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Abstract: In this paper, we study the applications of conformable backward stochastic differential
equations driven by Brownian motion and compensated random measure in nonlinear expectation.
From the comparison theorem, we introduce the concept of g-expectation and give related properties
of g-expectation. In addition, we find that the properties of conformable backward stochastic
differential equations can be deduced from the properties of the generator g. Finally, we extend the
nonlinear Doob–Meyer decomposition theorem to more general cases.
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1. Introduction

The initial research motivation of nonlinear expectations came from risk measurement
and option pricing in financial applications. The Allais paradox, Ellsberg paradox and
Simon’s “bounded rationality” theory, and so forth, all show that decision-making in
reality is contrary to the hypothesis of expected utility theory. Economists have found
that the linearity of classical mathematical expectation (that is, the additivity of probability
measures) is the main reason for this kind of problem so researchers wanted to find a
new tool which can not only retain some properties of classical mathematical expectations,
but also solve financial problems with highly dynamic and complex characteristics.

In the 1950s, Choquet [1] extended the Lebesgue integral to non-additive measure
and obtained the Choquet expectation. However, this nonlinear expectation does not have
dynamic compatibility and is not suitable for solving practical financial problems. In 1997,
Peng [2] introduced a new nonlinear expectation, namely the g-expectation, based on the
backward stochastic differential equation driven by Brownian motion. The g-expectation
retains all the basic properties of the classical expectation except linearity [3], and it can be
applied to the dynamic risk measurement of actuarial and financial valuation. Subsequently,
Royer [4] studied the backward stochastic differential equation driven by Brownian motion
and Poisson random measure, and introduced the corresponding g-expectation and a
large number of studies show that this g-expectation can be applied to financial problems
(see [5–9]). Recently, Long et al. [10] proposed a multi-step scheme on time-space grids
for solving backward stochastic differential equations, and Chen and Ye [11] investigated
solutions of backward stochastic differential equations in the framework of Riemannian
manifold. From the paper [12], we could get the averaging principle for backward stochastic
differential equations and the solutions can be approximated by the solutions to averaged
stochastic systems in the sense of mean square under some appropriate assumptions.
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In addition, coupled forward backward stochastic differential equations driven by the
G-Brownian motion were studied in [13], while [14] investigated the solvability of fully
coupled forward–backward stochastic differential equations with irregular coefficients.

The above papers concern research on integer order derivative, while the works of
conformable type derivative are very few ([15–20]). The conformable derivative not only
has some properties of fractional derivative, but also some properties of integer order
derivatives. We discussed the necessity of studying conformable backward stochastic
differential equations in [21]. In the present paper, we study g-expectation for conformable
backward stochastic differential equations.

This paper is mainly divided into four parts. In the second section, we give some
definitions and theorems. In the third section, we study the relationship between g-
expectation and the filtered consensus expectation, and we give some properties of g-
expectation. We find that the g–expectation can be considered as a nonlinear extension of
the Girsanov transformation. In the final section, we prove the Doob–Meyer decomposition
theorem under mild assumptions.

2. Preliminaries

Let B(·) be a standard Brownian motion defined on the complete probability space
(Ω,F ,P) with the filtration {Ft}0≤t≤T satisfying the usual hypotheses of completeness
and right continuity. B(R) denotes the Borel sets of R and E denotes the expected value. A
stochastic process V(ω, t) is a real function defined on Ω× [0, T] such that ω → V(ω, t) is
F -measurable for any t ∈ [0, T]. A stochastic process V is called Ft-adapted if ω → V(ω, t)
is Ft-measurable for any t ∈ [0, T]. The natural filtration is completed with sets of measure
zero. By P we denote the �-field. A process V : Ω× [0, T]→ R is called F -predictable if
it is F -adapted and P-measurable. A process is called càdlàg if its trajectories are right-
continuous and have left limits. The term a.s. means almost surely with respect to the
probability measure. Inspired by [22], we define some spaces that we will use:

L2
Q(R) = {measurable f unction ϕ : R→ R;

∫
R
|ϕ(s)|2Q(ds) < ∞; Q is a �− f inite measure},

L2(Ω,FT ,P) = {FT −measurable random variable ξ : Ω→ FT ; E[|ζ|2] < ∞},

H2(R) = {predictable process Y : Ω× [a, T]→ R; E
[ ∫ T

a
|Y(t)|2dt

]
< ∞},

H2
N(R) = {predictable process Z : Ω× [a, T]×R→ R; E

[ ∫ T

a

∫
R
|Z(t, s)|2Q(t, ds)η(t)dt

]
< ∞},

S2(R) = {adapted, càdlàg process X : Ω× [a, T]→ R; E[ sup
t∈[a,T]

|X(t)|2] < ∞},

L2(Ω,Ft,P) = {Ft −measurable random variable ξ : Ω→ Ft; E[|ξ|2] < ∞]}.

