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cases of Pólya–Szegö inequalities.

Keywords: Pólya–Szegö inequality; Minkowsky inequality; Caputo–Fabrizio fractional integrals

MSC: 26D10; 26D33

1. Introduction

Mathematical integral inequalities plays a very important role in classical differential
and integral equations, which have many applications in many fields.

In 1925, Pólya–Szegö proved the following inequality (see [1]):∫ c2
c1

ϕ2(x)dx
∫ c2

c1
ψ2(x)dx(∫ c2

c1
ϕ(x)dx

∫ c2
c1

ψ(x)dx
)2 ≤

1
4

(√
ST
st

+

√
st
ST

)2

, (1)

and, in [2], Dragomir and Diamond proved the following inequality:∣∣∣∣ 1
c2 − c1

∫ c2

c1

ϕ(x)ψ(x)dx−
(

1
c2 − c1

∫ c2

c1

ϕ(x)dx
)(

1
c2 − c1

∫ c2

c1

ψ(x)dx
)∣∣∣∣

≤ (S − s)(T − t)
4(c2 − c1)2

√
sS tT

∫ c2

c1

ϕ(x)dx
∫ c2

c1

ψ(x)dx,
(2)

provided that ϕ and ψ are two integrable functions on [c1, c2] and satisfy the condition

0 < s ≤ ϕ(x) ≤ S < ∞, 0 < t ≤ ψ(x) ≤ T < ∞; s,S , t, T ∈ R, x ∈ [c1, c2]. (3)

In 1935, G. Grüss proved the following classical integral inequality (see [1,3,4]):∣∣∣∣ 1
c2 − c1

∫ c2

c1

ϕ(x)ψ(x)dx−
(

1
c2 − c1

∫ c2

c1

ϕ(x)dx
)(

1
c2 − c1

∫ c2

c1

ψ(x)dx
)∣∣∣∣

≤ (S − s)(T − t)
4

,

(4)

provided that ϕ and ψ are two integrable functions on [c1, c2] and satisfy the conditions

s ≤ ϕ(x) ≤ S , t ≤ ψ(x) ≤ T ; s,S , t, T ∈ R, x ∈ [c1, c1]. (5)
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Recently, many researchers in several fields have found different results about some known
fractional calculus and applications by means of the Riemann–Liouville [5–11], k-Riemann
Liouville [12,13], Caputo [5,12,14], Hadamard [15,16], Marichev–Saigo–Maeda [17],
Saigo [18–20], Katugamapola [21], Atangana—Baleanu [22] and some other fractional
integral operators. Many mathematicians have worked on the Pólya–Szegö inequalities
using various fractional integral operators in recent years (see [23–26]). Caputo and Fab-
rizio [27,28] obtained new fractional derivatives and integrals without a singular kernel,
which apply to time and spatial fractional derivatives. In [29], the authors defined the
weighted Caputo–Fabrizio fractional derivative and studied related linear and nonlinear
fractional differential equations. In the literature, very little work has been reported on
fractional integral inequalities using Caputo and Caputo–Fabrizio integral operators. Wang
et al. [30] obtained the Hermite–Hadamard inequalities by employing the Caputo–Fabrizio
fractional operator. In [31], Chinchane et al. dealt with the Caputo—Fabrizio fractional
integral operator with a nonsingular kernel and established some new integral inequali-
ties for the Chebyshev functional, in the case of synchronous function, by employing the
fractional integral. Jain et al. [24] established some new Pólya–Szegö inequality fractional
integral inequalities by considering Riemann–Liouville-type fractional integral operators.
In [32], Tariq et al. improved integral inequalities of the Hermite–Hadamard and Pachpatte
types by incorporating the concept of preinvexity by considering the Caputo–Fabrizio
fractional integral operator. Saad et al. [33,34] proved some new integral inequalities by
using generalized fractional integral operators and some classical inequalities for integrable
functions and their applications to the Zipf–Mandelbrot law. Motivated by the above
work, the main objective of this article is to establish some new results for the Pólya–Szegö
inequality and some other inequalities using the Caputo–Fabrizio fractional integrals. The
paper is organized into the following sections: Section 2 gives some basic definitions of
fractional calculus. Section 3 is devoted to the proof of some Pólya–Szegö and Minkowsky-
type fractional inequalities by considering the Caputo–Fabrizio fractional operator. Finally,
conclusion are given in Section 4.

