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Abstract: In this paper, we prove the following: If n ≥ 3, there is a generic extension of L—the
constructible universe—in which it is true that the Separation principle holds for both effective
(lightface) classes Σ1

n and Π1
n of sets of integers. The result was announced long ago by Leo

Harrington with a sketch of the proof for n = 3; its full proof has never been presented. Our methods
are based on a countable product of almost-disjoint forcing notions independent in the sense of
Jensen–Solovay.
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1. Introduction

The separation problem was introduced in descriptive set theory by Luzin [1]. In
modern terms, the separation principle—or simply Separation, for a given projective
(boldface) class Σ1

n or Π1
n —is the assertion that

Boldface Separation for Σ1
n or Π1

n : any pair of disjoint Σ1
n , resp, Π1

n sets X, Y of reals can
be separated by a ∆1

n set.

Accordingly, the classical separation problem is a question of whether Boldface Separation
holds for this or another projective class Σ1

n or Π1
n . Luzin and then Novikov [2] underlined

the importance and difficulty of this problem. (See [3–5] for details and further references).
Luzin [1,6] and Novikov [7] proved that Boldface Separation holds for Σ1

1 but fails
for the dual class Π1

1 . Somewhat later, it was established by Novikov [8] that the picture
changes at the next projective level: Boldface Separation holds for Π1

2 but fails for Σ1
2 .

As for the higher levels of projective hierarchy, all attempts made in classical descrip-
tive set theory to solve the separation problem above the second level did not work, until
some additional set theoretic axioms were introduced—in particular, those by Novikov [2]
and Addison [9,10]. Gödel’s axiom of constructibility V = L implies that, for any n ≥ 3,
Boldface Separation holds for Π1

n but fails for Σ1
n —pretty similar to second level.

In such a case, it is customary in modern set theory to look for models in which the
separation problem is solved differently than under V = L for at least some projective
classes Σ1

n and Π1
n , n ≥ 3. This goal is split into two different tasks:

(I) Prove the independence of the Π-side Boldface Separation—that is, given n ≥ 3, find
models in which Boldface Separation fails for the class Π1

n ;
(II) Prove the consistency of the Σ-side Boldface Separation—that is, given n ≥ 3, find

models in which Boldface Separation holds for the class Σ1
n .
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As for models, we focus here only on generic extensions of the constructible universe L . Other
set theoretic models, e.g., those based on strong determinacy or large cardinal hypotheses,
are not considered in this paper. (We may only note in brackets that, by Addison and
Moschovakis [11], and Martin [12], the axiom of projective determinacy PD implies that, for
any m ≥ 1, the separation problem is solved affirmatively for Σ1

2m+1 and Π1
2m+2 and

negatively for Π1
2m+1 and Σ1

2m+2 —similar to what happens at the first and second level
corresponding to n = 0 in this scheme. See also Steel [13,14], and Hauser and Schindler [15]
for some other relevant results.).

Problems (I) and (II) have been well-known since the early years of forcing, e.g., see
problem P3030, and especially P3029 (= (II) for n = 3) in a survey [16] by Mathias.

Two solutions for part (I) are known so far. Harrington’s two-page handwritten
note ([Addendum A1] [17]) contains a sketch of a model, without going into details,
defined by the technique of almost-disjoint forcing of Solovay and Jensen [18], in which
indeed Separation fails for both Σ1

n and Π1
n for a given n . This research was cited in

Moschovakis [3] (Theorem 5B.3), and Mathias [16] (Remark P3110 on page 166), but has
never been published or otherwise detailed in any way. Some other models, with the same
property of failure of Separation for different projective classes, were recently defined and
studied in [5,19].

As for (II), the problem as it stands is open so far, and no conclusive achievement,
such as a model (a generic extension of L) in which Boldface Separation holds for Σ1

n for
some n ≥ 3, is known. Yet, the following modification turns out to be easier to work with.
The effective or lightface Separation, for a given lightface class Σ1

n or Π1
n (we give [3] as a

reference on the lightface projective hierarchy), is the assertion that

Lightface Separation for Σ1
n or Π1

n : any pair of disjoint Σ1
n , respectively, Π1

n sets X, Y can
be separated by a ∆1

n set—here, unlike the Boldface Separation case, the sets X, Y
can be either sets of reals or sets of integers.

Accordingly, the effective or lightface separation problem is a question of whether
Lightface Separation holds for this or another class of the form Σ1

n or Π1
n , with specific

versions for sets of reals and sets of integers. Addison [9,10] demonstrated that, similar to
the above, Lightface Separation holds for Σ1

1 and Π1
2 ; fails for Π1

1 and Σ1
2 ; and under the

axiom of constructibility V = L , it holds for Π1
n and fails for Σ1

n for all n ≥ 3—both in the
“real” and the “integer” versions. (See also [3]).

In this context, Harrington announced in [17] that there is a model in which Lightface
Separation holds both for the class Σ1

3 for sets of integers, and for the class Π1
3 for sets of

integers. A two-page handwritten sketch of a construction of such a model is given in
([Addendum A3] [17]) without much elaboration of arguments. The goal of this paper is
to prove the next theorem, which generalizes the cited Harrington result and thereby is a
definite advance in the direction of (II) in the context of Lightface Separation for sets of
integers. This is the main result of this paper.

Theorem 1. Let n ≥ 2 . There is a generic extension of L in which

(i) Lightface Separation holds for Σ1
n+1 sets of integers, so that any pair of disjoint Σ1

n+1 sets
X, Y ⊆ ω can be separated by a ∆1

n+1 set ;
(ii) Lightface Separation also holds for Π1

n+1 sets of integers, so that any pair of disjoint Π1
n+1

sets X, Y ⊆ ω can be separated by a ∆1
n+1 set.

