, (5)))P.

The following statement is well known.

Theorem 4 ([33]). Let f (t) € C[0,27], Py(t) be an n-order trigonometric polynomial satisfying

the inequality |f(t) — Pu(t)| < 1.
Then, |f'(t) — P (t)| < Cnuny, where C is a constant independent of n.

Thus
P B
(;max [#},(5))F < C(Ea(f) Inm)P.
Setting 8 = ﬁ, we have

I, < CE,(f)In*n.

From the estimates I; and I, we have

[Ru(f) < CEx(f) In’ n,
and, therefore, on the function class W H, ([0, 27|, M).

Ru(W'Hy) < cln - (31)

The final estimate is valid for any m > 1.

Now, we consider the following quadrature formula for Hf evaluation.

We approximate the function f(s) by the polygon fx(s), constructed on the nodes
ty =2kn/N,k=0,1,...,N.

The integral Hf will be evaluated using the quadrature formula

27

(Hf)(s) = /fN(O') sinmactg?da—kRN(s, pr(s), tx, f)- (32)
0

The error of (32) is estimated by

_q b

Rn (5,50 f)] < | 2 / ~ fa(o)) sinmoctg™>do]. (33)

Consider two cases: (1) 2m < N, (2) N < 2m.
Start with the first one.

Letbes € Aj,Ak = [tk,tk+1],k =0,1,..., N—1.
Estimate the integral

1
J1=| / YN (o) sinmrfctg?dﬂ (34)
t

forj#1-1,1,14+1.
Set N (s) = f(s) — fn(s). Obviously, ¥ (t;) = Pn(t;11) = 0.
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Obviously,
t
| | ¥n(0)sinmoctg®52do| <
41 (35)
< [ 19w (@)letg 5 do < 35 max(letg T, fetg U=t
t
Lets € Aj, j = . Estimate the integral
ti2
= / PN (o)) sin macthdU
f1
Letd = min(|t;;p —s|,|s — t;_1]). Setd = |s — t;_1].
Represent the previous integral as
788
o= [ ¢n(0))sinmoctg’52do =
t_
s+dl '
= [ yn(0))sinmoctg®2do+ (36)
t—1
tyo
+ [ ¥n(0))sinmoctg%52do = Jo1 + Joo.
s+d
Estimate each of the integrals J51, J22 separately.
Obviously,
tyo 47
ol < [ on(@)llets S5 Sl < erg ™. @7)
s+d
Estimate the integral J»;. We have
s+d
ol =1 [ ¥n(o)sinmoctg2do| <
S;—
s+d o
<| [ (yn(c) — ¢¥n(s)) sinmoctg %5 do|+ (38)
t_
s
+| [ ¢n(s)(sinmo —sinms)ctg52do| = 11 + Jora.
S1-1
Estimate J511, j212.
Obviously,
s+d
671 2
Jo11 < / [n (o) — Pn(s) N~ (39)
1
s+d 62
Jo12 < / lyn(s)]| sinma—sinms||ctg%|d0 < % (40)
S1-1
From inequalities (36)—(40), it follows
C
Il < % (41)

N
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From inequalities (33)—(41), it follows that for 2m < N the inequality holds

ClnN
Ru(Hi (1)) < =~ 2)
The inequality
ClnN
Ry (HL(1) < o, )

is proved in a similar way.

Consider the second case, N < 2m. Lets € Aj, Ay = [t tkp1),k=0,1,..., N —1.

Estimating (34), we again consider two cases, j #1 —1,,I+1and j =1

For the first one, after making some calculations, it can be shown that the largest
error is yielded for functions of the form ¢y (s) = (min(s —s;,5;41 —))sgnsinms, s €
[si,Siv1],si = mi/m,i=0,1,...,2m.

Then,

ta
- 2772
Ji=] / PN (o) sinmactgud(f\ < imax(\ct‘g
2 m?
t

(I-j+1)m Gj—1-1)m

(44)

Now, let j = 1,5 € [t,tj,1] and s € [sy, 504 1]-
We represent the integral J; as

Sp—1
J1 <| [ ¢n(0)sinmoctg%52do|+
t]‘,l
Sv+2 tiv1
+| [ yn(o)sinmoctg®2do| +| [ pn(0) sinmoctg®Edo| =
Sv-1 Sv+2

= Jun + Jiz + J13.

