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Abstract: In this work, the local optimality of mixed reliability of networks is surveyed. A reliability
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respectively.
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1. Introduction

Throughout this paper, networks are modelled as graphs. All graphs considered here
are simple and undirected. For positive integers m and n, an (n, m) graph refers to a graph
with n vertices and m edges. We shall use Ω(n, m) to denote the family of all (n, m) graphs.
For an integer k ≥ 2, a graph G is k-connected if, for any pair of distinct vertices s and t of G,
there are at least k internally disjoint s-t paths in G. The reliability of a network is defined
as the probability that the residual vertices can communicate with each other. We shall use
p and q to denote probabilities, and so unless otherwise stated, p and q will denote two
real numbers (or real valued functions) with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. Generally, there
are three kinds of reliability models: namely, the vertex fault model, the edge fault model,
and the vertex-and-edge fault model, respectively. In the vertex fault model, it is assumed
that all the edges will never fail, while the vertices could fail independently with the same
failure probability p. Likewise, in the edge fault model, it is assumed that all vertices will
never fail, while the edges could fail with the same failure probability q. Studies on the
reliability in the vertex fault model and the edge fault model have been conducted by many
researchers. In the Refs. [1–3], synthesis results of reliable networks in both the edge fault
model and the vertex fault model were surveyed.

For the vertex fault model, Goldschmidt et al. in the Ref. [4] defined a network
G ∈ Ω(n, m) to be uniformly best if, for all choices of p, G is most reliable among all
the graphs in Ω(n, m), and showed that the complete bipartite graph Kb,b+2 is uniformly
best among all graphs in Ω(2b + 2, b2 + 2b). Furthermore, in the Ref. [4], the authors
also showed that when n ≥ 6, the star plus one edge and the cycle are the only two
locally optimally reliable graphs of Ω(n, n). Hakimi and Amin in the Ref. [5] studied the
construction of reliable (n, m) graphs with connectivity being r = [2m/n] ≥ 3, and with no
more than n minimum vertex cut-sets. Smith et al. [6,7] showed how to construct locally
optimally reliable graphs when the probability of a vertex failure is sufficiently small.

For the edge fault model, Bauer et al. [8,9] showed that for small edge failure prob-
abilities and given the number of vertices and edges, all graphs having minimum mλ

chosen among those with maximum λ are locally optimally reliable, and studied the
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existence of such graphs. Zhao [10] showed that regular complete multipartite graphs
and almost regular complete multipartite graphs are locally optimally reliable in their
graph classes, respectively. Boesch et al. [11] showed that, given the number of vertices
n, and the number of edges m, uniformly optimally reliable simple graphs always exist
for m = n− 1, n, n + 1, or n + 2, and proposed a conjecture for m = n + 3. Gross et al. [12]
demonstrated that the uniformly optimally reliable simple graphs in these classes in the
Ref. [11] were also uniformly optimally reliable when the classes were extended to include
multigraphs. Wang [13] gave a proof of Boesch’s conjecture in the Ref. [11]. In the Ref. [14],
the uniformly optimally and least reliable networks were given for the families of networks
with n vertices, n + 1 and n + 2 edges. Liu et al. [15] proved that for any positive integer b,
the complete tripartite graph K(b, b + 1, b + 2) is uniformly optimally reliable in its class
Ω(3b + 3, 3b2 + 6b + 2). In 2014, Brown et al. [16] proved that uniformly optimally reliable
graphs do not always exist. Petingi et al. [17] characterized uniformly least reliable graphs
for m greater than or equal to (n− 1)(n− 2)/2 + 1. In the Ref. [18], the synthesis results
of reliable networks were reviewed. Boesch et al. ([11]), Gross and Saccoman ([12]), and
Chen and Zhao ([14]) also investigated the edge fault model, and independently verified
the existence of uniformly optimally reliable graphs in the families of graphs Ω(n, n),
Ω(n, n + 1) and Ω(n, n + 2). Nevertheless, Goldschmidt et al. in the Ref. [4] showed that
with the vertex fault model, the above three families of graphs do not contain uniformly
optimally reliable graphs.

