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1. Introduction

In the past two decades, fractional differential equations are widely used in the mathe-
matical modeling of real-world phenomena. These applications have motivated many re-
searchers in the field of differential equations to investigate fractional differential equations
with different fractional derivatives, see the monographs [1–4] and the recent references.

The main motivation of studying fractional evolution equation comes from two as-
pects. Firstly, many mathematical models in physics and fluid mechanics are characterized
by fractional partial differential equations. Secondly, many types of fractional partial dif-
ferential equations, such as fractional diffusion equations, wave equations, Navier–Stokes
equations, Rayleigh–Stokes equations, Fokker–Planck equations, Schrödinger equations,
and so on, can be abstracted as fractional evolution equations, for example, see [5–7].
Therefore, the study of fractional evolution equations is very valuable in both theory and
application. Indeed, the well-posedness of fractional evolution equations has become an
important research topic of evolution equations (see [8–18]).

In this paper, we consider the Cauchy problem of fractional evolution equations with
an almost sectorial operator

HDλ,ν
0+y(t) = Ay(t) + g(t, y(t)), t ∈ (0, T],

I(1−λ)(1−ν)
0+ y(0) = y0,

(1)

where HDλ,ν
0+ is the Hilfer fractional derivative of order 0 < λ < 1 and type 0 ≤ ν ≤ 1,

I(1−λ)(1−ν)
0+ is Riemann–Liouville fractional integral of order (1− λ)(1− ν), A is an almost

sectorial operator in Banach space X, g : [0, T]× X → X is a function to be defined later,
y0 ∈ X, T ∈ (0, ∞).

The Hilfer fractional derivative is a natural generalization of Riemann–Liouville
derivative and Caputo derivative, see [1]. It is obvious that fractional differential equations
with Hilfer derivatives include fractional differential equations with Riemann–Liouville
derivative or Caputo derivative as special cases. In the past few years, fractional differential
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equations with Hilfer fractional derivative received great attention from many researchers
(see [8–18]).

In this paper, we will prove new existence theorems of mild solutions for (1) in the
cases that the semigroup associated with the almost sectorial operator is compact as well
as noncompact. In particular, our results obtained in this paper essentially improve and
extend the known results in [4,9,10]. The rest of this paper is organized as follows: in
Section 2, we will introduce almost sectorial operators, fractional calculus and the measure
of noncompactness which will be used in this paper. In Section 3, we will give some useful
lemmas before proving the main results. In Section 4, we will show some new existence
results of mild solutions for Cauchy problem (1). In Section 5, we will point out that the
definitions of the operators in [10,16–18] are inappropriate.

2. Preliminaries

We first introduce some notations and definitions about almost sectorial operators, frac-
tional calculus and the Kuratowski’s measure of noncompactness. For more details, we refer
to [1,2,19,20].

Assume that X is a Banach space with the norm | · |. Let R = (−∞, ∞), R+ = (0, ∞)
and J be a finite interval of R. By C(J, X) we denote the Banach space of all continuous
functions from J to X with the norm ‖u‖ = supt∈J |u(t)| < ∞. We denote by L(X) the
space of all bounded linear operators from X to X with the usual operator norm ‖ · ‖L(X).

Let A be a linear operator from X to itself. Denote by D(A) the domain of A, by
σ(A) its spectrum, while ρ(A) := C − σ(A) is the resolvent set of A. Let S0

µ = {z ∈
C\{0} : | arg z| < µ} be the open sector for 0 < µ < π, and Sµ be its closure, i.e.,
Sµ = {z ∈ C\{0} : | arg z| ≤ µ} ∪ {0}.

Definition 1. Let 0 < k < 1 and 0 < ω < π
2 . We denote Θ−k

ω (X) as a family of all closed linear
operators A : D(A) ⊂ X → X such that

(i) σ(A) ⊂ Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0} and
(ii) for any µ ∈ (ω, π), there exists Cµ such that

‖R(z; A)‖L(X) ≤ Cµ|z|−k, for all z ∈ C \ Sµ,

where R(z; A) = (zI − A)−1, z ∈ ρ(A) is the resolvent operator of A. The linear operator A will
be called an almost sectorial operator on X if A ∈ Θ−k

ω (X).

Define the power of A as

Aβ =
1

2πi

∫
Γρ

zβR(z; A)dz, β > 1− k,

where Γρ = {R+eiρ}⋃{R+e−iρ} is an appropriate path oriented counterclockwise and
ω < ρ < µ. Then, the linear power space Xβ := D(Aβ) can be defined and Xβ is a Banach
space with the graph norm ‖y‖β = |Aβy|, y ∈ D(Aβ).

Next, let us introduce the semigroup associated with A. We denote the semigroup
associated with A by {Q(t)}t≥0. For t ∈ S0

π
2 −ω

Q(t) = e−tz(A) =
1

2πi

∫
Γρ

e−tzR(z; A)dz,

where the integral contour Γρ = {R+eiρ}⋃{R+e−iρ} is oriented counter-clockwise and
ω < ρ < µ < π

2 − | arg t|, forms an analytic semigroup of growth order 1− k.