Our proof of this theorem will follow a scheme that includes both some arguments
outlined by Harrington in [17], Addendum A3 (mainly related to the most elementary case
n = 2) and some arguments absent in [17], in particular, those related to the generalization
to the case n ≥ 3. (We may note here that [17] is neither a beta-version of a paper, nor
a preprint of any sort, but rather handwritten notes to a talk in which omissions of even
major details can be expected.) All this will require both a fairly sophisticated construction
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of the model itself and a fairly complex derivation of its required properties by rather new
methods for modern set theoretic research. Thus, we are going to proceed with filling-
in all necessary details left aside in [17]. We hope that the detailed acquaintance with
the set theoretic methods first introduced by Harrington will serve to the benefits of the
reader envisaged.

To prove Theorem 1, we make use of a generic extension of L defined in our earlier
paper [20] (and before that in [17]—modulo some key details absent in [17]) in order to
prove the consistency of the equality P (ω) ∩ L = P (ω) ∩∆1

n+1 for a given n ≥ 2. (The
equality claims that the constructible reals are the same as ∆1

n+1 reals. Its consistency was
a major problem posed by Harvey Friedman [21].) We present the construction of this
generic model in all necessary detail.

This includes a version of almost-disjoint forcing considered in Section 2, the cone-
homogeneity lemma in Section 3, the systems and product forcing construction in Section 4,
and a Jensen–Solovay-style construction of the actual countable support forcing product Q
in Section 5. Theorem 2 and Definition 2 in Section 5 present the construction of Q in L via
the union of a 2ω-long increasing sequence of systems Uξ , ξ < ω2 , which satisfies suitable
completeness and definability requirements (that depend on the choice of the value of an
integer n as in Theorem 1), and also follows the Jensen–Solovay idea of Cohen-generic
extensions at each step ξ < ω2 of the inductive construction of Uξ .

Then, we consider corresponding Q-generic extensions L[G] in Section 6, and their
subextensions involved in the proof of Theorem 1 in Section 7 (Theorem 4). Two key
lemmas are established in Section 8, and the proof of theorems 4 and 1 is finalized in
Section 9 (the Σ1

n+1 case) and in Section 10 (the Π1
n+1 case).

The final section on conclusions and discussion completes the paper.

2. Almost-Disjoint Forcing

Almost-disjoint forcing was invented by Jensen and Solovay [18]. Here, we make use
of a ω1-version of this tool considered in ([Section 5] [18]). The version we utilize here
exactly corresponds to the case 
 = ωL

1 developed in our earlier paper [20] (and to less
extent in [22]). This will allow us to skip some proofs below. Assume the following:

• 
 = ωL
1 , the first uncountable ordinal in L .

• Fun = (

) ∩ L = all 
-sequences of ordinals < 
 in L .

• Seq = (
<
 r {Λ}) ∩ L is the set of all sequences s ∈ L of ordinals < 
 , of length
0 < lh s < 
 .

By definition, the sets Fun , Seq belong to L and card (Seq) = 
 = ωL
1 whereas

card (Fun) = ωL
2 in L . Note that Λ , the empty sequence, does not belong to Seq .

• A set X ⊆ Fun is dense iff for any s ∈ Seq there is f ∈ X such that s ⊂ f .

• If S ⊆ Seq , f ∈ Fun ; then, let S/ f = {ξ < 
 : f � ξ ∈ S} .

• If S/ f is unbounded in 
 , then say that S covers f ; otherwise, S does not cover f .

The general goal of the almost-disjoint forcing is the following: given a set u ⊆ Fun
in the ground set universe L , find a generic set S ⊆ Seq such that the equivalence
“ f ∈ u ⇐⇒ S does not cover f ” holds for each f ∈ Fun in the ground universe.

Definition 1. Q∗ is the set of all pairs p = 〈Sp ; Fp〉 ∈ L of finite sets Fp ⊆ Fun , Sp ⊆ Seq .
Note that Q∗ ∈ L . Elements of Q∗ are called (forcing) conditions.

If p ∈ Q∗ , then put F∨p = { f � ξ : f ∈ Fp ∧ 1 ≤ ξ < 
} ; this is a tree in Seq .
Let p, q ∈ Q∗ . Define q 6 p (that is, q is stronger as a forcing condition) iff Sp ⊆ Sq ,

Fp ⊆ Fq , and the difference Sq r Sp does not intersect F∨p , i. e., Sq ∩ F∨p = Sp ∩ F∨p . Clearly, we
have q 6 p iff Sp ⊆ Sq , Fp ⊆ Fq , and Sq ∩ F∨p = Sp ∩ F∨p .

If u ⊆ Fun , then put Q[u] = {p ∈ Q∗ : Fp ⊆ u} .



Axioms 2022, 11, 122 4 of 13

Lemma 1 (Lemma 1 in [20]). Conditions p, q ∈ Q∗ are compatible in Q∗ iff (1) Sq r Sp does
not intersect F∨p , and (2) Sp r Sq does not intersect F∨q .

Thus, any conditions p, q ∈ Q[u] are compatible in Q[u] iff p, q are compatible in Q∗

iff the condition p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ∈ Q[u] satisfies p ∧ q 6 p and p ∧ q 6 q .