Obviously,
= FaYC
Jin < CW 121 ctg5,. < ﬁlnm;

L1 c
Ji3 < CL El ctgdt < Clnm;
Sv+2
Jiz =1 | (¢n(c)sinmo — py(s)sinms)ctg?Sido| < &,
Sv—1
where L = [2m/N].
Making calculations similar to those above, we obtain the estimate

Ci4InN,2m < N;

<
Ji=A Cz%lnm,N§2m,

(45)

where constants C;, C; are independent of N.
Theorem 1 and inequalities (33)—(45) yield the following statement.

Theorem 5. Among all quadrature formulas of the form (16) using N nodes, the optimal with
respect to order on the function class Hy (1) turns out to be Formula (32). The estimate is valid:

CiyInN,2m < N;

<
RN(Hl(l)) = { Cz%lnmzN < 2m,

where constants Cq, Cy are independent of N.

Similarly, we can prove the following.
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Theorem 6. Among all quadrature formulas of the form (16) using N nodes, the optimal with
respect to order on the function class Hy (1) turns out to be Formula (32). The estimate holds:

Ci+: InN,2m < N;
RN(H“(D) - { C;—Al] Inm, N <2m
mﬂt 4 P 4

where constants Cy, Cy are independent of N.

Using the Hilbert transformation, we obtain

_ foT

o f T—t
= % Oan( o )COSTﬂUCfg SdU—i— 27t f e'%) sinmoctg%Edo+
+o fhf (¢'7) cos modo + 5 fo )sm m(rda.

To evaluate the integral Cf, we use the quadrature formula

Cf 2m 2” Pn[f( i7)] cos moctg T5 do+
ok [T Pn[ )]smmactg—da—i— (46)
—1—%[02”& ¢'7)] cos modo + - 0 T Puf(e)] sinmodo + Ry[f],

where P, is a projection operator onto a set of interpolating trigonometric polynomials on
nodes sy =27tk/(2n+1),k=0,1,...,2n.
The error of (46) is estimated by

IRy (f |<‘ lpn( ) cos moctg? Sdo”—i—
+ 2n 0 (o )smm(fctg sda‘—i—
+| & fo Pu(o )COSTHO'dO" +‘ l,lJn(O') sinmada‘ =
=L +Db+13+1,
where 9, (t) = f(t) — Pu[f](£).

The estimates I; and I have been obtained above (see (31)).
The estimates hold:

(47)

I; < CE,(f)Inn, (48)
Iy < CEn(f)Inn. (49)
The inequalities (31), (48) and (49) yield the estimate

IRy (f) < CEu(f) Inn. (50)

Transform the integrals
1 27 i g—Ss
50 /0 P, [f(e')] cos mUCthd(T
and

1 27
E/@ Pu[f(e” )}smmactg—da.

It was shown above that
o 2 p, [f( 7)] sinmodo = P, [f(e’*)] cosms =

(cos ms) gty it f(€5F) [1+ 210" cosl(s — s¢)] =
%(elms + e—zms) 2n1+1 Ziiof(elsk) [1 + Zl ( il(s—sg) + e—zl(S—%))} = (51)

= (" ) gy Yl £ (1) [1‘1'):1 1<tl ‘“ﬁ)};
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%f Pn[f( i 7)] cosmodo =

= 2n+1 Z f(elsk)[sin ms + 2 cos ms'z;”zl SiI‘ll(S —s5¢)] =
Z ( )[%( eims | efzms) + (ezms _»_efzms) %

X Zl 13 ( il(s—sg) +e—ll(s sk))} —

:<—mﬁlzﬁiofuo[;<wi—t-m>+< e (- 4)]

Thus, the following quadrature formula is valid:

(52)

Cp= 30" ~ )ty X0 £t 1+ X (- ) |-

f%ﬁzz" f(t )[%i(t”‘t_m)+(tmt‘ )Y, 21<t' - t})% (53)

+ A 0 TP, [f(e)] cosm0d0+%f02npn [f(e')] sinmodo + Ry (f).
Estimates (48)—(50) hold:

IRu(f)] < CEn(f)lnzn,

where E, (f) is the best uniform approximation of the function f by trigonometric polyno-
mials of order n.

Let us take a look at an illustration of the quadrature formulas we have discussed.
Consider an integral

1 (7™ o(c—2m)(c—m) sin ks
P / sin macthdU = cosms Z - 9

Im(s) = B
k=1

where m is integer. Let us apply the quadrature Formula (29) for evaluation of the integral:

2n n
Jm(s) = 2n1+l cosmskglof(sk) 1+2§)cosl(s—sk) , (55)

where f(s) = % and s = 22nkf1 fork =0,1,...,2n. We present the results of
evaluation of the integral by series summation and by quadrature formula in Figure 1. We
observe rapid convergence of the quadrature formula to the exact value of the integral. We
also show that the amplitude of the oscillations is determined by the function f(s), as is

suggested by Equation (29).
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Figure 1. Convergence of the quadrature formula (55) to the exact value of the integral (54) for m = 11

andn =1,2,8.