Furthermore, for any constant σ, we introduce the norms of spaces H2, H2
N and S2 as:

‖Y‖2
H2 = E

[ ∫ T

a
eσt|Y(t)|2dt

]
,

‖Z‖2
H2

N
= E

[ ∫ T

a

∫
R

eσt|Z(t, s)|2Q(t, ds)η(t)dt
]

,

‖X‖2
S2 = E[ sup

t∈[a,T]
eσt|X(t)|2].

Definition 1. (see [2] (Definition 3.1)) A functional E : L2(Ω,FT , P)→ R is called a nonlinear
expectation if it satisfies the following properties:
(i) Strict monotonicity: if X1 ≥ X2 a.s., E [X1] ≥ E [X2], and if X1 ≥ X2 a.s., E [X1] = E [X2]⇔
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X1 = X2 a.s.
(ii) preserving of constants: E [c] = c, for any constant c.

Definition 2. (see [2] (Definition 3.2)) A nonlinear expectation E is a filtration consistent expecta-
tion (F -consistent expectation) if for any ζ ∈ L2(Ω,FT ,P) and a ≤ t ≤ T, there exists a random
variable ξ ∈ L2(Ω,Ft,P) such that E [ζ1A] = E [ξ1A], ∀A ∈ Ft, where ξ is uniquely defined. We
denote ξ = E [ζ|Ft], which is called the conditional expectation of ζ with respect to Ft. Therefore,
we can write it as E [ζ1A] = E [E [ζ|Ft]1A], ∀A ∈ Ft.

Lemma 1. (see [4](Lemma A.1)) Let A(·) be an increasing predictable process. We consider its
decomposition as a sum of a continuous and a purely discontinuous process: A(t) = A1(t) + A2(t).
We also consider a càdlàg martingale W(·), bounded in L2.
(i) For any stopping time τ such that a ≤ τ ≤ T,

E
[ ∫ τ

a
4W(s)dA1(s)

]
= 0.

(ii) For any predictable stopping time τ such that a ≤ τ ≤ T,

E
[ ∫ τ

a
4W(s)dA2(s)

]
= E

[
∑

a≤s≤τ

4W(s)4A2(s)
]

.

Lemma 2. (see [21] (Theorem 3.5)) Suppose U(·) = U(X(·), ·) ∈ C2,1(R × R+,R). Then,
for any a ≤ t ≤ T, we have

Da
ρU(t)d

(t− a)ρ

ρ
=

(
∂u
∂t
− (t− a)ρ−1g(t, X(t), Y(t), Z(t, ·))∂u

∂x

+
1
2
(t− a)2(ρ−1)Y2(t)

∂2u
∂x2

)
dt + (t− a)ρ−1Y(t)

∂u
∂x

dB(t)

+(t− a)ρ−1 ∂u
∂x

∫
R

Z(t, s)Ñ(dt, ds)

+
1
2
(t− a)2(ρ−1) ∂2u

∂x2

∫
R

Z2(t, s)N(dt, ds), 0 < ρ ≤ 1.

Lemma 3. (see [22] (Theorem 2.5.1)) Let B be a (P,F )-Brownian motion, N be a (P,F )-random
measure with compensator ϑ(dτ, ds) = Q(τ, ds)η(τ)dτ. Assume an equivalent probability mea-
sure Q ∼ P with a positive F -martingale:

dM(t)
M(t)

= φ(t)dB(t) +
∫
R

κ(t, s)Ñ(dt, ds), M(a) = 1,

where φ(·) and κ(·, ·) are the F -predictable processes satisfying∫ T

a
|φ(t)|2dt < ∞,

∫ T

a

∫
R
|κ(t, s)|2Q(t, ds)η(t)dt < ∞,

κ(t, s) > −1, a ≤ t ≤ T, s ∈ R.