Lemma 1 (see [19]). Assume that 0 < k < 1 and 0 < ω < π
2 . Set A ∈ Θ−k

ω (X). Then

(i) Q(s + t) = Q(s)Q(t), for any s, t ∈ S0
π
2 −ω

;

(ii) there exists a constant C0 > 0 such that ‖Q(t)‖L(X) ≤ C0tk−1, for any t > 0;
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(iii) The range R(Q(t)) of Q(t), t ∈ S0
π
2 −ω

is contained in D(A∞). Particularly, R(Q(t)) ⊂
D(Aβ) for all β ∈ C with Re(β) > 0,

AβQ(t)y =
1

2πi

∫
Γθ

zβe−tzR(z; A)ydz, for all y ∈ X,

and hence there exists a constant C′ = C′(γ, β) > 0 such that

‖AβQ(t)‖B(X) ≤ C′t−γ−Re(β)−1, for all t > 0;

(iv) If β > 1− k, then D(Aβ) ⊂ ΣQ = {y ∈ X : limt→0+ Q(t)y = y};
(v) R(λ, A) =

∫ ∞
0 e−λtQ(t)dt, for every λ ∈ C with Re(λ) > 0.

Definition 2 (Riemann-Liouville fractional integral, see [2]). The fractional integral of order λ
for a function y : [0, ∞)→ R is defined as

Iλ
0+y(t) =

1
Γ(λ)

∫ t

0
(t− s)λ−1y(s)ds, λ > 0, t > 0,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma function.

Definition 3 (Hilfer fractional derivative, see [1]). Let 0 < λ < 1 and 0 ≤ ν ≤ 1. The Hilfer
fractional derivative of order λ and type ν for a function y : [0, ∞)→ R is defined as

HDλ,ν
0+y(t) = Iν(1−λ)

0+
d
dt

I(1−λ)(1−ν)
0+ y(t).

In particular, when ν = 0, 0 < λ < 1, then

HDλ,0
0+y(t) =

d
dt

I1−λ
0+ y(t) =: LD

λ
0+y(t),

where LDλ
0+ is Riemann–Liouville derivative.

If ν = 1, 0 < λ < 1, then

HDλ,1
0+y(t) = I1−λ

0+
d
dt

y(t) =: CDλ
0+y(t),

where CDλ
0+ is Caputo derivative.

Let D be a nonempty subset of X. The Kuratowski’s measure of noncompactness α is
defined as follows:

α(D) = inf
{

d > 0 : D ⊂
n⋃

j=1

Mj and diam(Mj) ≤ d
}

,

where the diameter of Mj is given by diam(Mj) = sup{|x− y| : x, y ∈ Mj}, j = 1, . . . , n.

Lemma 2 ([21]). Let X be a Banach space, and let {un(t)}∞
n=1 : [0, T] → X be a continuous

function family. If there exists ξ ∈ L[0, T] such that

|un(t)| ≤ ξ(t), t ∈ [0, T], n = 1, 2, . . . .

Then α({un(t)}∞
n=1) is integrable on [0, T], and

α

({ ∫ t

0
un(s)ds

}∞

n=1

)
≤ 2

∫ t

0
α({un(s)}∞

n=1)ds.
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Definition 4 ([22]). Define the wright function Mλ(θ) by

Mλ(θ) =
∞

∑
n=1

(−θ)n−1

(n− 1)!Γ(1− λn)
, 0 < λ < 1, θ ∈ C,

with the following property∫ ∞

0
θδ Mλ(θ)dθ =

Γ(1 + δ)

Γ(1 + λδ)
, for δ ≥ 0.

Lemma 3 ([9]). The problem (1) is equivalent to the integral equation

y(t) =
y0

Γ(ν(1− λ) + λ)
t−(1−λ)(1−ν)

+
1

Γ(λ)

∫ t

0
(t− s)λ−1[Ay(s) + g(s, y(s))]ds, t ∈ (0, T].

(2)

Lemma 4. Assume that y(t) satisfies integral Equation (2). Then

y(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y(s))ds, t ∈ (0, T],

where

Sλ,ν(t) = Iν(1−λ)
0+ Kλ(t), Kλ(t) = tλ−1Qλ(t), and Qλ(t) =

∫ ∞

0
λθMλ(θ)Q(tλθ)dθ.

Proof. This proof is similar to [9], so we omit it.

In view of Lemma 4, we have the following definition.

Definition 5. If y ∈ C((0, T], X) satisfies

y(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y(s))ds, t ∈ (0, T],

then y(t) is called a mild solution of the Cauchy problem (1).

Lemma 5 ([10]). If {Q(t)}t>0 is a compact operator, then {Sλ,ν(t)}t>0 and {Qλ(t)}t>0 are also
compact operators.

Lemma 6 ([4]). Let β > 1− k. For all y ∈ D(Aβ), we have limt→0+Qλ(t)y = y
Γ(λ) .

