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Abstract: The division operation for type-1 fuzzy numbers in its original form is not invertible for
the multiplication operation. This is an essential drawback in some applications. To eliminate this
drawback several approaches are proposed: the generalized Hukuhara division, generalized division
and granular division. In this paper, the expression of granular division is introduced, and the
relationships among generalized Hukuhara division, generalized division and granular division are
clarified.
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1. Introduction

The search for some invertible operations has been an issue for a long time. In 1965,
Ref. [1] proposed a difference based on the extension principle, which is an extension of
the interval subtraction operation according to the addition and multiplication operations
of type-1 fuzzy numbers (T1FNs). This method provides a difference between T1FNs.
However, this difference is not the invertible operation of addition for T1FNs. The pioneer
work of finding an invertible operation for the addition can be traced to 1967 [2] when
Hukuhara proposed the Hukuhara difference (H-difference), which is well known and
largely used. However, the existence of H-difference has very restrictive limitations [3].
To overcome this weakness, Stefanini, Bede and Mazandarani introduced a generalized
Hukuhara difference (gH-difference) [3], a generalized difference (g-difference) [4,5] and a
granular difference (gr-difference) [6].

The division operation of T1FNs has also received much attention. Similarly to the
gH-difference, which is defined by Stefanin in [3], the idea is to introduce the generalized
division of real intervals and T1FNs by Stefanini [7] (we called the generalized division
gH-division in this paper, while Stefanini called it g-division), which gives an inverse
operation for the multiplication operation of T1FNs. However, Stefanini also illustrated
that the result of the gH-division between two T1FNs is not always a T1FN. Then, Stefanini
proposed another division in [7] (we called it g-division, while Stefanini considered it
as a generalization of the division of T1FNs). The introduction of this kind of division
opens up more fields of applications to interval and fuzzy arithmetic and analysis, such as
the concepts of differentiability [3,4,8], the solution of equations [9,10], interval and fuzzy
regression analysis [11–13], interval and fuzzy integral and differential equations [14–17],
etc.

The horizontal membership function was introduced by Piegat [15], which transforms
T1FNs as an algebraic form with a variable that called a relative distance measure (RDM)
variable (Please refer to [18] for more details about RDM variable). Through this expression,
we could transform the four arithmetic operations of T1FNs into four arithmetic operations
of an algebraic expression in order to calculate them easily, which includes the gr-difference
and granular division (gr-division). Details on the horizontal membership function and the
gr-division are discussed in later sections.
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To know which of these three divisions is more practical, we have to consider the
relationships among these divisions. Costa et al. in [19] discussed the inclusion isotonic
relationship of the gH-division and found that the gH-division was not inclusion isotonic.
However, we analyze the relationships among gH-division, g-division and gr-division
more clearly in this paper. Furthermore, the following problems are well worth considering
in order to help people reasonably select the corresponding division operation in practice.
The basic questions posed below are then discussed and conclusions are drawn.

(1) It has been proved that if the g-division or the gr-division exists between any two
T1FNs, then the following question arises: do they get the same results?

(2) It is also obvious that the g-division is more general than the gH-division and they
have the same result if the gH-division exists. Therefore, another question is: does the
gH-division have the same relationship with the gr-division or not?

This paper is organized as follows. We first briefly described some related concepts in
Section 2. After the statement of these basic problems above, we give an expression of the
gr-division between two T1FNs and the complete relationships characterization among
gH-division, g-division and gr-division are studied, then we analyze the properties of these
approaches, and some examples are illustrated in Section 3. Finally, conclusions and future
work are summarized in Section 4.

2. Basic Concepts

We provide some basic terminologies and related definitions which are necessary for
the understanding of subsequent results in this section.

Throughout this paper, the set of all real numbers, bounded closed intervals of real
numbers and T1FNs on real numbers is denoted by R, Kc and F1, respectively. cl(A)
denotes the closure of set A.