2. Preliminaries

First, the definitions of the Caputo–Fabrizio fractional integrals are reviewed.

Definition 1 ([28,31,35]). Let α ∈ R such that 0 < α ≤ 1. The Caputo–Fabrizio fractional
integral of order α of a function f is defined by

Iα
0,x[φ(x)] =

1
α

∫ x

0
e−(

1−α
α )(x−s)φ(s)ds. (6)

For α = 1, it is reduced to

I1
0,x[φ(x)] =

∫ x

0
φ(s)ds.

This integral operator will be at the center of our main results.

3. Fractional Pólya–Szegö Inequality

In this section, we investigate some new fractional Pólya–Szegö inequalities by consid-
ering the Caputo–Fabrizio integral operator.

Theorem 1. Let h1 and h2 be two integrable functions on [0, ∞). Assume that there exist four
positive integrable functions P1, P2,R1 andR2 on [0, ∞) such that

0 < P1(η) ≤ h1(η) ≤ P2(η), 0 < R1(η) ≤ h2(η) ≤ R2(η), (η ∈ (0, x), x > 0).
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Then for x > 0 and α > 0, the following inequality holds:

Iα
0,x[R1R2h2

1(x)]Iα
0,x[P1P2h2

2(x)](
Iα

0,x[(R1P1 +R2P2)h1h2(x)]
)2 ≤

1
4

. (7)

Proof. To prove (7), since η ∈ (0, x) and x > 0, we have(
P2(η)

R1(η)
− h1(η)

h2(η)

)
≥ 0. (8)

Furthermore, we have (
h1(η)

h2(η)
− P1(η)

R2(η)

)
≥ 0. (9)

Multiplying (8) and (9), we have(
P2(η)

R1(η)
− h1(η)

h2(η)

)(
h1(η)

h2(η)
− P1(η)

R2(η)

)
≥ 0,

which implies that(
P2(η)

R1(η)
− h1(η)

h2(η)

)
h1(η)

h2(η)
−
(
P2(η)

R1(η)
− h1(η)

h2(η)

)
P1(η)

R2(η)
≥ 0,

so (
P2(η)

R1(η)
+
P1(η)

R2(η)

)
h1(η)

h2(η)
≥

h2
1(η)

h2
2(η)

+
P1(η)P2(η)

R1(η)R2(η)
,

and

[P1(η)R1(η) + P2(η)R2(η)]h1(η)h2(η) ≥ R1(η)R2(η)h2
1(η) + P1(η)P2(η)h2

2(η). (10)

Multiplying (10) by 1
α e−(

1−α
α )(x−η), we obtain

1
α

e−(
1−α

α )(x−η)[P1(η)R1(η) + P2(η)R2(η)]h1(η)h2(η)

≥ 1
α

e−(
1−α

α )(x−η)R1(η)R2(η)h2
1(η) +

1
α

e−(
1−α

α )(x−η)P1(η)P2(η)h2
2(η).

(11)

Integrating (11) with respect to η from 0 to x, we obtain

Iα
0,x[(P1R1 + P2R2)h1h2(x)] ≥ Iα

0,x[R1R2h2
1(x)] + Iα

0,x[P1P2h2
2(x)].