4. Approximate Evaluation of Hypersingular Integrals with Rapidly

Oscillating Functions
In this section, we study approximate methods for evaluating hypersingular integrals

w0 = o [T e p =23, 56)

Here, v = {z : |z| = 1} — is a unit circle centered at the origin in the complex plane,
m is a natural number. To obtain a lower bound estimate for the error of the quadrature
formula, we use the Hilbert transformation from the integral (56) to the hypersingular
integral with a Hilbert kernel. We change the variables in (56): T = el t=¢", 0 € [0,27].

Now, we have

f(r)e™tdt 270 £ (%) (cos mo + i sinmo)e’ do
/ T—t 7/ (elc — eis)p '

of the form

Converting the fraction yields

1 _ e i _
(el7—e)P) (eiJ,giS)pg*i%P
_o=s P
_ e 2 _
(eia_eis)e_i%H
=5 _igino=s \ =5 4 igin =5\ P
_ | cos 2 isin 75 _ (COS 7> +isin 75 ) _
: j0—s Tei U—S
ez 2 —_e 2 ZISIHT
= (zctg = +1)P.

Thus, to estimate from below the error for evaluation integrals of the form (56) by
quadrature formulas constructed on N nodes, it is enough to study the integrals of the form

1 27 sin mo o—s
_ p__ -
27T/ ()4 cos mo betg 2 dor.
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Evaluate the hypersingular integral

Fop = /(p(a) sinmactg”?da
0
by the quadrature formula
Fo = 2 Pi(s)g(wi) + Ru (s, pr(s), we, 9) (57)

on the function class W' ([0,27],1),7 > p.
When estimating the error of the quadrature formula from below, two cases should

be considered:
(1) pisan even natural number;
(2) pisan odd natural number.
Let us first study an integral with a singularity of the even order.
Letty =2kn/N,k=0,1,...,N — 1.
The set of nodes {U]-},]' =0,1,...,n—1,n = 2N + 2m is obtained by merging {t},
k=0,1,...,N—1,{w}, k= 1,...,N,ands]- =nmnj/m,j=0,1,...,2m—1.
We introduce the function

. . (s —v;) (vig1 —s)"
= A
9 (s) Ogig}\%—Zm hf’

7

s € [Ui,vi+1],hi = |Ul‘+1 — 7),‘|,i =01,...,n—1
The constant A is chosen such that ¢* € W"([0,27],1).
To eachnode t;, k =0,1,..., N — 1, we assign the function

¢x(s) = ¢*(s)sgnsinms.

Then,

(For) (sk) f @i (0) sinmoctgP Sk do =

N-1 ti+1
= Y [ o(o)sinmoctg? Skdo >
I=0
[N/2]-1 teyi+1
> Y [ o(o)sinmoctg? Sdo+
=0ty
N—2 it
+ T [ gx(o) sinmoctg? Skdo >
I=[N/2J+1 feyy
(N/2]-1
> Y ctgh T (ZH f ¢*(0)| sinmo|do+

= bt
N—2 Ferit1
+ Y cgllm [ ¢*(0)|sinmoldo.
I=[N/2]+1 el
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Averaging the previous inequality over k, k = 0,1,...,N — 1, we have

N-1
max (Fq)j)(S') >4 E (Fﬁl’k)(sk) >

0<j<N-1
g NotIN/Z- (2R
> & Z Z ctgp f ¢*(0)| sinmo|do+
t
; N=1 N=2 tk+14f1+1
+4 T Y cgPT [ ¢*(0)|sinmo|do =
k= Ol:[N/Z]-‘rl tk+l
N/2)-1
= o) Ty ppp DT f ¢*(0)| sinmo|do.

27
Now, we obtain the estimate of the integral [ ¢*(¢)|sinmo|dc under the
0

following assumptions:

1) ¢*(0) e W(1);
@ (¢ (o) =0,i=0,1,...,r—1,k=0,1,...,n
(3) ¢*(s) >0,s €0,2m].
First, let N < 2m. Repeating the arguments above when studying singular integrals,

we have
21

/(p*((f)| sinmol|do > %
0

For 2m < N, we have

27
/(p*(a)| sinmo|do > —.
0

Thus, for even p, we obtain the estimate

IN/2]-1
Cl%% Y ctg’”%” = N < 2m;

m’N1 p’
RN(Wr(l)) 2 { [Nk/:2]_1

11 kmt
C2WW kgo Ctgp = NV‘H 7 27’1’1 < N

For odd p, the construction is more complicated. Nevertheless, we are sure that the
following estimate is valid:

[N/2]-1
Cl%% y ctgpkW” = le —15, N < 2m;

Ry (W' (1)) > { Nl
Cwy L ctgpk” = NV“ 5, 2m < N.