Lemma 7. Assume that {Q(t)}t>0 is a compact operator. Then {Q(t)}t>0 is equicontinuous.

Lemma 8 (See also [10]). For any fixed t > 0, Qλ(t), Kλ(t) and Sλ,ν(t) are linear operators,
and for any y ∈ X,

|Qλ(t)y| ≤ L1tλ(k−1)|y|, |Kλ(t)y| ≤ L1tλk−1|y|, and |Sλ,ν(t)y| ≤ L2t−1+ν−λν+λk|y|,

where

L1 =
C0Γ(k)
Γ(λk)

, L2 =
C0Γ(k)

Γ(ν(1− λ) + λk)
.

Proof. By ∫ ∞

0
θδ Mλ(θ)dθ =

Γ(1 + δ)

Γ(1 + λδ)
, for δ ≥ 0,
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we have

|Qλ(t)y| =
∣∣∣∣ ∫ ∞

0
λθMλ(θ)Q(tλθ)ydθ

∣∣∣∣
≤λC0

∫ ∞

0
Mλ(θ)θ

ktλ(k−1)|y|dθ

≤L1tλ(k−1)|y|, for t ∈ (0, T] and y ∈ X.

Moreover, for t ∈ (0, T] and y ∈ X,

|Kλ(t)y| = |tλ−1Qλ(t)y| ≤ L1tλk−1|y|,

and

|Sλ,ν(t)y| = |I
ν(1−λ)
0+ Kλ(t)y| =

∣∣∣∣ 1
Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1Kλ(s)yds

∣∣∣∣
≤ C0Γ(k)

Γ(λk)Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1sλk−1|y|ds

≤L2t−1+ν−λν+λk|y|.

This completes the proof.

Lemma 9 ([10]). Assume that {Q(t)}t>0 is equicontinuous. Then {Qλ(t)}t>0, {Kλ(t)}t>0 and
{Sλ,ν(t)}t>0 are strongly continuous, that is, for any y ∈ X and t′′ > t′ > 0,

|Qλ(t′)y−Qλ(t′′)y| → 0, |Kλ(t′)y−Kλ(t′′)y| → 0,

|Sλ,ν(t′)y− Sλ,ν(t′′)y| → 0, as t′′ → t′.

3. Some Lemmas

Throughout this paper, we assume that A ∈ Θ−k
ω (X), 0 < k < 1 and 0 < ω < π

2 .
Furthermore, we suppose that y0 ∈ D(Aβ) with β > 1− k.

We introduce the following hypotheses:

(H1) Q(t) is continuous in the uniform operator topology for t > 0, i.e., {Q(t)}t>0 is
equicontinuous.

(H2) the map t→ g(t, y) is measurable for all y ∈ X and the map y→ g(t, y) is continuous
for a.e. t ∈ [0, T].

(H3) there exists a function m ∈ L((0, T],R+) satisfying

Iλk
0+m ∈ C((0, T],R+), lim

t→0+
t1−ν+λν−λk Iλk

0+m(t) = 0

and |g(t, y)| ≤ m(t), for a.e. t ∈ (0, T] and any y ∈ X.
(H4) there exists a constant r > 0 such that

L2|y0|+ L1 sup
t∈[0,T]

{
t1−ν+λν−λk

∫ t

0
(t− s)λk−1m(s)ds

}
≤ r,

where

L1 =
C0Γ(k)
Γ(λk)

, L2 =
C0Γ(k)

Γ(ν(1− λ) + λk)
.

Let

Cλ((0, T], X) =
{

y ∈ C((0, T], X) : lim
t→0+

t1−ν+λν−λk|y(t)| exists and is finite
}

,
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with the norm
‖y‖λ = sup

t∈(0,T]
{t1−ν+λν−λk|y(t)|}.

Then (Cλ((0, T], X), ‖ · ‖λ) is a Banach space (see Lemma 3.2 of [23]).
For any y ∈ Cλ((0, T], X), define an operator T as follows

(T y)(t) = (T1y)(t) + (T2y)(t),

where

(T1y)(t) = Sλ,ν(t)y0, (T2y)(t) =
∫ t

0
Kλ(t− s)g(s, y(s))ds, for t ∈ (0, T].

Clearly, the problem (1) has a mild solution y∗ ∈ Cλ((0, T], X) if and only if T has a
fixed point y∗ ∈ Cλ((0, T], X).

It is easy to show that

lim
t→0+

t1−ν+λν−λkSλ,ν(t)y0 = 0. (3)

In fact,

t1−ν+λν−λkSλ,ν(t)y0 =
t1−ν+λν−λk

Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1sλ−1Qλ(s)y0ds

=
1

Γ(ν(1− λ))

∫ 1

0
(1− z)ν(1−λ)−1zλ−1tλ(1−k)Qλ(tz)y0dz.

By lemma 6, limt→0+ tλ(1−k)Qλ(tz)y0 = 0 and
∫ 1

0 (1− z)ν(1−λ)−1zλ−1dz exists, so (3)
holds.