Naturally, the vertex-and-edge fault model generalizes the two models above. In the
vertex-and-edge fault model, it is assumed that the vertices would fail independently with
probability p, and the edges would fail independently with probability q.

For the vertex-and-edge fault model, Evans and Smith [19] made a connection between
the following two cases: small p, q = 0 and small q, p = 0. Smith [20] showed that when p
and q are small, a small-mixed-cut-set-optimal graph has the minimum unconnected prob-
ability among the graphs with given numbers of vertices and edges, and gave the method
of how to construct these optimal graphs in many cases. Chen and He [21] in 2004 gave
the upper and lower bounds of the mixed reliability of networks with unreliable vertices
and edges. Mohamed [22] presented a new approach by using an efficient algorithm for
evaluating the upper bound of the residual connectedness reliability of distributed systems
with unreliable vertices and edges. For the case of the k-terminal connectivity criterion,
Shpung, in the Ref. [23], used a Monte Carlo scheme to evaluate reliability for the networks
with unreliable vertices and edges. Dash [24] used the artificial neural network in solving
the network reliability optimization problem subjected to some total cost of the network,
considering both edges and vertices of the network to be imperfect.

To the best of our knowledge, local optimality in mixed reliable networks has not
been fully investigated. This motivates our current research. It has been known that the
failure probabilities p and q are very small in real-life networks. Thus, the case when
both p and q are close to 0 becomes very significant in practical applications. In this
work, a reliability comparison criterion was established utilizing parameters related with
subgraphs to measure the local optimality of the mixed reliability of networks. Using
this comparison criterion, we characterize all locally optimally mixed reliable networks in
Ω(n, n + k) with k ≤ 2. Preliminaries will be shown in the next section. The comparison
criterion is presented in Section 3. The characterizations of the locally optimally mixed
reliable networks are obtained in the last two sections.

2. Preliminaries

Let G = (V, E) be a (n, m) graph with vertex set V and edge set E. In the edge fault
model, the reliability of G [17] is defined by

R(G, q) =
m

∑
`=n−1

N`(G)qm−`(1− q)`,
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where for all ` with n− 1 ≤ ` ≤ m, N`(G) is the number of connected spanning subgraphs
with ` edges of G.

Let i and j be integers with 0 ≤ i ≤ |V| and 0 ≤ j ≤ |E|. For a vertex subset
V1 ⊆ V and an edge subset E1 ⊆ E with |V1| = i, |E1| = j, let G − V1 − E1 denote the
subgraph obtained from G by deleting all vertices in V1 and all edges in E1. If G−V1 − E1
is disconnected, then (V1, E1) is said to be an i-j mixed cut set of G. Let Mij(G) denote
the number of i-j mixed cut sets in a graph G. It is shown in the Ref. [20] that, in the
vertex-and-edge fault model, the disconnected probability of G, denoted by P(G; p, q), can be
expressed as

P(G; p, q) =
n

∑
i=0

m

∑
j=0

Mij(G)pi(1− p)n−iqj(1− q)m−j.

The mixed reliability of G is defined as R(G; p, q) = 1− P(G; p, q). The two polynomials
P(G; p, q) and R(G; p, q) are also called the mixed unreliability polynomial and the mixed
reliability polynomial of G, respectively. Clearly, R(G; p, q) is a function on p and q.

Motivated by the definition of locally optimally reliable networks in the vertex fault
model defined in the Ref. [4], we propose the following definition of locally optimally
mixed reliable networks in the vertex-and-edge fault model.

Let p, q denote two real numbers with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. When p = 0 and
q = 0, for a positive number δ, define U((0, 0), δ) = {(x, y)|

√
x2 + y2 < δ}.