3. The Almost-Disjoint Forcing Notions Are Homogeneous

We are going to show that forcing notions of the form Q[u] are sufficiently homo-
geneous. This is not immediately clear here, unlike the case of many other homogeneity
claims. Assume that conditions p, q ∈ Q∗ satisfy the next requirement:

Fp = Fq and Sp ∪ Sq ⊆ F∨p = F∨q . (1)

Then, a transformation hpq acting on conditions is defined as follows.
If p = q , then define hpq(r) = r for all r ∈ Q∗ , the identity.
Suppose that p 6= q . Then, p, q are incompatible by (1) and Lemma 1. Define

dpq = {r ∈ Q∗ : r 6 p ∨ r 6 q} , the domain of hpq . Let r ∈ dpq . We put hpq(r) = r′ :=
〈Sr′ , Fr′〉 , where Fr′ = Fr and

Sr′ =

 (Sr r Sp) ∪ Sq in case r 6 p ,

(Sr r Sq) ∪ Sp in case r 6 q .
(2)

In this case, the difference between Sr and Sr′ is located within the set X = F∨p = F∨q ,
so that Sr ∩X = Sp and Sr′ ∩X = Sq whenever r 6 p , while Sr ∩X = Sq and Sr′ ∩X = Sp
whenever r 6 q . The next lemma is Lemma 6 in [20].

Lemma 2. (i) If u ⊆ Fun is dense and p0, q0 ∈ Q[u] , then there exist conditions p, q ∈ Q[u]
with p 6 p0 , q 6 q0 , satisfying (1).

(ii) Let p, q ∈ Q∗ satisfy (1). If p = q, then hpq is the identity transformation. If p 6= q, then
hpq is an order automorphism of dpq = {r ∈ Q∗ : r 6 p ∨ r 6 q} , satisfying hpq(p) = q
and hpq = (hpq)−1 = hqp .

(iii) If u ⊆ Fun and p , q ∈ Q[u] satisfy (1), then hpq maps the set Q[u] ∩ dpq onto itself
order-preserving.

Proof (sketch). (i) By the density of u , there is a countable set F ⊆ Fun satisfying Fp ∪
Fq ⊆ F and Sp ∪ Sq ⊆ F∨ = { f � ξ : f ∈ F ∧ 1 ≤ ξ < 
} . Put p = 〈Sp, F〉 and q = 〈Sq, F〉 .
Claims (ii) and (iii) are routine.

Corollary 1 (in L). If a set u ⊆ Fun is dense, then Q[u] is cone homogeneous in the sense
of [23], i. e., if p0, q0 ∈ Q[u] , then there exist conditions p, q ∈ Q[u] with p 6 p0 , q 6 q0 , such
that the cones Q[u]6p = {p′ ∈ Q[u] : p′ 6 p} and Q[u]6q are order-isomorphic.

4. Systems and Product Almost-Disjoint Forcing

To prove Theorem 1, we make use of a forcing notion equal to the countable-support
product of a collapse forcing C and ωL

2 -many forcing notions of the form Q[u] , u ⊆ Fun .
We work in L. Define C = P (ω) ∩ L<ω , the set of all finite sequences of subsets of

ω in L , an ordinary forcing P (ω) ∩ L to collapse down to ω .
Let I = ωL

2 and I+ = I ∪ {−1} , the index set of the mentioned product. Let a system
be any map U : |U| → P (Fun) such that |U| ⊆ I , each set U(ν) (ν ∈ |U|) is dense in
Fun , and the components U(ν) ⊆ Fun (ν ∈ |U|) are pairwise disjoint.

Given a system U in L , we let Q[U] be the finite-support product of C and the sets
Q[U(ν)] , ν ∈ |U| . That is, Q[U] consists of all maps p defined on a finite set dom p =
|p|+ ⊆ |U| ∪ {−1} so that p(ν) ∈ Q[U(ν)] for all ν ∈ |p| := |p|+ r {−1} , and if
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−1 ∈ |p|+ , then bp := p(−1) ∈ C . If p ∈ Q[U] , then put Fp(ν) = Fp(ν) and Sp(ν) = Sp(ν)
for all ν ∈ |p| , so that p(ν) = 〈Sp(ν) ; Fp(ν)〉 .

We order Q[U] component-wise: p 6 q ( p is stronger as a forcing condition) iff
|q|+ ⊆ |p|+ , bq ⊆ bp in case −1 ∈ |q|+ , and p(ν) 6 q(ν) in Q[U(ν)] for all ν ∈ |q| . Note
that Q[U] contains the empty condition � ∈ Q[U] satisfying |�|+ = ∅ ; obviously, � is the
6-least (and weakest as a forcing condition) element of Q[U] .

Lemma 3 (in L). If U is a system, then the forcing notion Q[U] satisfies ωL
2 -CC.

Proof. We argue in L . Assume towards the contrary that X ⊆ Q[U] is an antichain of
cardinality card X = ω2 . As cardC = ω1 , we can assume that bp = bq for all p, q ∈ X .
Consider the set S = {|p| : p ∈ X} ; it consists of finite subsets of ω2 .

Case 1: card S ≤ ω1 . Then, by the cardinality argument, there is a set X′ ⊆ X and
some a ∈ S such that |p| = a for all p ∈ X′ and still card X′ = ω2 . Note that if p 6= q
belongs to X′ , then bp = bq by the above; therefore, as p, q are incompatible, we have
Sp 6= Sq . Thus, P = {Sp : p ∈ X′} still satisfies card P = ω2 . This is a contradiction since
obviously the set {Sp : p ∈ Q[U] ∧ |p| = a} has cardinality ω1 .