Definition 1. Let u ∈ F1. For α ∈ (0, 1], the α-level set of u is defined by [u]α = {x|x ∈
R, u(x) ≥ α} and for α = 0 by the closure of the support [u]0 = cl{x|x ∈ R, u(x) > α} whose
lower and upper endpoints are represented as u−α and u+

α with α ∈ [0, 1].

A division of fuzzy numbers and real intervals can be introduced, which is similar to
the gH-difference. Let A = [a−, a+] ∈ Kc and B = [b−, b+] ∈ Kc with b+ < 0 or b− > 0,
which means that 0 /∈ B. The multiplication C = AB = [c−, c+] and the multiplicative
“inverse” of A is given by

c− = min
{

a−b−, a−b+, a+b−, a+b+
}

, c+ = max
{

a−b−, a−b+, a+b−, a+b+
}

, (1)

and

A−1 =

[
1

a+
,

1
a−

]
. (2)

Definition 2 ([7]). Let A, B ∈ Kc with A = [a−, a+] and B = [b−, b+], then the gH-division
÷gH is defined as

A÷gH B = C ⇐⇒


(i)A = BC,
or
(ii)B = AC−1.

(3)

We called it gHi-division or gHii-division if (i) or (ii) in (3) holds, respectively.

Remark 1. We can get the following results for the gH-division from the definition (see [7] for
more details).
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(1) If 0 < a− ≤ a+, b− ≤ b+ < 0 and a−b− ≥ a+b+, then

c− =
a+

b−
, c+ =

a−

b+
, (4)

(2) If 0 < a− ≤ a+, 0 < b− ≤ b+ and a−b+ ≤ a+b−, then

c− =
a−

b−
, c+ =

a+

b+
, (5)

(3) If a− ≤ a+ < 0, b− ≤ b+ < 0 and a+b− ≤ a−b+, then

c− =
a+

b+
, c+ =

a−

b−
, (6)

(4) If a− ≤ a+ < 0, 0 < b− ≤ b+ and a−b− ≤ a+b+, then

c− =
a−

b+
, c+ =

a+

b−
, (7)

(5) If a− ≤ 0, a+ ≥ 0, b− ≤ b+ < 0 and

c− =
a+

b−
, c+ =

a−

b−
, (8)

(6) If a− ≤ 0, a+ ≥ 0, 0 < b− ≤ b+ and

c− =
a−

b+
, c+ =

a+

b+
, (9)

and (i) in (3) is satisfied which means that (1)–(6) are gHi-divisions.
(7) If 0 < a− ≤ a+, b− ≤ b+ < 0 and a−b− ≤ a+b+, then

c− =
a−

b+
, c+ =

a+

b−
, (10)

(8) If 0 < a− ≤ a+, 0 < b− ≤ b+ and a−b+ ≥ a+b−, then

c− =
a+

b+
, c+ =

a−

b−
, (11)

(9) If a− ≤ a+ < 0, b− ≤ b+ < 0 and a+b− ≥ a−b+, then

c− =
a−

b−
, c+ =

a+

b+
, (12)

(10) If a− ≤ a+ < 0, 0 < b− ≤ b+ and a−b− ≥ a+b+, then

c− =
a+

b−
, c+ =

a−

b+
, (13)

and (ii) in (3) is satisfied which means that (7)–(10) are gHii-divisions.

In conclusion, we have that

÷gH [b−, b+] :=
[

min
a±

b±
, max

b±

b±
]
. (14)
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Definition 3 ([7]). Let a, b ∈ F1 have α-level sets [a]α = [a−α , a+α ] and [b]α = [b−α , b+α ] with
0 /∈ [b]α, for each α ∈ [0, 1]. The gH-division ÷gH calculates the T1FN c = a÷gH , b ∈ F1 is
defined by

[a]α ÷gH [b]α = [c]α ⇐⇒


(i)[a]α = [b]α[c]α,
or
(ii)[b]α = [a]α[c]−1

α ,
(15)

where the α-level sets and the multiplicative “inverse” are written as [c]α = [c−α , c+α ] and [c]−1
α =

[1/c+α , 1/c−α ].