Definition 1. A graph G in Ω(m, n) is called locally optimally mixed reliable at (0, 0), if there
exists a real number ε > 0 such that the mixed reliability of G is greater than or equal to that of all
other graphs in Ω(n, m) for all two-tuples (p, q) ∈ U((0, 0), ε) ∩ [0, 1]2.

3. Local Optimality of Mixed Reliability of Networks

For a graph G ∈ Ω(n, m) and an integer i ≥ 1, letH(i)
G denote the set of all connected

subgraphs induced by i vertices of G, and si(G) be the number of connected induced
subgraphs of G with i vertices. To emphasize the graph G, we often used n(G) and m(G)
to denote the number of vertices and the number of edges of G, respectively. For an integer
k ≥ 1, the parameter Ik(G) of a graph G, which depends on the subgraphs of G, is defined
as follows.

Ik(G) = |{(S, F)|S ⊆ V(G), F ⊆ E(G− S), |S|+ |F| = k and G− S− F is connected}|.

When k = 1, 2, we have
I1(G) = Nm−1(G) + sn−1(G) (1)

and
I2(G) = Nm−2(G) + sn−2(G) + ∑

H∈H(n−1)
G

Nm(H)−1(H). (2)

Using the parameters above, a reliability comparison criterion is established to de-
termine which graph is more locally mixed and reliable between any two (n, m) graphs.
Lemma 1 presents a formula to calculate the mixed reliability polynomial of networks.

Lemma 1. Let G be a graph in Ω(n, m) andHG be the set of all connected induced subgraphs H
of G ([10]). Then

R(G; p, q) = ∑
H∈HG

pn−n(H)(1− p)n(H)R(H, q).

Theorem 1. Let n and m be two positive integers and let G and G′ be two graphs in Ω(n, m).
Suppose that in the process of q → 0, there exist two positive real numbers c1 and c2 such that
c1q ≤ p ≤ c2q. If (a) I1(G) > I1(G′), or (b) I1(G) = I1(G′) and I2(G) > I2(G′), then
R(G; p, q) > R(G′; p, q).
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Proof. By assumption, in the process of q → 0, there exist two positive real numbers c1
and c2 such that c1q ≤ p ≤ c2q, and it follows that

q2 = o(q), p2 = o(q), pq = o(q) and q3 = o(q2), p3 = o(q2), p2q = o(q2), pq2 = o(q2). (3)

As G ∈ Ω(n, m), by Lemma 1, we have

R(G; p, q) = ∑
H∈HG

pn−n(H)(1− p)n(H)R(H, q)

=
n

∑
i=1

(1− p)i pn−i ∑
H∈H(i)

G

m(H)

∑
j=i−1

Nj(H)qm(H)−j(1− q)j

=
n

∑
i=1

(1− p)i pn−i
m(i)

G −i+1

∑
k=0

[ ∑
H∈H(i)

G

Nm(H)−k(H)(1− q)m(H)−k]qk,

where m(i)
G = max {m(H)|H ∈ H(i)

G }. Define

hi,k(G) = ∑
H∈H(i)

G

Nm(H)−k(H)(1− q)m(H)−k,

where hi,k(G) is a polynomial on 1− q. Note that for any i, we have lim
q→0

hi,0(G) = si(G)

and lim
q→0

hn,i(G) = Nm−i(G). Therefore, using (3), we can write R(G; p, q) as follows.

R(G; p, q) =
n
∑

i=3
(1− p)i pn−i

m(i)
G −i+1

∑
k=0

hi,k(G)qk + m(1− p)2 pn−2(1− q) + n(1− p)pn−1

= (1− p)nhn,0(G) + (1− p)nqhn,1(G) + (1− p)n−1 phn−1,0(G) + o(q).