In addition, from Lemma 8 and (H3), we have∣∣∣t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, y(s))ds

∣∣∣ ≤L1t1−ν+λν−λk
∫ t

0
(t− s)λk−1m(s)ds

→0, as t→ 0.
(4)

For any u ∈ C([0, T], X), set

y(t) = t−(1−ν+λν−λk)u(t), t ∈ (0, T].

Clearly, y ∈ Cλ((0, T], X). Define an operator F as follows

(Fu)(t) = (F1u)(t) + (F2u)(t),

where

(F1u)(t) =

{
t1−ν+λν−λk(T1y)(t), for t ∈ (0, T],

0, for t = 0,

(F2u)(t) =

{
t1−ν+λν−λk(T2y)(t), for t ∈ (0, T],

0, for t = 0.

Let
Ωr = {u ∈ C([0, T], X) : ‖u‖ ≤ r}.

and
Ω̃r = {y ∈ Cλ((0, T], X) : ‖y‖λ ≤ r}.
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Clearly, Ωr and Ω̃r are nonempty, convex and closed subsets of C([0, T], X) and
Cλ((0, T], X), respectively.

Before giving the main results, we first prove the following lemmas.

Lemma 10. Assume that (H1)–(H4) hold. Then, the set
{
Fu : u ∈ Ωr

}
is equicontinuous.

Proof. Step I. We first prove that
{
F1u : u ∈ Ωr

}
is equicontinuous.

For t1 = 0, t2 ∈ (0, T], by (3), we obtain∣∣∣(F1u)(t2)− (F1u)(0)
∣∣∣ ≤∣∣∣t2

1−ν+λν−λkSλ,ν(t2)y0 − 0
∣∣∣→ 0, as t2 → 0.

For any t1, t2 ∈ (0, T] and t1 < t2, we have∣∣∣(F1u)(t2)− (F1u)(t1)
∣∣∣ ≤∣∣∣t2

1−ν+λν−λkSλ,ν(t2)y0 − t1
1−ν+λν−λkSλ,ν(t1)y0

∣∣∣
≤|t2

1−ν+λν−λk||Sλ,ν(t2)y0 − Sλ,ν(t1)y0|
+ |t2

1−ν+λν−λk − t1
1−ν+λν−λk||Sλ,ν(t1)y0|

→0, as t2 → t1.

Hence,
{
F1u : u ∈ Ωr

}
is equicontinuous.

Step II. We prove that
{
F2u : u ∈ Ωr

}
is equicontinuous.

Let y(t) = t−(1−ν+λν−λk)u(t), for any u ∈ Ωr, t ∈ (0, T]. Then y ∈ Ω̃r.
For t1 = 0, 0 < t2 < T, by (4), we have∣∣∣(F2u)(t2)− (F2u)(0)

∣∣∣ =∣∣∣t2
1−ν+λν−λk

∫ t2

0
Kλ(t2 − s)g(s, y(s))ds

∣∣∣
→0, as t2 → 0.

For 0 < t1 < t2 ≤ T, we get

|(F2u)(t2)− (F2u)(t1)|

≤
∣∣∣t1

1−ν+λν−λk
∫ t2

t1

(t2 − s)λ−1Qλ(t2 − s)g(s, y(s))ds
∣∣∣

+
∣∣∣t1

1−ν+λν−λk
∫ t1

0

(
(t2 − s)λ−1 − (t1 − s)λ−1)Qλ(t2 − s)g(s, y(s))ds

∣∣∣
+
∣∣∣t1

1−ν+λν−λk
∫ t1

0
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣
+
∣∣∣t2

1−ν+λν−λk − t1
1−ν+λν−λk

∣∣∣∣∣∣ ∫ t2

0
(t2 − s)λ−1Qλ(t2 − s)g(s, y(s))ds

∣∣∣
≤I1 + I2 + I3 + I4,

where

I1 =L1t1
1−ν+λν−λk

∣∣∣ ∫ t2

0
(t2 − s)λk−1m(s)ds−

∫ t1

0
(t1 − s)λk−1m(s)ds

∣∣∣,
I2 =2L1t1

1−ν+λν−λk
∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s)ds,

I3 =t1
1−ν+λν−λk

∣∣∣ ∫ t1

0
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣,
I4 =

∣∣∣t2
1−ν+λν−λk − t1

1−ν+λν−λk
∣∣∣∣∣∣L1

∫ t2

0
(t2 − s)λk−1m(s)ds

∣∣∣.
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One can deduce that limt2→t1 I1 = 0, since Iλk
0+m ∈ C((0, T],R+). Noting that

((t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s) ≤ (t1 − s)λk−1m(s), for s ∈ [0, t1),

then by Lebesgue dominated convergence theorem, we have∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s)ds→ 0, as t2 → t1,

which implies I2 → 0 as t2 → t1.
By (H3), for ε > 0, we have

I3 ≤t1
1−ν+λν−λk

∫ t1−ε

0
(t1 − s)λ−1∥∥Qλ(t2 − s)−Qλ(t1 − s)