By considering inequality c1 + c2 ≥ 2
√

c1c2, where c1, c2 ∈ [0, ∞), we have

Iα
0,x[(P1R1 + P2R2)h1h2(x)] ≥ 2

√
Iα

0,x[R1R2h2
1(x)]Iα

0,x[P2P1h2
2(x)],

so (
Iα

0,x[(P1R1 + P2R2)h1h2(x)]
)2 ≥ 4

(
Iα

0,x[R1R2h2
1(x)]Iα

0,x[h1P2h2
2(x)]

)
,

it follows that

Iα
0,x[R1R2h2

1(x)]Iα
0,x[P1P2h2

2(x)] ≤ 1
4
(
Iα

0,x[(P1R1 + P1P2)h1h2(x)]
)2,

which gives the required inequality (7).
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Theorem 2. Let h1 and h2 be two integrable functions on [0, ∞). Assume that there exist four
positive integrable functions P1,P2,R1 andR2 on [0, ∞) such that

0 < P1(η) ≤ h1(η) ≤ P2(η), 0 < R1(θ) ≤ h2(θ) ≤ R2(θ), (η, θ ∈ (0, x], x > 0).

Then for x > 0 and α > 0, β > 0, the following inequality holds:

Iα
0,x[P1P2(x)]Iβ

0,x[R1R2(x)]Iα
0,x[h

2
1(x)]Iβ

0,x[h
2
2(x)](

Iα
0,x[P1h1(x)]Iβ

0,x[R1h2(x)] + Iα
0,x[P2h1(x)]Iβ

0,x[R2h2(x)]
)2 ≤

1
4

. (12)

Proof. To prove (12), since η, θ ∈ (1, x] and x > 0, we have

h1(η)

h2(θ)
≤ P2(η)

R1(θ)
,

which implies that (
P2(η)

R1(θ)
− h1(η)

h2(θ)

)
≥ 0. (13)

Furthermore, we have (
h1(η)

h2(θ)
− P1(η)

R2(θ)

)
≥ 0. (14)

Multiplying (13) and (14), we have(
P2(η)

R1(θ)
− h1(η)

h2(θ)

)(
h1(η)

h2(θ)
− P1(η)

R2(θ)

)
≥ 0,

which implies that(
P2(η)

R1(θ)
− h1(η)

h2(θ)

)
h1(η)

h2(θ)
−
(
P2(η)

R1(θ)
− h1(η)

h2(θ)

)
P1(η)

R2(θ)
≥ 0,

and it follows that (
P2(η)

R1(θ)
+
P1(η)

R2(θ)

)
h1(η)

h2(θ)
≥

h2
1(η)

h2
2(θ)

+
P1(η)P2(η)

R1(θ)R2(θ)
. (15)

Multiplying both sides of inequality (15) byR1(θ)P2(θ)h2
2(θ), we obtain

P1(η)h1(η)R1(θ)h2(θ)P2(η)h1(η)R1(θ)h2(θ) ≥ R1(θ)R2(θ)h2
1(η) + P1(η)P2(η)h2

2(θ). (16)

Multiplying both sides of (16) by 1
α e−(

1−α
α )(x−η), then integrating with respect to η

from 0 to x, we get

R1(θ)h2(θ)Iα
0,x[P1h1(x)] +R1(θ)h2(θ)Iα

0,x[P2h1(x)]

≥ R1(θ)R2(θ)Iα
0,x[h

2
1(x)] + h2

2(θ)Iα
0,x[P1P2(x)].

(17)

Multiplying both sides of (17) by 1
β e−

(
1−β

β

)
(x−θ), then integrating with respect to θ

from 0 to x, we have

Iβ
0,x[R1h2(x)]Iα

0,x[P1h1(x)] + Iβ
0,x[R1h2(x)]Iα

0,x[P2h2(x)]

≥ Iβ
0,x[R1R2(x)]Iα

0,x[h
2
1(x)] + Iβ

0,x[h
2
2(x)]Iα

0,x[P1P2(x)].
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By c1 + c2 ≥ 2
√

c1c2, where c1, c2 ∈ [0, ∞), we have

Iβ
0,x[R1h2(x)]Iα

0,x[P1h1(x)] + Iβ
0,x[R1h2(x)]Iα

0,x[P2h1(x)]

≥ 2
√
Iβ

0,x[R1R2(x)]Iα
0,x[h

2
1(x)]Iβ

0,x[h
2
2(x)]Iα

0,x[P1P2(x)],

which gives the required inequality (12).