(4)

Likewise, as G′ ∈ Ω(n, m), we have

R(G′; p, q) =
n
∑

i=3
(1− p)i pn−i

m(i)
G′−i+1

∑
k=0

hi,k(G′)qk + m(1− p)2 pn−2(1− q) + n(1− p)pn−1

= (1− p)nhn,0(G′) + (1− p)nqhn,1(G′) + (1− p)n−1 phn−1,0(G′) + o(q).

(5)

Direct computation utilizing (4) and (5) yields the following:

lim
q→0

R(G; p, q)− (1− p)nhn,0(G)

R(G′; p, q)− (1− p)nhn,0(G′)

= lim
q→0

(1− p)nqhn,1(G) + (1− p)n−1 phn−1,0(G) + o(q)
(1− p)nqhn,1(G′) + (1− p)n−1 phn−1,0(G′) + o(q)

= lim
q→0

hn,1(G) + hn−1,0(G)

hn,1(G′) + hn−1,0(G′)

=
Nm−1(G) + sn−1(G)

Nm−1(G′) + sn−1(G′)

=
I1(G)

I1(G′)
.

It follows that if I1(G) > I1(G′), then we have R(G; p, q) > R(G′; p, q).
For the case of I1(G) = I1(G′), since lim

q→0
hn−1,1(G) = ∑

H∈H(n−1)
G

Nm(H)−1(H), we simi-

larly have
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lim
q→0

R(G; p, q)− (1− p)n[hn,0(G) + qhn,1(G)]− (1− p)n−1 phn−1,0(G)

R(G′; p, q)− (1− p)n[hn,0(G′) + qhn,1(G′)]− (1− p)n−1 phn−1,0(G′)

= lim
q→0

(1− p)nq2hn,2(G) + (1− p)n−1 pqhn−1,1(G) + (1− p)n−2 p2hn−2,0(G) + o(q2)

(1− p)nq2hn,2(G′) + (1− p)n−1 pqhn−1,1(G′) + (1− p)n−2 p2hn−2,0(G′) + o(q2)

= lim
q→0

hn,2(G) + hn−1,1(G) + hn−2,0(G)

hn,2(G′) + hn−1,1(G′) + hn−2,0(G′)

=

Nm−2(G) + ∑
H∈H(n−1)

G

Nm(H)−1(H) + sn−2(G)

Nm−2(G′) + ∑
H∈H(n−1)

G′

Nm(H)−1(H) + sn−2(G′)

=
I2(G)

I2(G′)
.

It follows that if I1(G) = I1(G′) and I2(G) > I2(G′), then R(G; p, q) > R(G′; p, q).

As a consequence of the definition of I1(G), we observe that

Theorem 2. For any G ∈ Ω(n, m), I1(G) ≤ n + m. Furthermore, I1(G) = n + m if and only if
G is 2-connected.

4. Locally Optimally Mixed Reliable Networks in Ω(n, n) and Ω(n, n + 1)

As any connected graph G ∈ Ω(n, n) must be a graph with a unique cycle, a locally
optimally mixed reliable graph is the cycle Cn with n vertices. Thus, we consider graphs in
Ω(n, n + 1).

A chain in a graph is a path, each of whose internal vertex has a degree of exactly two
in G and each of whose end vertices is of a degree larger than two. If two or more chains
share the same two ends, then we say that these chains are parallel chains. The number of
edges on a chain is called the length of the chain. For given positive integers a, b and c, let
θ(a, b, c) denote the graph consisting of three parallel chains with lengths being a, b, and c,
respectively, as depicted in Figure 1.

Figure 1. The graph θ(a, b, c), where a + b + c = n + 1. Each dotted line represents a chain with the
indicated length.

Define Θ(n) = {θ(a, b, c) | a ≥ b ≥ c ≥ 1 and a + b + c = n + 1}. It is routine to
verify that Θ(n) is the only class of 2-connected graphs in Ω(n, n + 1).