However, there exist two T1FNs whose gH-division is not a T1FN, for more details,
please refer to [7]. If the gH-division [a]α÷gH [b]α do not define a proper T1FN, Stefanini [7]
proposed a new division named g-division (÷g) with α-level sets that can obtain an approx-
imated division for T1FNs. Similarly to what is done in [5], the convexification is necessary
for the new division to always be a T1FN.

Definition 4 ([7]). For any a, b ∈ F1, the g-division with α-level sets is defined as

[a÷g b]α = cl

(
conv

⋃
µ≥α

([a]µ ÷gH [b]µ)

)
. (16)

Here, conv(A) denotes the convex hull of set A. It can be considered that z = a÷g b
is a generalization of the division of T1FNs because the g-division exists for any a, b with
0 /∈ [b]µ for all µ ∈ [0, 1].

Piegat et al. examined a new definition of membership function based on constraint
interval arithmetic (CIA) about T1FNs, multidimensional relative distance measure interval
arithmetic (RDM-IA) and multidimensional fuzzy arithmetic based on RDM (MD-RDM-F
arithmetic), which have been studied as a powerful and effective tool in interval arith-
metic and fuzzy mathematics (see [15,20–24]), which overcomes the difficulties found in
traditional membership function.

Definition 5 ([6,15]). Let a : [p, q] → [0, 1] be a T1FN. The horizontal membership function
agr : [0, 1]× [0, 1]→ [p, q] is written as agr(µ, αa) = a−µ + (a+µ − a−µ )αa where “gr” represents
the granule of information in x ∈ [p, q], µ ∈ [0, 1] is the membership degree of x in a(x) and
αa ∈ [0, 1] is called an RDM variable.

Remark 2 ([6,25]). H(a) , agr(µ, αa) can be denoted as the horizontal membership function of
a(x) ∈ F1 and using

H−1(agr(µ, αa)) = [a]µ =

[
inf
β>µ

min
αa

agr(β, αa), sup
β>µ

max
αa

agr(β, αa)

]
(17)

we can obtain the µ-level sets of span of the information granule named vertical membership function
of a(x).

Definition 6 ([6]). We say that two T1FNs a and b are equal if and only if for all αa = αb ∈ [0, 1],
H(a) = H(b) holds.

Next, we give the definition of four arithmetic operations between T1FNs based on
horizontal membership functions.
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Definition 7 ([6,25]). Let a and b be two T1FNs and agr(µ, αa) and agr(µ, αa) be their horizontal
membership functions. Then, the granular division (gr-division) a÷gr b is a T1FN, with w such
thatH(w) , agr(µ, αa)÷ bgr(µ, αb) with 0 /∈ bgr(µ, αb).

Remark 3 ([6]). Let w = a÷gr b. Then, [w]µ = H−1
(

agr(µ,αa)
bgr(µ,αb)

)
always presents µ-level sets

of w.

3. Main Results

In this section, we give a complete characterization of the relationships among gH-
division, g-division and gr-division. Recently, the search for the division operation between
T1FNs has received much attention, in order to find the inverse operation of multiplication,
such as the study in [26–31].

We give the expression of gr-division first. For any m, n ∈ F1, [m]β = [m−β , m+
β ] and

[n]β = [n−β , n+
β ] are their α-level sets,H(·) denotes the horizontal membership function of

“·”. According to Definition 5 we have

H(v) =
H(m)

H(n)
=

m−α + (m+
α −m−α )αm

n−α + (n+
α − n−α )αn

. (18)

Because of the monotonicity of numerator and denominator with respect to αm, αn we
can get the following extreme values:

αm = 0, min {m−α + (m+
α −m−α )αm} = m−α ,

αm = 1, max {m−α + (m+
α −m−α )αm} = m+

α ,

αn = 0, min {n−α + (n+
α − n−α )αn} = n−α ,

αn = 1, max {n−α + (n+
α − n−α )αn} = n+

α .