∥∥
L(X)

∣∣g(s, y(s))
∣∣ds

+ t1
1−ν+λν−λk

∣∣∣ ∫ t1

t1−ε
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣
≤t1

1−ν+λν−λk
∫ t1

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

‖Qλ(t2 − s)−Qλ(t1 − s)‖L(X)

+ 2L1t1
1−ν+λν−λk

∫ t1

t1−ε
(t1 − s)λk−1m(s)ds

≤I31 + I32 + I33,

where

I31 =t1
1−ν+λν−λk

∫ t1

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

‖Qλ(t2 − s)−Qλ(t1 − s)‖L(X),

I32 =2L1t1
1−ν+λν−λk

∣∣∣ ∫ t1

0
(t1 − s)λk−1m(s)ds−

∫ t1−ε

0
(t1 − ε− s)λk−1m(s)ds

∣∣∣,
I33 =2L1t1

1−ν+λν−λk
∫ t1−ε

0
((t1 − ε− s)λk−1 − (t1 − s)λk−1)m(s)ds.

By (H1) and Lemma 9, it is easy to see that I31 → 0 as t2 → t1. Similar to the proof that
I1, I2 tend to zero, we get I32 → 0 and I33 → 0 as ε→ 0. Thus, I3 tends to zero as t2 → t1.
Clearly, I4 → 0 as t2 → t1.

Therefore,
{
F2u : u ∈ Ωr

}
is equicontinuous. Furthermore,

{
Fu : u ∈ Ωr

}
is

equicontinuous.

Lemma 11. Assume that (H2)–(H4) hold. Then FΩr ⊂ Ωr.

Proof. Let y(t) = t−(1−ν+λν−λk)u(t), for u ∈ Ωr, t ∈ (0, T]. Then y ∈ Ω̃r.
From Lemmas 10, we know that FΩr ⊂ C([0, T], X). For t > 0 and any u ∈ Ωr,

by (H4), we have

|(Fu)(t)| ≤
∣∣∣t1−ν+λν−λkSλ,ν(t)y0

∣∣∣+ ∣∣∣t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, y(s))ds

∣∣∣
≤L2|y0|+ L1t1−ν+λν−λk

∫ t

0
(t− s)λk−1m(s)ds ≤ r.

For t = 0, we have |(Fu)(0)| = 0 < r. Therefore, FΩr ⊂ Ωr.

Lemma 12. Assume that (H2)–(H4) hold. Then F is continuous.

Proof. Let {un}∞
n=1 be a sequence in Ωr which is convergent to u ∈ Ωr. Consequently,

lim
n→∞

un(t) = u(t), and lim
n→∞

t−(1−ν+λν−λk)un(t) = t−(1−ν+λν−λk)u(t), for t ∈ (0, T].
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Let y(t) = t−(1−ν+λν−λk)u(t), yn(t) = t−(1−ν+λν−λk)un(t), t ∈ (0, T]. Then y, yn ∈ Ω̃r.
In view of (H2), we have

lim
n→∞

g(t, yn(t)) = lim
n→∞

g(t, t−(1−ν+λν−λk)un(t)) = g(t, t−(1−ν+λν−λk)u(t)) = g(t, y(t)).

For each t ∈ (0, T], (t− s)λk−1|g(s, yn(s))− g(s, y(s))| ≤ 2(t− s)λk−1m(s). By Lebesgue
dominated convergence theorem, we obtain∫ t

0
(t− s)λk−1|g(s, yn(s))− g(s, y(s))|ds→ 0, as n→ ∞.

Thus, for t ∈ [0, T],∣∣∣(Fun)(t)− (Fu)(t)
∣∣∣

≤t1−ν+λν−λk
∫ t

0
|Kλ(t− s)(g(s, yn(s))− g(s, y(s)))|ds

≤L1t1−ν+λν−λk
∫ t

0
(t− s)λk−1|g(s, yn(s))− g(s, y(s))|ds→ 0, as n→ ∞.

Therefore, ‖Fun − Fu‖ → 0 as n → ∞. Hence, F is continuous. The proof is
completed.

4. Main Results

Theorem 1. Assume that Q(t)(t > 0) is compact. Furthermore suppose that (H2)–(H4) hold.
Then the Cauchy problem (1) has at least one mild solution in Ω̃r.

Proof. Clearly, the problem (1) exists a mild solution y ∈ Ω̃r if and only if the operator F
has a fixed point u ∈ Ωr, where u(t) = t1−ν+λν−λky(t). Hence, we only need to prove that
the operator F has a fixed point in Ωr. From Lemmas 11 and 12, we know that FΩr ⊂ Ωr
and F is continuous. In view of Lemma 10, the set

{
Fu : u ∈ Ωr

}
is equicontinuous.

It remains to prove that for t ∈ [0, T],
{
(Fu)(t) : u ∈ Ωr

}
is relatively compact in X.

Clearly,
{
(Fu)(0) : u ∈ Ωr

}
is relatively compact in X. We only consider the case t > 0.