As shown in the next theorem, the following subfamily of Θ(n) is of particular interest:

Θ′(n) = {θ(a, b, c) | a ≥ b ≥ c ≥ 1, max{a− b, b− c, a− c} ≤ 1 and a + b + c = n + 1}. (6)

Theorem 3. A graph G ∈ Ω(n, n + 1) is a locally optimally mixed reliable network at (0, 0) if
and only if G ∈ Θ′(n).
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Proof. We first prove the necessity, and assume that G ∈ Ω(n, n + 1) is locally optimally
mixed reliable at (0, 0). By Theorems 1 and 2, we conclude that G lies in Θ(n). Thus,
there exist some integers a ≥ b ≥ c ≥ 1 with a + b + c = n + 1 such that G = θ(a, b, c).
Let θ = θ(a, b, c). Then, Nm−2(θ) is equal to the number of ways of removing one edge
from any two of the three chains, respectively. Thus, Nm−2(θ) = ab + bc + ca. If the graph
obtained by removing two vertices of θ(a, b, c) is connected, then there are two different
cases below.

Case 1. Remove two adjacent vertices in one chain. The numbers of ways for such a
removal are m and m− 1 in the cases of c 6= 1 and c = 1, respectively.

Case 2. Remove one vertex of degree 2 from two chains, respectively. The number of
ways for such removal is (a− 1)(b− 1) + (b− 1)(c− 1) + (c− 1)(a− 1).

Summing up the two cases above, we have

sn−2(θ) =

{
ab + bc + ca−m + 3 i f c 6= 1,
ab + bc + ca−m + 2 i f c = 1.

Note that ∑
H∈H(n−1)

θ

Nm(H)−1(H) is equal to the number of ways to remove one vertex

of degree 2 from one chain and one edge from another one. Hence, direct computation yields

∑
H∈H(n−1)

θ

Nm(H)−1(H) = (a− 1)(b + c) + (b− 1)(a + c) + (c− 1)(a + b).

It follows that I2(θ) can be expressed as follows.

I2(θ) =

{
4(ab + bc + ca)− 3m + 3 i f c 6= 1,
4(ab + bc + ca)− 3m + 2 i f c = 1.

(7)

By (7), we have

I2[θ(a− 1, b, c + 1)]− I2[θ(a, b, c)] =
{

4(a− c− 1) i f c 6= 1,
4(a− c− 1) + 1 i f c = 1.

As a − c ≥ 2, we conclude that I2[θ(a − 1, b, c + 1)] − I2[θ(a, b, c)] > 0. Therefore,
if I2(G) is with the maximum value among all G ∈ Θ(n), then we must have max{a−
b, b− c, a− c} ≤ 1, and so G ∈ Θ′(n). This completes the proof for the necessity.

To show the sufficiency, we assume that G ∈ Θ′(n). Hence, by (6), there exists
integers a, b and c with a ≥ b ≥ c ≥ 1, max{a− b, b− c, a− c} ≤ 1 and a + b + c = n + 1,
and with m = |E(G)| = n + 1. It follows by (1) that I1(G) = n + m, and so by Theorem 2,
I1(G) = max{I1(H)|H ∈ Ω(n, n + 1)}. Since max{a − b, b − c, a − c} ≤ 1, it follows
from (7) that I2(G) = max{I2(H)|H ∈ Ω(n, n + 1)}. It then follows by Theorem 1 that G
is a locally optimally mixed reliable network at (0, 0).

5. Locally Optimally Mixed Reliable Networks in Ω(n, n + 2)

Chen and Zhao [14] showed that there are only four classes of 2-connected graphs
in Ω(n, n + 2), denoted by F1(n), F2(n), F3(n) and F4(n), respectively. To present the
definitions of these graph families, we firstly introduce some notations. Let a, b, c, d, e, f , e1,
e2 be positive integers. We define the graphs F1(a, b, c, d, e, f ), F2(a, b, c, d, e1, e2), F3(a, b, c, d, e),
F4(a, b, c, d) as illustrated in Figure 2, respectively, where a dotted line in the graph
represents a chain of the given length. Then we can define the related graph families
as shown below.
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F1(n) = {F1(a, b, c, d, e, f )|a + b + c + d + e + f = n + 2 and a, b, c, d, e, f ≥ 1},
F2(n) = {F2(a, b, c, d, e1, e2)|a + b + c + d + e1 + e2 = n + 2