(19)

Moreover, with (17), we can get the expression of the gr-division in the following
theorem.

Theorem 1. For any m, n ∈ F1, m÷gr, n is a T1FN u such thatH(u) = H(m)/H(n) and

[u]α = [m÷gr n]α = [ inf
β≥α

min
m±β
n±β

, sup
β≥α

max
m±β
n±β

]. (20)

Proof of Theorem 1. The horizontal membership functions of m and n are written as

H(m) = m−α + (m+
α −m−α )αm,

H(n) = n−α + (n+
α − n−α )αn,

(21)

respectively. Then, by (18) we can get the horizontal membership function of m ÷gr n
(which is represented as the T1FN u) as follows:

H(u) =
H(m)

H(n)
=

m−α + (m+
α −m−α )αm

n−α + (n+
α − n−α )αn

. (22)

From (19) and (17), we have

H−1(ugr(µ, αu)) = [u]µ =

[
inf
β≥α

min
m±β
n±β

, sup
β≥α

max
m±β
n±β

]
. (23)
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Next we clarify the relationships among the three divisions. For any m, n ∈ F1, let
[m÷gH n]α = [ugH ]α, [m÷g n]α = [ug]α and [m÷gr n]α = [ugr]α denote the gH-division,
g-division and gr-division, respectively. The following theorems hold.

Theorem 2. If there exists u = m÷gH , n ∈ F1, then [ugH ]α ⊆ [ugr]α holds. Moreover, if m = n
then we have [ugH ]α = [ugr]α.

Proof of Theorem 2. Based on (14) and (20) we have

[ugH ]α = [min
m±α
n±α

, max
m±α
n±α

] ⊆ [ inf
β≥α

min
m±β
n±β

, sup
β≥α

max
m±β
n±β

] = [ugr]α, (24)

which implies that [m÷gH n]α ⊆ [m÷gr n]α holds.
If m = n, according to Definition 6 and (17),H(ugr) = H(m)/H(n) = 1, [ugr]α = [1, 1].

Since [ugH ]α ⊆ [ugr]α we have [ugH ]α = [ugr]α = [1, 1].

Theorem 3. [ug]α ⊆ [ugr]α holds for all m, n ∈ F1. Moreover, if m = n then we have [ug]α =
[ugr]α.

Proof of Theorem 3. The relation (20) is equivalent to

[ugr]α = [ inf
β≥α

min
m±β
n±β

, sup
β≥α

max
m±β
n±β

] = cl

(
conv

⋃
β≥α

([m]β ÷gr [n]β)

)
. (25)

According to (16) we have

[ug]α = [m÷g n]α = cl

(
conv

⋃
β≥α

([m]β ÷gH [n]β)

)
. (26)

Because of [m]β ÷gH [n]β ⊆ [m]β ÷gr [n]β, we have [ug]α ⊆ [ugr]α.
If m = n then [ugr]α = [1, 1]. Since [ug]α ⊆ [ugr]α we have [ug]α = [ugr]α = [1, 1].

We illustrate Theorems 2 and 3 with some examples in which the T1FNs are defined
in terms of their α-level sets.

Example 1. [1+ 2α, 7− 4α]÷gH [−3+ α,−1− α] = [(7− 4α)/(−3+ α), (1+ 2α)/(−1− α)]
[7]. Based on (20) we can get the gr-division:

β = [ inf
α≥β

5− 3.5α

−1− α
, sup

α≥β

1 + 0.5α

−4 + 2α
]

= [
5− 3.5β

−1− β
,

1 + 0.5β

−4 + 2β
]

⊃ [
7− 4β

−3 + β
,

1 + 2β

−1− β
] = [ugH ]β;

(27)

β = cl

(
conv

⋃
α≥β

([m]α ÷gH [n]α)

)

= cl

(
conv

⋃
α≥β

[
7− 4α

−3 + α
,

1 + 2α

−1− α
]

)

= [
7− 4β

−3 + β
,

1 + 2β

−1− β
] = [ugH ]β.