For any ε ∈ (0, t) and δ > 0, define Fε,δ on Ωr as follows

(Fε,δu)(t) :=t1−ν+λν−λk(Tε,δy)(t)

:=t1−ν+λν−λk

(
Sλ,ν(t)y0 +

∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)

×Q((t− s)λθ)g(s, y(s))dθds

)
.

Thus,

(Fε,δu)(t) =t1−ν+λν−λk

(
Sλ,ν(t)y0 + Q(ελδ)

∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)

×Q((t− s)λθ − ελδ)g(s, y(s))dθds

)
.

By Lemma 5, we know that Sλ,ν(t) is compact because Q(t) is compact for t > 0.
Furthermore, Q(ελδ) is compact, then the set {(Fε,δu)(t), u ∈ Ωr} is relatively compact in
X for any ε ∈ (0, t) and for any δ > 0. Moreover, for every u ∈ Ωr, we find
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∣∣(Fu)(t)− (Fε,δu)(t)
∣∣

≤t1−ν+λν−λk
∣∣∣ ∫ t

0

∫ δ

0
λθ(t− s)λ−1Mλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
+ t1−ν+λν−λk

∣∣∣ ∫ t

t−ε

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
≤λC0t1−ν+λν−λk

∫ t

0
(t− s)λk−1|g(s, y(s))|ds

∫ δ

0
θk Mλ(θ)dθ

+ λC0t1−ν+λν−λk
∫ t

t−ε
(t− s)λk−1|g(s, y(s))|ds

∫ ∞

0
θk Mλ(θ)dθ

≤λC0t1−ν+λν−λk
∫ t

0
(t− s)λk−1m(s)ds

∫ δ

0
θk Mλ(θ)dθ

+ λC0t1−ν+λν−λk
∫ t

t−ε
(t− s)λk−1m(s)ds

∫ ∞

0
θk Mλ(θ)dθ

→0, as ε→ 0, δ→ 0.

Therefore,
{
(Fu)(t) : u ∈ Ωr

}
is also a relatively compact set in X for t ∈ [0, T]. Thus,{

Fu : u ∈ Ωr
}

is relatively compact by Ascoli–Arzela Theorem. Hence, F is a completely
continuous operator. Schauder’s fixed point theorem shows that F has at least a fixed point
u∗ ∈ Ωr. Let y∗(t) = t−(1−ν+λν−λk)u∗(t). Thus,

y∗(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y∗(s))ds, t ∈ (0, T],

which implies that y∗ is a mild solution of (1) in Ω̃r. The proof is completed.

In the case that Q(t) is noncompact for t > 0, we give an assumption as follows:

(H5) there exists a constant K > 0 such that for any bounded D ⊆ X,

α(g(t, D)) ≤ Kt1−ν+λν−λkα(D), for a.e. t ∈ [0, T],

where α is the Kuratowski’s measure of noncompactness.

Theorem 2. Assume that (H1)–(H5) hold. Then the Cauchy problem (1) has at least one mild
solution in Ω̃r.

Proof. Let u0(t) = t1−ν+λν−λkSλ,ν(t)y0 for all t ∈ [0, T] and un+1 = Fun, n = 0, 1, 2, · · · .
By Lemma 11, Fun ∈ Ωr, for un ∈ Ωr. Consider set V =

{
Fun) : un ∈ Ωr}∞

n=0, and we
will prove set V is relatively compact. In view of Lemmas 10, the set V is equicontinuous.
We only need to prove V(t) =

{
(Fun)(t), un ∈ Ωr}∞

n=0 is relatively compact in X for
t ∈ [0, T].

By the properties of measure of noncompactness, for any t ∈ [0, T] we have

α
({

un(t)
}∞

n=0

)
= α

({
u0(t)

}
∪
{

un(t)
}∞

n=1

)
= α

({
un(t)

}∞

n=1

)
= α(V(t)). (5)

Let yn(t) = t−1+ν−λν+λkun(t), t ∈ (0, T], n = 0, 1, 2, · · · . By the condition (H5) and
Lemma 2, we have
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α(V(t)) =α
({

(Fun)(t)
}∞

n=0

)
=α
({

t1−ν+λν−λkSλ,ν(t)y0 + t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, yn(s))ds

}∞

n=0

)
=α
({

t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, yn(s))ds

}∞

n=0

)
≤2L1t1−ν+λν−λk

∫ t

0
(t− s)λk−1α

(
g(s, {s−1+ν−λν+λkun(s)}∞

n=0)
)

ds

≤2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1s1−ν+λν−λkα

(
{s−1+ν−λν+λkun(s)}∞

n=0

)
ds

≤2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1α

({
un(s)

}∞

n=0

)
ds.

In view of (5), we obtain

α(V(t)) ≤ 2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1α(V(s))ds.

Therefore, by the inequality in ([24], p.188), we obtain that α(V(t)) = 0, then V(t)
is relatively compact. Consequently, it follows from Ascoli–Arzela Theorem that set V
is relatively compact, i.e., there exists a convergent subsequence of {un}∞

n=0. With no
confusion, let limn→∞ un = u∗ ∈ Ωr.