and a, b, c, d, e1, e2 ≥ 1},
F3(n) = {F3(a, b, c, d, e)|a + b + c + d + e = n + 2 and a, b, c, d, e ≥ 1},
F4(n) = {F4(a, b, c, d)|a + b + c + d = n + 2 and a, b, c, d ≥ 1}.

Figure 2. Four graphs F1(a, b, c, d, e, f ), F2(a, b, c, d, e1, e2), F3(a, b, c, d, e) and F4(a, b, c, d). Each dotted
line represents a chain with the indicated length.

The purpose of this section is to characterize networks in Ω(n, n + 2) that are locally
optimally mixed reliable at (0, 0). We firstly investigate the necessity. By Theorems 1 and 2,
if G ∈ Ω(n, n + 2) is locally optimally mixed reliable at (0, 0), then G belongs to one
of these graph families: {F1(n),F2(n),F3(n),F4(n)}. Lemma 2 below investigates the
locally optimally mixed reliable networks in F1(n). For notational convenience, we denote
F1 = F1(a, b, c, d, e, f ).

Lemma 2. If F1 ∈ F1(n) is a locally optimally mixed reliable network at (0, 0), then for any two
numbers x, y ∈ {a, b, c, d, e, f }, we have |x− y| ≤ 1.

Proof. Suppose m = n + 2. The formula for I2(F1) is obtained from the following
three cases.

Case 1. Remove two edges of F1. Since Nm−2(F1) is equal to the number of ways of
removing one edge from any two chains, respectively, we have

Nm−2(F1) = ab + ac + ad + ae + a f + bc + bd + be + b f + cd + ce + c f + de + d f + e f .

Case 2. Remove two vertices of F1. If the graph obtained by removing two vertices of
F1 is connected, then there are three subcases below.

Subcase 2.1. Remove two adjacent vertices in one chain. The number of ways for such
removal is m.

Subcase 2.2. Remove one vertex of degree 2 from two chains, respectively. The number
of ways for such removal is ab + ac + ad + ae + a f + bc + bd + be + b f + cd + ce + c f +
de + d f + e f − 5m + 15.

Subcase 2.3. Remove a vertex of degree 3 and a vertex of degree 2 such that the graph
obtained is also connected. The number of ways for such removal is 2m− 12.

By computation, we obtain

sn−2(F1) = ab + ac + ad + ae + a f + bc + bd + be + b f

+cd + ce + c f + de + d f + e f − 2m + 3.

Case 3. Remove a vertex and an edge of F1. If the graph obtained from F1 by removing
a vertex and an edge (which is not incident with the vertex removed) is connected, then
there are two subcases below.
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Subcase 3.1. Remove a vertex of degree 2 from one chain and an edge from another
one. The number of ways for such removal is 2(ab + ac + ad + ae + a f + bc + bd + be +
b f + cd + ce + c f + de + d f + e f )− 5m.

Subcase 3.2. Remove a vertex of degree 3 and an edge from the chain not containing
the removed vertex. Then the number of ways for such removal is 2m. Thus, we have

∑
H∈H(n−1)

F1

Nm(H)−1(H) = 2(ab + ac + ad + ae + a f + bc + bd + be + b f

+cd + ce + c f + de + d f + e f )− 3m.

This leads to the following.

I2(F1) = 4(ab + ac + ad + ae + a f + bc + bd + be + b f
+cd + ce + c f + de + d f + e f )− 5m + 3.