Then,

BQ(t) = B(t)−
∫ t

a
φ(τ)dτ, a ≤ t ≤ T,

ÑQ(t, A) = N(t, A)−
∫ t

a

∫
R
(1 + κ(τ, s))Q(τ, ds)η(τ)dτ, a ≤ t ≤ T, A ∈ B(R),

are (Q,F )-Brownian motion and a (Q,F )-random measure.
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Lemma 4. (see [22] (p. 42)) Let γ > 0 and x1, x2 ∈ R. Then,

2|x1x2| ≤
1
γ
|x1|2 + γ|x2|2. (1)

Lemma 5. Consider the following family of conformable backward stochastic differential equation
parameterized by n = 1, 2, · · ·

Xn(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, Xn(τ), Yn(τ), Zn(τ))dτ + n

∫ T

t
(τ − a)ρ−1(X(τ)− Xn(τ))

−
∫ T

t
(τ − a)ρ−1Yn(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Zn(τ, s)Ñ(dτ, ds), t ∈ [a, T], 0 < ρ ≤ 1,

where ζ ∈ L2(Ω,FT ,P), X is an adapted process, Y and Z are given control processes, g :
Ω× [a, T]×R×R× L2

Q(R) → R is predictable, B(·) is a given Brownian motion and Ñ is a
compensated random measure. For any n = 1, 2, · · ·, we have X(t) ≥ Xn(t).

Proof. Following [23] (Lemma 3.4), we assume that X(t) < Xn(t). Then there exists v > 0
such that the measure of {(ω, t) : Xn(t)− X(t)−v ≥ 0} ⊂ Ω× [a, T] non-zero. Define the
following two stopping times:

σ̄ = min[T, inf{t : Xn(t) ≥ X(t) + v}],
τ̄ = inf{t ≥ σ : Xn(t) ≤ X(t)}.

Then we get σ̄ ≤ τ̄ ≤ T. Since X(t)− Xn(t) is right continuous, we have:

Xn(σ̄) ≥ X(σ̄) + v,

Xn(τ̄) ≤ X(τ̄). (2)

Suppose X̄(t) is the solution with the terminal value X̄(τ̄) = Xn(τ̄) on [a, τ̄]. From (2)
and the comparison theorem, we get Xn(σ̄) ≤ X(σ̄). This is a contradiction. Thus, X(t) ≥
Xn(t).

3. The Main Results of g-Expectations

Consider the following conformable backward stochastic differential equation

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, X(τ), Y(τ), Z(τ, s))dτ −

∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)

−
∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds), 0 < ρ ≤ 1, a ≤ t ≤ T, (3)

where ζ ∈ L2(Ω,FT ,P), X is an adapted process, Y and Z are given control processes,
g : Ω× [a, T]×R×R× L2

Q(R)→ R is predictable, B(·) is a given Brownian motion and
Ñ is a compensated random measure.

Assumption 1. (i) The generator g : Ω× [a, T]×R×R×R→ R is predictable and Lipschitz
in x and y

|g(t, x, y, z)− g(t, x′, y′, z)| ≤ K(|x− x′|+ |y− y′|), ∀x, x′, y, y′ ∈ R,

where K is a positive constant.
(ii) For any z, z′ ∈ R, there exist constants −1 < C1 ≤ 0 and C2 ≥ 0 such that

g(t, x, y, z)− g(t, x, y, z′) ≤
∫
R
(z(t, s)− z′(t, s))δx,y,z,z′(t, s)Q(t, ds)η(t),
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where δx,y,z,z′(t, s) : Ω× [a, T]×R→ R is predictable and satisfies C1(1∧ |s|) ≤ δx,y,z,z′(t, s) ≤
C2(1∧ |s|).
(iii) For any x ∈ R, g(t, x, 0, 0) = 0.

Notice that the comparison theorems in [21] follow from Definition 1. Hence a nonlin-
ear expectation can be defined by conformable backward stochastic differential equations.

Definition 3. A nonlinear expectation Eg[·] : L2(Ω,FT ,P)→ R is called a g-expectation if the
generator g of Equation (3) satisfies Assumption 1 and we define the g-expectation as Eg[ζ] = X(a),
where a triple (X, Y, Z) is a unique solution of Equation (3) and X(a) denotes the initial value of
the solution.

Definition 4. A nonlinear expectation Eg[·|Ft] : L2(Ω,FT ,P)→ L2(Ω,Ft,P) is called a condi-
tional g-expectation if for any a ≤ t ≤ T, the generator g of Equation (3) satisfies Assumption 1
and we define the conditional g-expectation as Eg[ζ|Ft] = X(t), where a triple (X, Y, Z) is a unique
solution of Equation (3) and ζ ∈ L2(Ω,FT ,P) denotes the terminal value of the solution.