Case 2: card S = ω2 . Then, by the ∆-system lemma (see e.g., Lemma 111.2.6 in
Kunen [24]) there is a set S′ ⊆ S and a finite set δ ⊆ ω2 (the root) such that a ∩ b = δ
for all a 6= b in S′ , and still card S′ = ω2 . For any a ∈ S , pick a condition pa ∈ X′ with
|p| = a ; then, X′′ = {pa : a ∈ S′} still satisfies card X′′ = ω2 . By construction, if p 6= q
belong to X′′ , then |p| ∩ |q| = δ and p, q are incompatible; hence, the restricted conditions
p� δ , q� δ are incompatible as well. Thus, the set Y = {p� δ : p ∈ X′′} still has cardinality
cardY = ω2 and is an antichain. On the other hand, |q| = δ for all q ∈ Y . Therefore, we
have a contradiction as in Case 1.

5. Jensen–Solovay Construction

Our plan is to define a system U ∈ L such that any Q[U]-generic extension of L has
a subextension that witnesses Theorem 1. Such a system will be defined in the form of
a component-wise union of a ωL

2 -long increasing sequence of small systems, where the
smallness means that, in L , the system involves only ωL

1 -many functions in Fun .
We work in L.

• A system U is small, if both |U| and each set U(ν) (ν ∈ |U|) has cardinality ≤ ωL
1 .

• If U, V are systems, |U| ⊆ |V| , and U(ν) ⊆ V(ν) for all ν ∈ |U| , then say that V
extends U , in symbol U 4 V .

• If {Uξ }ξ<λ is a 4-increasing sequence of systems, then define a system U =
∨

ξ<λ Uξ

by |U| = ⋃
ξ<λ |Uξ | and U(ν) =

⋃
ξ<λ, ν∈|Uξ |Uξ(ν) for all ν ∈ |U| .

We let ZFC− be ZFC minus the Power Set axiom, with the schema of Collection
instead of Replacement, with AC in the form of the well-orderability principle, and with
the axiom: “ω1 exists”. See [25] on versions of ZFC sans the Power Set axiom in detail. Let
ZFC−2 be ZFC− plus the axioms: V = L , and the axiom “every set x satisfies card x ≤ ω1 ”.

Let U, V be systems. Suppose that M is any transitive model of ZFC−2 containing 
 .
Define U 4M U′ iff U 4 U′ and the following holds:

(a) the set ∆(U, U′) =
⋃

ν∈|U|(U′(ν)rU(ν)) is multiply Seq-generic over M , in the sense
that every sequence 〈 f1, . . . fm〉 of pairwise different functions f` ∈ ∆(U, U′) is
generic over M in the sense of Seq = ω1

<ω1 as the forcing notion in L , and

(b) if ν ∈ |U| , then the set U′(ν)rU(ν) is dense in Fun , and therefore uncountable.

Note a corollary of (a): ∆(U, U′) ∩M = ∅ .

• Let JS , Jensen–Solovay pairs, be the set of all pairs 〈M, U〉 , where M |= ZFC−2 is a
transitive model containing 
 and U ∈ M is a system. Then, the sets Seq , Q[U] also
belong to M .
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• Let sJS , small Jensen–Solovay pairs, be the set of all pairs 〈M, U〉 ∈ JS such that U is a
small system in the sense above and card M ≤ ω1 (in L).

• 〈M, U〉 4 〈M′, U′〉 (〈M′, U′〉 extends 〈M, U〉) iff M ⊆ M′ and U 4M U′ ;
〈M, U〉 ≺ 〈M′, U′〉 (strict) iff 〈M, U〉 4 〈M′, U′〉 and ∀ ν ∈ |U| (U(ν) $ U′(ν)) .

• A Jensen–Solovay sequence of length λ ≤ 
⊕ = ω2 is any strictly ≺-increasing
λ-sequence {〈Mξ , Uξ〉}ξ<λ of pairs 〈Mξ , Uξ〉 ∈ sJS , satisfying Uη =

∨
ξ<η Uξ on

limit steps. Let
−→
JSλ be the set of all such sequences.

• A pair 〈M, U〉 ∈ sJS solves a set D ⊆ sJS iff either 〈M, U〉 ∈ D or there is no pair
〈M′, U′〉 ∈ D that extends 〈M, U〉 .

• Let Dsolv be the set of all pairs 〈M, U〉 ∈ sJS , which solve a given set D ⊆ sJS .

• Let n ≥ 3. A sequence {〈Mξ , Uξ〉}ξ<ω2 ∈
−→
JSω2 is n-complete iff it intersects every set

of the form Dsolv , where D ⊆ sJS is a ΣHω2
n−2 (Hω2) set.

Recall that Hω2 is the collection of all sets x whose transitive closure TC (x) has car-
dinality card (TC (x)) < ω2 . Further, ΣHω2

n−2 (Hω2) means definability by a Σn−2 formula
of the ∈-language, in which any definability parameters in Hω2 are allowed, while ΣHω2

n−2

means the parameter-free definability. Similarly, ∆Hω2
n−1({
}) in the next theorem means

that 
 = ωL
1 is allowed as a sole parameter. It is a simple exercise that sets {Seq} and

Seq are ∆Hω2
1 ({
}) under V = L . To account for 
 as a parameter, note that the set ω1 is

ΣHω2
1 ; hence, the singleton {ω1} is ∆Hω2

2 .
Generally, we refer to, e.g., [26], Part B, 5.4, or [27], Chap. 13, on the Lévy hierarchy of

∈-formulas and definability classes ΣH
n , ΠH

n , ∆H
n for any transitive set H .

Theorem 2 (Theorem 3 in [20]). It is true in L that if n ≥ 2 , then there is a sequence
{〈Mξ , Uξ〉}ξ<ω2 ∈

−→
JSω2 of class ∆Hω2

n−1({
}) ; hence, ∆Hω2
n−1 in case n ≥ 3 , and in addition

n-complete in case n ≥ 3 , such that ξ ∈ |Uξ+1| for all ξ < ω2 .