Theorem 3. Let h1 and h2 be two integrable functions on [0, ∞). Assume that there exist four
positive integrable functions P1, P2,R1 andR2 on [0, ∞) such that

0 < P1(η) ≤ h1(η) ≤ P2(η), 0 < R1(θ) ≤ h2(θ) ≤ R2(θ), (η, θ ∈ (0, x], x > 0).

Then for x > 0 and α, β > 0, the following inequality holds:

Iα
0,x[h

2
1(x)]Iβ

0,x[h
2
2(x)] ≤ Iα

0,x

[
P2h1h2

R1
(x)
]
Iβ

0,x

[
R2h1h2

P1
(x)
]

. (18)

Proof. Multiplying (8) by h1(η), we obtain

h2
1(η) ≤

P2(η)

R1(η)
h1(η)h2(η). (19)

Multiplying the inequality (19) by 1
α e−(

1−α
α )(x−η), which is positive because η ∈ (0, x),

x > 0 and then integrating with respect to η from 0 to x, we get

Iα
0,x[h

2
1(x)] ≤ Iα

0,x

[
P2h1h2

R1
(x)
]

. (20)

Analogously, we obtain

Iβ
0,x[h

2
2(x)] ≤ Iβ

0,x

[
R2h1h2

P1
(x)
]

, (21)

multiplying the inequalities (20) and (21), we establish the required inequality (18). This
completes the proof.

Hereafter, we present some special cases of the above theorem.

Proposition 1. Let h1 and h2 be two integrable functions on [0, ∞) such that

0 < γ1 ≤ h1(η) ≤ Γ1 < ∞, 0 < γ2 ≤ h2(η) ≤ Γ2 < ∞, (η ∈ (0, x], x > 0).

Then for x > 0 and α > 0, the following inequality holds:

Iα
0,x[h

2
1(x)]Iα

0,x[h
2
2(x)](

Iα
0,x[h1h2(x)]

)2 ≤ 1
4

(√
γ1γ2

Γ1Γ2
+

√
Γ1Γ2

γ1γ2

)2

.

Proposition 2. Let h1 and h2 be two integrable functions on [0, ∞] such that

0 < γ1 ≤ h1(η) ≤ Γ1 < ∞, 0 < γ2 ≤ h2(θ) ≤ Γ2 < ∞, (η, θ ∈ [0, x], x > 0).



Axioms 2022, 11, 79 6 of 8

Then for x > 0 and α, β > 0, the following inequality holds:[[
1− e−(

1−α
α )x

][
1− e−

(
1−β

β

)
x
]]

(1− α)(1− β)

Iα
0,x[h

2
1(x)]Iβ

0,x[h
2
2(x)]

(Iα
0,x[h1(x)]Iβ

0,x[h2(x)])2
≤ 1

4

(√
γ1γ2

Γ1Γ2
+

√
Γ1Γ2

γ1γ2

)2

.

Proposition 3. Let h1 and h2 be two integrable functions on [0, ∞) that satisfies condition (1).
Then for x > 0 and α, β > 0, we have

Iα
0,x[h

2
1(x)]Iβ

0,x[h
2
2(x)](

Iα
0,x[h1h2(x)]Iβ

0,x[h1h2(x)]
)2 ≤

Γ1Γ2

γ1γ2
.

Now, we establish the Minkowsky-type inequality using the Caputo–Fabrizio integral
operator.