(8)

By (8), the following inequalities hold. If the largest difference for the lengths of any
two chains with a common vertex is at least 2, say a− b ≥ 2, then

I2[F1(a− 1, b + 1, c, d, e, f )]− I2[F1(a, b, c, d, e, f )] = 4(a− b− 1) > 0.

If the largest difference for the lengths of any two chains without a common vertex is
at least 2, say a− d ≥ 2, then

I2[F1(a− 1, b, c, d + 1, e, f )]− I2[F1(a, b, c, d, e, f )] = 4(a− d− 1) > 0.

Hence, if I2(F1) reaches the maximum value among all F1 ∈ F1(n), then for any two
numbers x, y ∈ {a, b, c, d, e, f }, we have |x− y| ≤ 1.

Suppose F2 = F2(a, b, c, d, e1, e2) and a ≥ c, b ≥ d, e1 ≥ e2. Let m = n + 2. In order to
obtain the formula for I2(F2), the following three cases need to be discussed.

Case 1. Remove two edges of F2. Note that Nm−2(F2) is equal to the number of ways
to remove two edges of F2 such that the graph obtained from F2 by removing these edges
is connected. Then we have

Nm−2(F2) = ab + ac + ad + ae1 + ae2 + bc + bd + be1 + be2 + cd + ce1 + ce2 + de1 + de2.

Case 2. Remove two vertices of F2. If the graph obtained from F2 by removing two
vertices is connected, then there are three subcases below.

Subcase 2.1. Remove two adjacent vertices in one chain. Thus, the numbers of ways
for such removal may be m, m− 1, and m− 2, respectively.

Subcase 2.2. Remove a vertex of degree 2 from two different chains, respectively. The
number of ways for such removal is ab + ac + ad + ae1 + ae2 + bc + bd + be1 + be2 + cd +
ce1 + ce2 + de1 + de2 − 5m + e1 + e2 + 14.

Subcase 2.3. Remove a vertex of degree 3 and a vertex of degree 2, respectively. The
number of ways for such removal is 2(a + b + c + d− 4). By computation, we get

sn−2(F2) = ab + ac + ad + ae1 + ae2 + bc + bd + be1 + be2

+cd + ce1 + ce2 + de1 + de2 − 2m− e1 − e2 + k,

where k =


6 i f c, d 6= 1,
5 i f only one o f c and d is 1,
4 i f c = d = 1.

Case 3. Remove a vertex and an edge of F2. If the graph obtained from F2 by removing
a vertex and an edge (which is not incident with the vertex removed) is connected, then
there are two subcases below.
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Subcase 3.1. Remove a vertex of degree 2 in one chain of F2 and remove an edge in
another chain. The number of ways for such removal is (a− 1)(m− a) + (b− 1)(m− b) +
(c− 1)(m− c) + (d− 1)(m− d) + (e1 − 1)(a + b + c + d) + (e2 − 1)(a + b + c + d).

Subcase 3.2. Remove a vertex of degree 3 of F2 and remove an edge in one chain. The
number of ways for such removal is 2(a + b + c + d).

Thus, we have

∑
H∈H(n−1)

F2

Nm(H)−1(H) = 2(ab + ac + ad + ae1 + ae2 + bc + bd + be1 + be2

+cd + ce1 + ce2 + de1 + de2)− 3m− e1 − e2.

By computation, the formula for I2(F2) is given by

I2(F2) = 4(ab + ac + ad + ae1 + ae2 + bc + bd + be1 + be2 (9)

+cd + ce1 + ce2 + de1 + de2)− 5m− 2(e1 + e2) + k,

where k =


6 i f c, d 6= 1,
5 i f only one o f c and d is 1,
4 i f c = d = 1.

Assume that F3 = F3(a, b, c, d, e) with a ≥ c, b ≥ d. Let m = n + 2. By (9), in the case
of e1 = e and e2 = 0, we obtain

I2(F3) = 4(ab + ac + ad + ae + bc + bd + be + cd + ce + de)− 5m− 2e + k, (10)

where k =


6 i f c, d 6= 1,
5 i f only one o f c and d is 1,
4 i f c = d = 1.