Similar theorems were established in [28–30] for different purposes.

Definition 2 (in L). Fix a number n ≥ 2 during the following proof of Theorem 1.
Let {〈Mξ ,Uξ〉}ξ<ω2 ∈

−→
JSω2 be any Jensen–Solovay sequence as in Theorem 2—that is,

(i) the sequence is of class ∆Hω2
n−1 ;

(ii) we have ξ ∈ |Uξ+1| for all ξ ;

(iii) if n ≥ 3 , then the sequence is n-complete.

Put U =
∨

ξ<ω2
Uξ , so U(ν) =

⋃
ξ<ω2,ν∈|Uξ | Uξ(ν) for all ν ∈ I . Thus, U ∈ L is a system and

|U| = I since ξ ∈ |Uξ+1| for all ξ .
We define Q = Q[U] (the basic forcing notion). Thus, Q ∈ L is the finite-support product

of the set C and sets Q(ν) = Q[U(ν)] , ν ∈ I .

Lemma 4 (in L). The binary relation f ∈ U(ν) is ΣHω2
n−1 ({
}) .

Proof. Make use of (i) of Definition 2.

6. Basic Generic Extension

We consider Qn := Qn = Q[U] (see Definition 2) as a forcing notion in L . Accordingly,
we will study Q-generic extensions L[G] of the ground universe L . Define some elements
of these extensions. Suppose that G ⊆ Q . Let

bG =
⋃

p∈G bp , and SG(ν) = SG(ν) =
⋃

p∈G Sp(ν)
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for any ν ∈ |G| , where G(ν) = {p(ν) : p ∈ G} ⊆ Q[U(ν)] . Thus, SG(ν) ⊆ Seq .
Therefore, any Q-generic set G ⊆ Q splits into the family of sets G(ν) , ν ∈ I , and a

separate map bG : ω
onto−→ P (ω) ∩ L . It follows from Lemma 3 by standard arguments

that Q-generic extensions of L satisfy ω1 = ωL
2 .

Lemma 5 (Lemma 9 in [20]). Let G ⊆ Q be a set Q-generic over L . Then ,

(i) bG is a C-generic map from ω onto P (ω) ∩ L ;
(ii) if ν ∈ I , then the set G(ν) = {p(ν) : p ∈ G} ∈ L[G] is P[U(ν)]-generic over L—hence,

if f ∈ Fun , then f ∈ U(ν) iff SG(ν) does not cover f .

Now suppose that c ⊆ I+ . If p ∈ Q , then a restriction p′ = p� c ∈ Q is defined by
|p′| = c ∩ |p| and p′(ν) = p(ν) for all ν ∈ |p′| . In particular, if ν ∈ I+ , then let

p� 6=ν = p� (|p|+ r {ν}) and p� ν = p�{ν} (identified with p(ν)).

If G ⊆ Q , then let G� c = {p ∈ G : |p| ⊆ c} (={p� c : p ∈ G} in case c ∈ L).
Put G� 6=ν = {p ∈ G : ν /∈ |p|+} = G� (I+ r {ν}) .
Writing p� c , it is not assumed that c ⊆ |p|+ .
The proof of Theorem 1 makes use of a generic extension of the form L[G� c] , where

G ⊆ Q is a set Q-generic over L and c ⊆ I+ , c /∈ L .
Define formulas �ν (ν ∈ I ) as follows:

�ν(S) :=def S ⊆ Seq ∧ ∀ f ∈ Fun
(

f ∈ U(ν) ⇐⇒ S does not cover f ).

Lemma 6 (Lemma 22 in [20]). Suppose that a set G ⊆ Q is Q-generic over L and ν ∈ I ,
c ∈ L[G] , ∅ 6= c ⊆ I+ . Then, ω

L[G� c]
1 = ωL

2 and

(i) �ν(SG(ν)) holds ;

(ii) SG(ν) /∈ L[G� 6=ν]—generally, there are no sets S ⊆ Seq in L[G� 6=ν] satisfying �ν(S) ;

(iii) if −1 ∈ c , then bG ∈ L[G� c] , and if ν ∈ c , then SG(ν) ∈ L[G� c] .

The next key theorem is Theorem 4 in [20]. Note that if n = 2, then the result is an
easy corollary of the Shoenfield absoluteness theorem.

Theorem 3 (elementary equivalence theorem). Assume that in L , −1 ∈ d ⊆ I+ , sets
Z′, Z ⊆ I r d satisfy card (I r Z) ≤ ω1 and card (I r Z′) ≤ ω1 , the symmetric difference
Z ∆ Z′ is at most countable and the complementary set I r (d ∪ Z ∪ Z′) is infinite.

Let G ⊆ Q be Q-generic over L , and x0 ∈ L[G� d] be any real.
Then, any closed Σ1

n formula ϕ , with real parameters in L[x0] , is simultaneously true in the
models L[x0, G�Z] and L[x0, G�Z′] .

7. The Model

Here, we introduce a submodel of the basic Q-generic extension L[G] defined in
Section 6 that will lead to the proof of Theorem 1.