Theorem 4. Let h1 and h2 be two integrable functions on [0, ∞] such that 1
c1
+ 1

c2
= 1, c1 > 1,

and 0 ≤ γ1 ≤ h1(η)
h2(η)

≤ Γ, η ∈ (0, x), x > 0. Then for all α > 0, we have

Iα
0,x[h1h2(x)] ≤ 2c1−1Γc1

c1(Γ + 1)c1
Iα

0,x
[
(hc1

1 + hc1
2 )(x)

]
+

2c2−1

c2(γ + 1)c2
Iα

0,x
[
(hc2

1 + hc2
2 )(x)

]
. (22)

Proof. Since, h1(η)
h2(η)

< Γ, η ∈ (0, x), x > 0, we have

(Γ + 1)h1(η) ≤ Γ(h1 + h2)(η). (23)

Taking the c1th power of both sides and multiplying the resulting inequality by
1
α e−(

1−α
α )(x−η), we obtain

1
α

e−(
1−α

α )(x−η)(Γ + 1)c1 hc1
1 (η) ≤ 1

α
e−(

1−α
α )(x−η)Γc1(h1 + h2)

c1(η), (24)

integrating (24) with respect to η from 0 to x, we get

1
α

∫ x

0
e−(

1−α
α )(x−η)(Γ + 1)c1 hc1

1 (η)dη ≤ 1
α

∫ x

0
e−(

1−α
α )(x−η)Γc1(h1 + h2)

c1(η)dη, (25)

therefore
Iα

0,x[h
c1
1 (x)] ≤ Γc1

(Γ + 1)c1
Iα

0,x[(h1 + h2)
c1(x)]. (26)

On the other hand, 0 ≤ γ ≤ h1(η)
h2(η)

, η ∈ (0, x), x > 0, so

(γ + 1)h2(η) ≤ γ(h1 + h2)(η),

therefore

1
α

∫ x

0
e−(

1−α
α )(x−η)(γ + 1)c2 hc2

2 (η)dη ≤ 1
α

∫ x

0
e−(

1−α
α )(x−η)γc2(h1 + h2)

c2(η)dη

and we have
Iα

0,x[h
c2
2 (x)] ≤ 1

(γ + 1)c2
Iα

0,x[(h1 + h2)
c2(x)]. (27)

Using the Young inequality, we obtain

h1(η)h2(η) ≤
hc1

1 (η)

c1
+

hc2
2 (η)

c2
. (28)
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Multiplying (28) by 1
α e−(

1−α
α )(x−η), then integrating the resulting inequality with

respect to η from 0 to x, we get

Iα
0,x[h1(x)h2(x)] ≤ 1

c1
Iα

0,x[h
c1
1 (x)] +

1
c2
Iα

0,x[h
c2
2 (x)] (29)

and from the equations (26), (27) and (29), we obtain

Iα
0,x[h1(x)h2(x)] ≤ Γc1

c1(Γ + 1)c1
Iα

0,x[(h1 + h2)
c1(x)] +

1
c2(γ + 1)c2

Iα
0,x[(h1 + h2)

c2(x)]. (30)

Now, using the inequality (x + y)m ≤ 2m−1(xm + ym), m > 1, x, y ≥ 0, we have

Iα
0,x[(h1 + h2)

c1(x)] ≤ 2c1−1 Iα
0,x[(h

c1
1 + hc1

2 )(x)] (31)

and
Iα

0,x[(h1 + h2)
c21(x)] ≤ 2c2−1 Iα

0,x[(h
c2
1 + hc2

2 )(x)]. (32)

Inserting (31), (32) in (30) we get the required inequality (22). This completes the proof.

4. Conclusions

Nchama et al. [35] investigated some integral inequalities by considering the Caputo–
Fabrizio fractional integral operator. In [28], Caputo and Fabrizio introduced a new frac-
tional differential and integral operator. In the above work, we have applied the Caputo–
Fabrizo fractional integral operator to establish some Pólya–Szegö and Minkowsky-type
fractional integral inequalities. With the help of this study, we have established more
general inequalities than in the classical cases due to the nonsingularity of the kernel. We
believe that the Caputo–Fabrizio fractional integral is a formalism due to its nonsingularity
of the kernel, which may provide an alternative way to solve many problems. The obtained
fractional integral inequalities are very general and can be specialized to discover numer-
ous interesting fractional integral inequalities. The inequalities investigated in this paper
bring some contributions to the fields of fractional calculus and Caputo–Fabrizio fractional
integral operator. These inequalities should lead to some applications for determining
bounds and uniqueness of solutions in fractional differential equations.
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