Thus, by continuity of the operator F , we have

u∗ = lim
n→∞

un = lim
n→∞

Fun−1 = F
(

lim
n→∞

un−1

)
= Fu∗.

Let y∗(t) = t−1+ν−λν+λku∗(t). Thus, y∗ is a mild solution of (1) in Ω̃r. The proof is
completed.

In the following, we prove the existence and uniqueness of a mild solution of the
Cauchy problem (1).

(H6) There exists a function L ∈ C([0, T],R+) such that Iλk
0+L ∈ C([0, T],R+),

|g(t, y1(t))− g(t, y2(t))| ≤ L(t)‖y1 − y2‖λ, for any y1, y2 ∈ Ω̃r,

and

sup
t∈[0,T]

{
L1T1−ν+λν−λk

∫ t

0
(t− s)λk−1L(s)ds

}
≤ l0 < 1.

Theorem 3. Assume that the conditions (H2)–(H4) and (H6) hold. Then the Cauchy problem (1)
has a unique mild solution in Ω̃r.

Proof. From Lemmas 11, we know that FΩr ⊂ Ωr. For any u1, u2 ∈ Ωr, t ∈ [0, T], we have∣∣∣(Fu1)(t)− (Fu2)(t)
∣∣∣

≤T1−ν+λν−λk
∫ t

0
|Kλ(t− s)(g(s, y1(s))− g(s, y2(s)))|ds

≤L1T1−ν+λν−λk
∫ t

0
(t− s)λk−1|g(s, y1(s))− g(s, y2(s))|ds

≤L1T1−ν+λν−λk
∫ t

0
(t− s)λk−1L(s)‖y1 − y2‖λds

≤l0‖u1 − u2‖.
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Thus
‖(Fu1)− (Fu2)‖ ≤ l0‖u1 − u2‖,

which implies that F is a contraction mapping. In view of the contraction mapping
principle, F has the unique fixed point u∗ ∈ Ωr. Let y∗(t) = t−(1−ν+λν−λk)u∗(t). Thus, y∗

is a unique mild solution of (1) in Ω̃r. The proof is completed.

5. Remarks

In recent paper [10], the authors studied the problem (1) and obtained the following
result by Schauder’s fixed point theorem.

Theorem 4 (see Theorem 3 in [10]). Let 0 < k < 1, 0 < ω < π
2 and A ∈ Θ−k

ω (X). If we
assume, Q(t)(t > 0) is compact and the following hypotheses hold:

(h1) for each fixed t ∈ (0, T], g(t, ·) : X → X is continuous function and for each y ∈ C((0, T], X),
g(·, y) : (0, T]→ X is strongly measurable.

(h2) there exists a function l ∈ L1((0, T],R+) satisfying

Iλk
0+l ∈ C((0, T],R+), lim

t→0+
t(1−λk)(1−ν) Iλk

0+l(t) = 0

and |g(t, u)| ≤ l(t) for all u ∈ BYr ((0, T]) and almost all t ∈ [0, T].

(h3)

sup
t∈[0,T]

(
t(1−λk)(1−ν)|Sλ,ν(t)y0|+ t(1−λk)(1−ν)

∫ t

0
(t− s)λk−1l(s)ds

)
≤ r,

for a constant r > 0 and y0 ∈ D(Aθ), θ > 1− k, where Sλ,ν(t) = Iν(1−λ)
0+ tλ−1Qλ(t).

Then there exist a mild solution of the Cauchy problem (1) in BYr ((0, T]) for every y0 ∈ D(Aβ)
with β > 1− k.

Remark 1. In [10], the authors claimed that limt→0+ t(1−λk)(1−ν)Sλ,ν(t)y0 = 0 (see, (12)
in [10]). However, this claim is incorrect.

In fact, when ν = 1 and y0 6= 0, from Lemma 6, we know that limt→0+Qλ(t)y0 = y0/Γ(λ).
Furthermore, we have

lim
t→0+

Sλ,1(t)y0 =
1

Γ(1− λ)
lim

t→0+

∫ t

0
(t− s)−λsλ−1Qλ(s)y0ds

=
1

Γ(1− λ)
lim

t→0+

∫ 1

0
(1− z)−λzλ−1Qλ(tz)y0dz

=y0 6= 0.

Therefore, the definition of the operator E in (14) of [10] is incorrect. Because there is the same
shortcoming in the papers [16–18], the definitions of the operator P in [16], the operator Φ in the
proof of Theorem 3.1 in [17] and the operator F in the proof of Theorem 3 in [18] are inappropriate.

Remark 2. The condition (h3) contains the abstract operator Sλ,ν(t). It is difficult to verify whether
the condition (h3) is satisfied for one fractional evolution equation.

Remark 3. The results obtained in this paper essentially improve and correct Theorem 3 in [10], and
extend Theorem 2.1 in [4] and the known results in [9]. It is worth mentioning that all conditions of
our theorems do not contain the abstract operator Sλ,ν(t).