Recall that a number n ≥ 2 is fixed by Definition 2.
Under the assumptions and notation of Definition 2, consider a set G ⊆ Q , Q-generic

over L . Then, bG =
⋃

G(−1) is a C-generic map from ω onto P (ω) ∩ L by Lemma 5 (i).
We define

w[G] = {ωk + 2j : k < ω ∧ j ∈ bG(k)} ∪ {ωk + 3j : j, k < ω} ⊆ ω2, (3)

and w+[G] = {−1} ∪ w[G] . We also define, for any m < ω ,

w≥m[G] = {ωk + ` ∈ w[G] : k ≥ m} , w<m[G] = {ωk + ` ∈ w[G] : k < m} ,
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and accordingly, w+
≥m[G] = {−1} ∪ w≥m[G] and w+

<m[G] = {−1} ∪ w<m[G] .
With these definitions, each k th slice

wk[G] = {ωk + 2j : j ∈ bG(k)} ∪ {ωk + 3j : j < ω} (4)

of w[G] is necessarily infinite and coinfinite, and it codes the target set bG(k) since

bG(k) = { j < ω : ωk + 2j ∈ wk[G]} = { j < ω : ωk + 2j ∈ w+[G]}. (5)

Note that definition (3) is monotone w.r. t. bG , i. e., if bG(k) ⊆ bG′(k) for all k , then
w[G] ⊆ w[G′] and w+[G] ⊆ w+[G′] . Anyway, w[G] ⊆ ω2 (the ordinal product) is a set in
the model L[bG] = L[w+[G]] = L[w[G]] = L[w≥m[G]] for each m , whereas w<m[G] ∈ L
for all m . Finally, let W = [ω2, ω2) = {ζ : ω2 ≤ ζ < ω2} .

Recall that if c ⊆ I+ , then G� c = {p ∈ G : |p|+ ⊆ c} .

To prove Theorem 1, we consider the model L[G� (w+[G] ∪W)] ⊆ L[G] .

Theorem 4. If G is a Q-generic set over L , then the class L[G� (w+[G] ∪W)] suffices to prove
Theorem 1. That is, Lightface Separation holds in L[G� (w+[G] ∪W)] both for Σ1

n+1 sets of
integers and for Π1

n+1 sets of integers.

The proof will include several lemmas.
For the next lemma, we let ||−−Q be the Q -forcing notion defined in L . If p ∈ Q and

−1 ∈ |p|+ , then let p�−1 := p�{−1} . This can be identified with just p(−1) ∈ C , of
course, but formally p�−1 ∈ Q . If −1 /∈ |p|+ , then let p�−1 := � (the empty condition).
Let G be the canonical Q-name for the generic set G ⊆ Q , W̌ be a name for the set
W = [ω2, ωL

2 ) ∈ L , and b̌ be a canonical Q-name for bG .

Lemma 7 (reduction to the C-component). Let p ∈ Q and let Φ(b̌) be a closed formula
containing only b̌ and names for sets in L as parameters. Assume that

p ||−−Q “Φ is true in L[G� (w+[G] ∪ W̌)]′′ .

Then, p�−1 ||−−Q “Φ is true in L[G� (w+[G] ∪ W̌)]′′ as well.

Proof. By the product forcing theorem, if G ⊆ Q is Q-generic over L , then the model
L[G� (w+[G] ∪W)] is a Q′-generic extension of L[bG] , where Q′ = ∏ν∈w+ [G]∪W Q[U(ν)]
is a forcing in L[bG] . However, it follows from Corollary 1 that Q′ is a (finite-support)
product of cone-homogeneous forcing notions. Therefore, Q′ itself is a cone homogeneous
forcing, and we are finished (see e.g., Lemma 3 in [23] or Theorem IV.4.15 in [24]).

8. Two Key Lemmas

The following two lemmas present two key properties of models of the form L[G� (w+[G]∪
W)] involved in the proof of Theorem 4. The first lemma shows that all constructible reals are
∆1
n+1 in such a model.

Lemma 8. Let a set G ⊆ Q be Q-generic over L . Then, it holds in L[G� (w+[G] ∪W)] that
w[G] is Σ1

n+1 and each set x ∈ L , x ⊆ ω is ∆1
n+1 .

Proof. Consider an arbitrary ordinal ν = ωk + ` ; k, ` < ω . We claim that

ν ∈ w[G] ⇐⇒ ∃ S�ν(S) (6)

holds in L[G� (w+[G] ∪W)] . Indeed, assume that ν ∈ w[G] . Then, S = SG(ν) ∈
L[G�w+[G]] , and we have �ν(S) in L[G� (w+[G] ∪W)] by Lemma 6 (iii),(i). Conversely,
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assume that ν /∈ w[G] . Then, we have w+[G] ∈ L[bG] ⊆ L[G�w+[G]] ⊆ L[G� 6=ν] , but
L[G� 6=ν] contains no S with �ν(S) by Lemma 6 (ii).

However, the right-hand side of (6) defines a ΣHω2
n ({ωL

1 , Seq}) relation in the model
L[G� (w+[G]∪W)] by Lemma 4. (Indeed, we have (Hω2)

L = Lω2
L = Lω1 in L[G� (w+[G]∪

W)] ; therefore, (Hω2)
L is ΣHω2

1 in L[G� (w+[G] ∪W)]). On the other hand, the sets {ωL
1 }

and {Seq} remain ∆Hω2
2 singletons in L[G� (w+[G] ∪W)] ; they can be eliminated since

n ≥ 2. This yields w[G] ∈ ΣHC
n in L[G� (w+[G] ∪W)] . It follows that w[G] ∈ Σ1

n+1 in
L[G� (w+[G] ∪W)] by Lemma 25.25 in [27], as required.

Now, let x ∈ L , x ⊆ ω . By genericity, there exists k < ω such that bG(k) = x . Then,
x = { j : ωk + 2j ∈ w[G]} by (3); therefore, x is Σ1

n+1 as well. However, ω r x ∈ Σ1
n+1 by

the same argument. Thus, x is ∆1
n+1 in L[G� (w+[G] ∪W)] , as required.