Proposition 1. We have the following results:
(i) For a ≤ t ≤ T, A ∈ Ft and ζ ∈ L2(Ω,FT ,P), Eg[ζ1A|Ft] = Eg[ζ|Ft]1A.
(ii) For any a ≤ s ≤ t ≤ T and ζ ∈ L2(Ω,FT ,P), Eg[Eg[ζ|Ft]|Fs] = Eg[ζ|Fs].

Proof. Case (i). Let A ∈ Ft. For any a ≤ t ≤ T and 0 < ρ ≤ 1, consider Equation (3) and

X1(t) = ζ1A +
∫ T

t
(τ − a)ρ−1g(τ, X1(τ), Y1(τ), Z1(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y1(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z1(τ, s)Ñ(dτ, ds), (4)

where ζ ∈ L2(Ω,FT ,P) and the generator g satisfies Assumption 1. Multiplying by 1A on
both sides of (3) we get

X(t)1A = ζ1A +
∫ T

t
(τ − a)ρ−11Ag(τ, X(τ), Y(τ), Z(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)1AdB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)1AÑ(dτ, ds),

where a ≤ t ≤ T and 0 < ρ ≤ 1. Notice that g(t, X(t), Y(t), Z(t))1A = g(t, 1AX(t), 1AY(t),
1AZ(t)), and then,

X(t)1A = ζ1A +
∫ T

t
(τ − a)ρ−1g(τ, X(τ)1A, Y(τ)1A, Z(τ)1A)dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)1AdB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)1AÑ(dτ, ds). (5)

Let (X̄(t), Ȳ(t), Z̄(t)) = (X(t)1A, Y(t)1A, Z(t)1A), and (8) can be written as:

X̄(t) = ζ1A +
∫ T

t
(τ − a)ρ−1g(τ, X̄(τ), Ȳ(τ), Z̄(τ))dτ

−
∫ T

t
(τ − a)ρ−1Ȳ(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z̄(τ, s)Ñ(dτ, ds).

By the uniqueness of the conformable backward stochastic differential equation, we
get X1(t) = X̄(t) = X(t)1A, a ≤ t ≤ T. From Definition 4, we have Eg[ζ1A|Ft]X1(t) =
X(t)1A = Eg[ζ|Ft]1A.
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Case (ii). For any A ∈ Fs and a ≤ s ≤ t ≤ T, we have A ∈ Ft. From the result of (i),
one has:

Eg[Eg[Eg[ζ|Ft]|Fs]1A] = Eg[Eg[Eg[ζ|Ft]1A|Fs]]

= Eg[Eg[Eg[ζ1A|Ft]|Fs]]

= Eg[Eg[ζ1A|Fs]]

= Eg[Eg[ζ|Fs]1A],

where ζ ∈ L2(Ω,FT ,P). Let ζ1 = Eg[Eg[ζ|Ft]|Fs] and ζ2 = Eg[ζ|Fs]. If we choose
A = {ζ1 ≥ ζ2} ∈ Ft, from Definition 1, ζ11A ≥ ζ21A and Eg[ζ11A] = Eg[ζ21A], we get
ζ11A = ζ21A. Hence ζ1 ≤ ζ2. If we set A = {ζ1 ≤ ζ2} ∈ Ft, we get ζ1 ≥ ζ2 in the same
way. Hence, we conclude that ζ1 = ζ2, that is, Eg[Eg[ζ|Ft]|Fs] = Eg[ζ|Fs].

Theorem 1. The g-expectation is F -consistent expectation.

Proof. Let A ∈ Ft. For any a ≤ t ≤ T and 0 < ρ ≤ 1, consider the following equations:

X1(t) = ζ1A +
∫ T

t
(τ − a)ρ−1g(τ, X1(τ), Y1(τ), Z1(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y1(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z1(τ, s)Ñ(dτ, ds), (6)

X2(t) = X1(u)1A +
∫ T

t
(τ − a)ρ−1g(τ, X2(τ), Y2(τ), Z2(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y2(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z2(τ, s)Ñ(dτ, ds), (7)

where ζ ∈ L2(Ω,FT ,P), X1(u) = Eg[ζ1A|Ft] and the generator g satisfies Assumption 1.
Multiplying by 1A on both sides of (7) we get:

X2(t)1A = Eg[ζ1A|Ft]1A +
∫ T

t
(τ − a)ρ−11Ag(τ, X2(τ), Y2(τ), Z2(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y2(τ)1AdB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z2(τ, s)1AÑ(dτ, ds)

where a ≤ t ≤ T and 0 < ρ ≤ 1. Notice that g(t, X(t), Y(t), Z(t))1A = g(t, 1AX(t), 1AY(t),
1AZ(t)), and then,