Assume that F4 = F4(a, b, c, d) with a ≥ b ≥ c ≥ d. Let m = n + 2. By the same reason,
we have

I2(F4) =

{
4(ab + ac + ad + bc + bd + cd)− 5m + 6 i f d 6= 1,
4(ab + ac + ad + bc + bd + cd)− 5m + 5 i f d = 1.

(11)

By comparing I2(F1), I2(F2), I2(F3) and I2(F4), by (8), (9), (10) and (11), we have the
following.

Lemma 3. For F4(a, b, c, d) ∈ F4(n) and a ≥ 2, then

I2[F3(a− 1, b, c, d, 1)]− I2[F4(a, b, c, d)] > 0.

Lemma 4. For F3(a, b, c, d, e) ∈ F3(n) and a ≥ 2, then

I2[F1(a− 1, b, c, d, e, 1)]− I2[F3(a, b, c, d, e)] > 0.

Lemma 5. For F2(a, b, c, d, e1, e2) ∈ F2(n), then

I2[F3(a, b, c, d, e1 + e2)] = I2[F2(a, b, c, d, e1, e2)].

Motivated by the discussions above, we define a subfamily of F1(n) as follows.

F ′1(n) = {F1(a, b, c, d, e, f ) ∈ F1(n) | for any x, y ∈ {a, b, c, d, e, f }, |x− y| ≤ 1}.

By Lemmas 3–5, we conclude that if I2(G) is with the maximum value among all
G ∈ Ω(n, n + 2), then G is a member in F1(n). By Lemma 2, it holds that:
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Lemma 6. If G ∈ Ω(n, n + 2) is the locally optimally mixed reliable network at (0, 0), then
G ∈ F ′1(n).

Theorem 4. A graph G ∈ Ω(n, n + 2) is a locally optimally mixed reliable network at (0, 0) if
and only if G ∈ F ′1(n).

Proof. As Lemma 6 justifies the necessity of the theorem, it suffices to prove the sufficiency.
Suppose that G ∈ F ′1(n). Then G = F1(a, b, c, d, e, f ) for some positive integers a, b, c, d, e, f ,
satisfying a + b + c + d + e + f = n + 2 such that any two of {a, b, c, d, e, f } differ by one at
most. With m = |E(G)| = n + 2, it follows by (1) that I1(G) = n + m, and so by Theorem 2,
I1(G) = max{I1(H)|H ∈ Ω(n, n + 2)}. Since any two of {a, b, c, d, e, f } differ by at most
one, by (8), we conclude that I2(G) = max{I2(H)|H ∈ Ω(n, n + 2)} as well. Now by
Theorem 1, G is a locally optimally mixed reliable network at (0, 0), and so the sufficiency
is also proved.

6. Conclusions

The reliability of networks has become increasingly important, as the number of
network applications in critical infrastructure and other social and management areas has
been growing. In this paper, the vertex-and-edge fault reliability model was investigated
and locally optimally mixed reliable networks in the vertex-and-edge fault reliability
model were introduced and studied. A reliability comparison criterion was established to
determine which one of two given networks with the same vertices and edges was more
locally mixed and reliable. Furthermore, locally optimally mixed reliable networks in the
graph families Ω(n, n + 1) and Ω(n, n + 2) were determined. For application purposes,
it is expected to further understand locally optimally mixed reliable networks in other
graph families. In this research, the parameters Ik(G)’s were introduced, which have been
successfully applied in studies of locally optimally mixed reliable networks in the graph
families Ω(n, n + 1) and Ω(n, n + 2). Future research can address the investigations of
the roles these parameters, Ik(G)’s, will play in studying network reliability, and the
determination of locally optimally mixed reliable networks in the graph family Ω(n, n + k)
when k becomes larger.
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