Finally, the theorem is proved.

Theorem 7. Let ¢ € W'(1). Then, for all possible quadrature formulas of the form (57),
the estimate

[N/2]-1
Clm’N Yy ctgpk": N < 2m;

T k= m'Nl P
RN(W (1)) 2 { [N/_2]—1

Gy L cgb¥ = L— om<N.

is valid.
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When constructing quadrature formulas for hypersingular integral evaluation, we
will use Definition 7, which allows us to construct methods for hypersingular integral
evaluation based on well-known methods for evaluating singular integrals.

From Definition 7, it follows that

m 1
%fvﬂrh dr— 1 _d- 1ff

(t—t)P (p—1)t dep—1 i
-1 m ! #
:@jl)lﬁl[;(w—t ")+ zT Lo (k)[1+211(5—ﬁ) - (58)
1
b T £ [ - o - o o (4 - )] + R

To estimate |R,(f)|, note that the integrals

1 2r P oc—s
E/o Py[f(e )]smmacthda

and
1

27TP i O,_Sd
E/o W Lf (e )]cosmacth .

are trigonometric polynomials of the (1 + m)th order.
As shown above,

cos mo

cos mo s
o YetgOytdo — o [T Palf(em)){ L YetgPytdo| <

sm mao

o [T f(em)]
< CEu(f) In?n.

(59)

Using Theorem 5, we obtain the estimate
IR, ()] < C(n+m)P E,(f) In® n.
Setting f € W"H,(+y, 1), we finally have

(n +m)P~1

2
s In“ n.

R,[W"H,([0,27]),1] < C

5. Conclusions

We studied approximate methods for evaluating Cauchy and Hilbert singular and
hypersingular integrals with rapidly oscillating kernels. In the case of periodic integrable
functions, lower and upper bound quadrature formula estimates have been obtained.
Optimals with respect to order quadrature formulas for certain classes of functions have
been constructed. We developed a method for constructing and estimating quadrature
formulas for hypersingular integrals, based on similar results for singular integrals.

Finally, we point out a few key points of our study presented in this paper:

(1) We introduced a method to estimate below quadrature formulas for evaluating
singular and hypersingular integrals with rapidly oscillating kernels (in this paper, a
method to obtain lower bound estimates by functional {N[¥] in the class of functions ¥).
Moreover, these estimates can be obtained from any set of N nodes located in the range of
integration and N values of integrand function.

The method can be extended to singular and hypersingular integrals defined on other
varieties, to polysingular and polyhypersingular integrals and to many dimensional singu-
lar and hypersingular integrals. The existence of lower bound estimates of functional {n[¥]
allows us to construct an optimal with respect to order (to accuracy) passive algorithms for
evaluating corresponding integrals in the classes of functions Y.



Axioms 2022, 11, 150 21 of 22

(2) We proposed a method to construct quadrature formulas for evaluating hyper-
singular integrals and their error estimates based on quadrature formulas for evaluating
singular integrals.

(3) We proposed optimals with respect to order quadrature formulas, which are appar-
ently the most effective among known methods for evaluating singular and hypersingular
integrals with rapidly oscillating kernels. We made a comparison of the efficiency of
quadrature Formulas (29), (30) and (58) with well-known rules.

Using Levin’s method, one must analytically solve the equation

f(7)

x () +iwg’ (7)x(T) = =Nk

where ¢ and f are known functions.

Applying numerical methods to solve this equation might cause some difficulties due
to singularity at point t on the right-hand side of the equation.

Thus, Levin’s method has some application limitations.

In [16], an interpolation quadrature formula was constructed to evaluate integrals of
the type

/1 f(x)dx
-1vV1—x%(x—a)

with fixed singularity a.

When constructing a quadrature formula, function f(x) is approximated by an inter-
polation polynomial with n 4+ 1 nodes. A set of nodes contains a particular point a.

Thus, in [16], it was necessary to construct the quadrature formula for each value of
-1<t<1

Implementation of other methods, constructed in the cited literature here, causes
greater smoothness of integrand functions than in our computations.
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