The proof of the next lemma involves Theorem 3 above as a key reference. The lemma
holds for n = 2 by Shoenfield.

Lemma 9. Suppose that G ⊆ Q is Q-generic over L , m < ω , c ⊆ w<m[G] , c ∈ L . Then, any
closed Σ1

n formula Φ , with reals in L[G� (c ∪ w+
≥m[G] ∪W)] as parameters, is simultaneously

true in L[G� (c ∪ w+
≥m[G] ∪W)] and in L[G� (w+[G] ∪W)] .

It follows that if c′ ⊆ c ⊆ w<m[G] in L , then any closed Σ1
n+1 formula Ψ , with pa-

rameters in L[G� (c′ ∪ w+
≥m[G] ∪W)] , true in L[G� (c′ ∪ w+

≥m[G] ∪W)] , is true in the model
L[G� (c ∪ w+

≥m[G] ∪W)] as well.

Proof. There is an ordinal ξ < ω2 such that all parameters in ϕ belong to L[G�Y] ,
where Y = c ∪ w+

≥m[G] ∪ X and X = [ω2, ξ) = {γ : ω2 ≤ γ < ξ} . The set Y belongs
to L[bG] ; in fact, L[Y] = L[bG] . Therefore, G�Y is equi-constructible with the pair
〈bG, {SG(ν)}ν∈Y〉 . Here, bG is a map from ω onto P (ω) ∩ L . It follows that there is
a real x0 with L[G�Y] = L[x0] . Then, all parameters of ϕ belong to L[x0] .

To prepare an application of Theorem 3 of Section 6, we put

Z′ = [ξ, ω2) ,
Z = e ∪ Z′ , where e = w<m[G]r c ,
d = {−1} ∪ {ωk + j : k ≥ m ∧ j < ω} ∪ X .

It is easy to check that all requirements of Theorem 3 for these sets are fulfilled.
Moreover, as w+

≥m[G] ⊆ {−1}∪ {ωk + j : k ≥ m∧ j < ω} , we have Y = c∪w+
≥m[G]∪X ⊆

d ; hence, x0 ∈ L[G� d] . Therefore, we conclude by Theorem 3 that the formula ϕ is
simultaneously true in L[x0, G�Z] and in L[x0, G�Z′] . However,

L[x0, G�Z′] = L[G� (Y ∪ Z′)] = L[G� (c ∪ w+
≥m[G] ∪W)]

by construction, while L[x0, G�Z] = L[G� (w+[G] ∪W)] , and we are done.

9. Finalization: Σ1
n+1 Case

Here, we finalize the proof of Theorems 4 and 1 w.r. t. Σ1
n+1 sets of integers. We

generally follow the line of arguments sketched by Harrington ([Addendum A3] [17]) for
the Σ1

3 case, with suitable changes mutatis mutandis. We will fill in all details omitted
in [17].

Recall that a number n ≥ 2 is fixed by Definition 2. We assume that

(∗) a set G ⊆ Q is Q-generic over L , sets x, y ⊆ ω belong to L[G� (w+[G] ∪W)] , and it
holds in L[G� (w+[G] ∪W)] that x, y are disjoint Σ1

n+1 sets.

The goal is to prove that x, y can be separated by a set Z ∈ L and then argue that Z is
∆1
n+1 by Lemma 8. Recall that W = [ω2, ωL

2 ) = {ξ : ω2 ≤ ξ < ωL
2 } . Suppose that
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(†) ϕ(·) and ψ(·) are parameter-free Σ1
n+1 formulas that provide Σ1

n+1 definitions for
the sets, respectively, x, y of (∗)—that is,

x = {` < ω : ϕ(`)} and y = {` < ω : ψ(`)}

in L[G� (w+[G]∪W)] . The assumed implication ∀ ` (ϕ(`) =⇒ ¬ψ(`)) (as x∩ y = ∅)
is forced to be true in L[G� (w+[G] ∪ W̌)] by a condition p0 ∈ G .

Here, G is the canonical Q-name for the generic set G ⊆ Q while W̌ is a name for the
set W = [ω2, ωL

2 ) ∈ L .
We observe that ∀ ` (ϕ(`) =⇒ ¬ ψ(`)) is a parameter-free sentence. Therefore, it can

w. l.o.g. be assumed that |p0|+ = {−1} , by Lemma 7. In this case, the condition p0 ∈ Q
can be identified with its only nontrivial component s0 = p0(−1) ∈ C .

Lemma 10 (interpolation lemma). Under the assumptions of (†), if `, `′ < ω , conditions
p, p′ ∈ Q satisfy p ≤ p0 and p′ ≤ p0 , and we have

p ||−−Q “L[G� (w+[G] ∪ W̌)] |= ϕ(`)” and p′ ||−−Q “L[G� (w+[G] ∪ W̌)] |= ψ(`′)”.

Then, ` 6= `′ .

Proof (sketched in ([Addendum A3] [17]) for n = 2) . First of all, by Lemma 7, we can
w. l.o.g. assume that |p|+ = |p′|+ = {−1} ; so, the components s = p(−1) and s′ = p′(−1)
satisfy s0 ⊆ s and s0 ⊆ s′ in C .

We w. l.o.g. assume that the tuples s, s′ have the same length lh s = lh s′ = m .
(Otherwise, extend the shorted one by a sufficient number of new terms equal to ∅).
Define another condition t ∈ C such that dom t = m and t(j) = s(j) ∪ s′(j) for all j < m .
Accordingly, define q ∈ Q so that |q|+ = {−1} and q(−1) = t . Despite that q may well
be incomparable with p, p′ in Q , we claim that

q ||−−Q “L[G� (w+[G] ∪ W̌)] |= ϕ(`) ∧ ψ(`′)” . (7)

To prove the ϕ-part of (7), let H ⊆ Q be a set Q-generic over L , and q ∈ H . Then,
t ⊂ bH . We have to prove that ϕ(`) holds in L[H� (w+[H] ∪W)] .