Author Contributions: Conceptualization, M.Z. and Y.Z.; formal analysis, M.Z. and C.L.; investiga-
tion, M.Z. and Y.Z.; writing—review and editing, C.L. and Y.Z. All authors have read and agreed to
the published version of the manuscript.



Axioms 2022, 11, 144 13 of 13

Funding: This research was funded by the National Natural Science Foundation of China
(Nos. 12071396).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data was reported in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland

Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204.
3. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014.
4. Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: London, UK, 2016.
5. Zhou, Y.; Wang, J.N. The nonlinear Rayleigh–Stokes problem with Riemann–Liouville fractional derivative. Math. Meth. Appl. Sci.

2021, 44, 2431–2438. [CrossRef]
6. Zhou, Y.; He, J.W.; Ahmad, B.; Tuan, N.H. Existence and regularity results of a backward problem for fractional diffusion

equations. Math. Meth. Appl. Sci. 2019, 42, 6775–6790. [CrossRef]
7. Zhou, Y.; He, J.W. Well-posedness and regularity for fractional damped wave equations. Mon. Math. 2021, 194, 425–458. [CrossRef]
8. Zhou, Y. Infinite interval problems for fractional evolution equations. Mathematics 2022, 10, 900. [CrossRef]
9. Gu, H.B.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput.

2015, 257, 344–354. [CrossRef]
10. Jaiwal, A.; Bahuguna, D. Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020.

[CrossRef]
11. Sousa, J.V.C.; Jarad, F.; Abdeljawad, T. Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann.

Funct. Anal. 2021, 12, 12. [CrossRef]
12. Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Frac.

Calc. Appl. Anal. 2017, 20, 679–705. [CrossRef]
13. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations

with infinite delay via measures of noncompactness. Math. Meth. Appl. Sci. 2021, 44, 1438–1455. [CrossRef]
14. Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput.

Math. Appl. 2012, 64, 1616–1626. [CrossRef]
15. Saengthong, W.; Thailert, E.; Ntouyas, S.K. Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential

fractional differential equations with two point boundary conditions. Adv. Diff. Equ. 2019, 2019, 525. [CrossRef]
16. Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approximate controllability of Hilfer fractional evolution

equations with almost sectorial operators. Adv. Diff. Equ. 2020, 2020, 615. [CrossRef]
17. Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial

operators. Math. Meth. Appl. Sci. 2022, 45, 2530–2541. [CrossRef]
18. Karthikeyan, K.; Karthikeyan, P.; Patanarapeelert, N.; Sitthiwirattham, T. Mild solutions for impulsive integro-differential

equations involving Hilfer fractional derivative with almost sectorial operators. Axioms 2021, 10, 313. [CrossRef]
19. Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol.

Equ. 2002, 2, 41–68. [CrossRef]
20. Markus, H. The Functional Valculus for Sectorial Operators. In Operator Theory: Advances and Applications; Birkhauser-Verlag:

Basel, Switzerland, 2006; Volume 6.
21. Liu, Z.B.; Liu, L.S.; Zhao, J. The criterion of relative compactness for a class of abstract function groups in an infinite interval and

its applications. J. Syst. Sci. Math. Sci. 2008, 28, 370–378.
22. Mainardi, F.; Paraddisi, P.; Gorenflo, R. Probability Distributions Generated by Fractional Diffusion Equations. In Econophysics:

An Emerging Science; Kertesz, J., Kondor, I., Eds.; Kluwer: Dordrecht, The Netherlands, 2000.
23. Kou, C.H.; Zhou, H.C.; Yan, Y. Existence of solutions of initial problems for nonlinear fractional differential equations on the

half-axis. Nonlinear Anal. 2011, 74, 5975–5986. [CrossRef]
24. Henry, D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math; Springer: New York, NY, USA; Berlin/Heidelberg,

Germany, 1981; Volume 840.

http://doi.org/10.1002/mma.5926
http://dx.doi.org/10.1002/mma.5781
http://dx.doi.org/10.1007/s00605-020-01476-7
http://dx.doi.org/10.3390/math10060900
http://dx.doi.org/10.1016/j.amc.2014.10.083
http://dx.doi.org/10.1007/s12591-020-00514-y
http://dx.doi.org/10.1007/s43034-020-00095-5
http://dx.doi.org/10.1515/fca-2017-0036
http://dx.doi.org/10.1002/mma.6843
http://dx.doi.org/10.1016/j.camwa.2012.01.009
http://dx.doi.org/10.1186/s13662-019-2459-8
http://dx.doi.org/10.1186/s13662-020-03074-1
http://dx.doi.org/10.1002/mma.7938
http://dx.doi.org/10.3390/axioms10040313
http://dx.doi.org/10.1007/s00028-002-8079-9
http://dx.doi.org/10.1016/j.na.2011.05.074

	Introduction
	Preliminaries
	Some Lemmas
	Main Results
	Remarks
	References