(28)
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Example 2. [1+ 0.5α, 5− 3.5α]÷gH [−4+ 2α,−1− α] = [(5− 3.5α)/(−4+ 2α), (1+ 0.5α)/
(−1− α)] exists but the resulting intervals are not the α-level sets of a T1FN. Using (16) and (20)
we can get the g-division and the gr-division:

α = [m÷g n]α = cl

(
conv

⋃
β≥α

([m]β ÷gH [n]β)

)

= cl

(
conv

⋃
β≥α

[
5− 3.5β

−4 + 2β
,

1 + 0.5β

−1− β

])

=

[
5− 3.5α

−4 + 2α
,−0.75

]
;

(29)

α = [m÷gr n]α = cl

(
conv

⋃
β≥α

([m]β ÷gr [n]β)

)

= cl

(
conv

⋃
β≥α

[
5− 3.5β

−1− β
,

1 + 0.5β

−4 + 2β

])

=

[
5− 3.5α

−1− α
,

1 + 0.5α

−4 + 2α

]
⊃
[

5− 3.5α

−4 + 2α
,−0.75

]
= [ug]α.

(30)

In terms of generalization, the gr-division and the g-division are the most generalized
but they have different results, and the gH-division has the minimum application range
among these three division we talked about.

The relationships among gH-division, g-division and gr-division have been shown in
Table 1.

Table 1. The relationships between mgH , mg and mgr.

gH-Division g-Division gr-division

gH-division exists \
g-division exists and

mg = mgH

(see [7])

gr-division exists and
[mgH ]α ⊆ [mgr]α

(Theorem 2)

g-division exists gH-division does not
necessarily exist (see [7])

\
gr-division exists and

[mg]α ⊆ [mgr]α
(Theorem 3)

gr-division exists gH-division does not
necessarily exist (Example 2)

g-division exists and
[mg]α ⊆ [mgr]α

(Theorem 3)
\

As the table shows, resulting from Theorem 2, if there exists u ∈ F1 such that m÷gH

n = u, then we have [ugH ]α = [ug]α ⊆ [ugr]α such as Example 1. Due to Theorem 3, if the
gH-division between m and n does not exist, then we can calculate the g-division and the
gr-division, and we have [ug]α ⊆ [ugr]α as in the case of Example 2. We can also see their
relationships in Figure 1.
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Figure 1. The relationships between gH-division, g-division and gr-division.

4. Conclusions

As is known to all, the division operation for type-1 fuzzy number in its original
form is not invertible for multiplication operation. This is an essential drawback in some
applications. Furthermore, there are several approaches proposed: gH-division, g-division
and gr-division to eliminate this drawback. However, one should figure out how they relate
to each other in order to analyze practical problems, which was the point of this paper.

From the above discussion, the conclusion can be reached that the gr-division exists
between any two T1FNs, as well as g-division, but the result of the g-division is contained
in that of the gr-division (see Table 1). Costa et al. [19] also discussed the inclusion isotonic
relationship of the gH-division and found that the gH-division was not inclusion isotonic.
We have pointed out the relations among the gH-division, the g-division and the gr-division
in this paper more clearly. In terms of generalization, the gr-division and the g-division
are the most generalized, and the gH-division has the minimum application range among
these three division types (see Figure 1).

Since different practical problems exist, we can choose a reasonable division according
to the above conclusions to deal with specific issues. The division operation of T1FNs
present some cues from the theory of fuzzy sets application to fuzzy differential equations
and fuzzy regression analysis.

In the future, we will devote ourselves to the four arithmetic operations between fuzzy
numbers and use our conclusion to analyze the differentiability and differential equations
about fuzzy numbers, which are based on the four arithmetic operations.
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