Define another generic set K ⊆ Q , slightly different from H , so that

(A) K(ν) = H(ν) for all ν ∈ I = ωL
2 ;

(B) s ⊂ bK ; and
(C) if m ≤ j < ω , then bK(j) = bH(j) .

In other words, the only difference between K and H is that bK�m = s but bH�m = t .
It follows that p ∈ K ; hence, ϕ(`) holds in L[K� (w+[K] ∪W)] by the assumptions of

the lemma. Now, we note that by definition,

w+[K] ∪W = w<m[K] ∪ w+
≥m[K] ∪W, w+[H] ∪W = w<m[H] ∪ w+

≥m[H] ∪W,

Here, the sets cH = w<m[H] and cK = w<m[K] satisfy cK ⊆ cH (since bK(j) = s(j) ⊆
t(j) = bH(j) for all j < m). In addition, w+

≥m[H] = w+
≥m[K] (since bK(j)bH(j) for all

j ≥ m). To conclude,

w+[K] ∪W = cK ∪ w+
≥m[H] ∪W, w+[H] ∪W = cH ∪ w+

≥m[H] ∪W, (8)

and cK ⊆ cH = w<m[H] . On the other hand, it follows from (A) that K� c = H� c for any
c ⊆ I , whereas bK and bH are recursively reducible to each other by (B),(C). Therefore,

L[K� (w+[K] ∪W)] = L[H� (w+[K] ∪W)] = L[H� (cK ∪ w+
≥m[H] ∪W)]
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by (8). However, ϕ(`) holds in this model by the above. It follows by Lemma 9 that ϕ(`)
holds in L[H� (w+[H] ∪W)] = L[cH ∪ w+

≥m[H] ∪W] as well. (Harrington circumvents
Lemma 9 in [17] by a reference to the Shoenfield absoluteness theorem.) We are finished.

After (7) has been established, we recall that q ≤ p0 in Q by construction. It follows
that ` 6= `′ by the choice of p0 (see (†) above).

Proof of Theorems 4 and 1: Σ1
n+1 case. We work under the assumptions of (∗) and (†)

above. Consider the following sets in L :

Zx = {` < ω : ∃ p ∈ Q (p ≤ p0 ∧ p ||−−Q “L[G� (w+[G] ∪ W̌)] |= ϕ(`)”)};
Zy = {`′ < ω : ∃ p′ ∈ Q (p′ ≤ p0 ∧ p′ ||−−Q “L[G� (w+[G] ∪ W̌)] |= ψ(`′)”)}.

Note that Zx ∩ Zy = ∅ by Lemma 10. On the other hand, it is clear that x ⊆ Zx and
y ⊆ Zy by (†). Thus, either of the two sets Zx, Zy ∈ L separates x from y . It remains to
apply Lemma 8.

10. Finalization: Π1
n+1 Case

This will be a mild variation of the argument presented in the previous section.

Proof of Theorems 4 and 1: Π1
n+1 case, sketch. Emulating (∗) and (†) above, we assume

that a set G ⊆ Q is Q-generic over L , and x, y ⊆ ω are disjoint Π1
n+1 sets in L[G� (w+[G]∪

W)] , defined by parameter-free Π1
n+1 formulas, respectively, ϕ(·) and ψ(·) . The implica-

tion ∀ ` (ϕ(`) =⇒ ¬ ψ(`)) is forced to hold in L[G� (w+[G] ∪ W̌)] by a condition p0 ∈ G
satisfying |p0|+ = {−1} . The proof of Lemma 10 goes on for Π1

n+1 formulas ϕ, ψ the
same way, with the only difference that we define t(j) = s(j) ∩ s′(j) for j < m . Yet, this is
compatible with the application of Lemma 9 because now, ϕ, ψ are Π1

n+1 formulas.

11. Conclusions and Discussion

In this study, the method of almost-disjoint forcing was employed to the problem of
obtaining a model of ZFC in which the Separation principle holds for lightface classes
Π1

n+1 and Σ1
n+1 , for a given n ≥ 2, for sets of integers. The problem of obtaining such

models has been generally known since the early years of modern set theory, see, e.g.,
problems 3029 and 3030 in a survey [16] by Mathias. Harrington ([17], Addendum A3)
claimed the existence of such models; yet, a detailed proof has never appeared.

From our study, it is concluded that the technique developed in our earlier paper [20]
solves the general case of the problem (an arbitrary n ≥ 2) by providing a generic extension of
L in which the Lightface Separation principle holds for classes Π1

n+1 and Σ1
n+1 , for a given

n ≥ 2, for sets of integers, for a chosen value n ≥ 2.
From this result, we immediately come to the following problem:

Problem 1. Define a generic extension of L in which the Lightface Separation principle holds
for classes Π1

n+1 and Σ1
n+1 , for all n ≥ 2 , for sets of integers.

The intended solution is expected to be obtained on the basis of a suitable product of
the forcing notions Qn , n ≥ 2, defined in Section 6.

And we recall the following major problem.

Problem 2. Given n ≥ 2 , define a generic extension of L in which the Separation principle holds
for the classes Σ1

n+1 and Σ1
n+1 for sets of reals.

The case of sets of reals in the Separation problem is more general, and obviously much
more difficult, than the case sets of integers.
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