X2(t)1A = Eg[ζ1A|Ft]1A +
∫ T

t
(τ − a)ρ−1g(τ, X2(τ)1A, Y2(τ)1A, Z2(τ)1A)dτ

−
∫ T

t
(τ − a)ρ−1Y2(τ)1AdB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z2(τ, s)1AÑ(dτ, ds). (8)

Let (X3(t), Y3(t), Z3(t)) = (X2(t)1A, Y2(t)1A, Z2(t)1A), and (8) can be written as:

X3(t) = Eg[ζ1A|Ft]1A +
∫ T

t
(τ − a)ρ−1g(τ, X3(τ), Y3(τ), Z3(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y3(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z3(τ, s)Ñ(dτ, ds).

By the uniqueness of the conformable backward stochastic differential equation, we
get X1(t) = X3(t) = Eg[ζ1A|Ft]1A, a ≤ t ≤ T. From Definition 3 and Proposition 1,
we have:

Eg[ζ1A] = X1(a) = X3(a) = Eg[Eg[ζ1A|Ft]1A] = Eg[Eg[ζ|Ft]1A].
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Hence, there exists ξ = Eg[ζ|Ft] such that Eg[ζ1A] = Eg[ξ1A].
Next, we prove the uniqueness of ξ. Assume that there exists another random variable

ξ ′ such that Eg[ξ1A] = Eg[ξ ′1A] and ξ 6= ξ ′. Choose ξ > ξ ′. According to the compari-
son theorem in [21] and Definition 3, we have Eg[ξ1A] > Eg[ξ ′1A], which is contrary to
Eg[ξ1A] = Eg[ξ ′1A]. On the other hand, if we choose ξ < ξ ′, the result Eg[ξ1A] = Eg[ξ ′1A]
still does not hold. Hence ξ = ξ ′.

Combining the existence and uniqueness of ξ, we conclude that the g-expectation is
F -consistent expectation. The proof is complete.

Next, we give two kinds of g-expectation with the special generators g1 and g2.

Proposition 2. Let φ(·) and κ(·) be F -predictable processes. For any µ1 ∈ R+ and−1 < C1 ≤ 0,
we define the following generators:

g1(t, x, y, z) = µ1|y|+ C1

∫
R
(1∧ |s|)|z(t, s)|Q(t, ds)η(t),

g2(t, x, y, z) = −µ1|y| − C1

∫
R
(1∧ |s|)|z(t, s)|Q(t, ds)η(t).

Then Eg1 [ζ|Ft] = infQ∈D EQ[ζ|Ft] and Eg2 [ζ|Ft] = supQ∈D EQ[ζ|Ft], where

D =

{
Q ∼ P,

dQ
dP

∣∣∣∣Ft = M(t),
dM(t)
M(t)

= φ(t)dB(t) +
∫
R

κ(t, s)Ñ(dt, ds),

M(a) = 1, |φ(t)| ≤ µ1, − 1 < κ(t, s) ≤ C1(1∧ |s|), a ≤ t ≤ T
}

.

Proof. Here we consider the case of g1(t, x, y, z) = µ1|y|+C1
∫
R(1∧ |s|)|z(t, s)|Q(t, ds)η(t).

The proof of g2(t, x, y, z) = −µ1|y| − C1
∫
R(1∧ |s|)|z(t, s)|Q(t, ds)η(t) is similar. Consider

the following equation

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g1(τ, X(τ), Y(τ), Z(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds)

= ζ +
∫ T

t
µ1(τ − a)ρ−1|Y(τ)|dτ +

∫ T

t
(τ − a)ρ−1

∫
R

C1(1∧ |s|)|Z(τ, s)|Q(τ, ds)η(τ)dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),

where a ≤ t ≤ T, 0 < ρ ≤ 1, µ1 ∈ R+ and −1 < C1 ≤ 0. Define

dQ
dP

∣∣∣∣Ft = M(t), M(a) = 1,

dM(t)
M(t)

= φ(t)dB(t) +
∫
R

κ(t, s)Ñ(dt, ds),
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where |φ(t)| ≤ µ1 and −1 < κ(t, s) ≤ C1(1 ∧ |s|). Let D = {Q ∼ P, dQ
dP |Ft = M(t)},

and from Lemma 3, we can get

X(t) = ζ +
∫ T

t
(τ − a)ρ−1[µ1|Y(τ)| − φ(τ)Y(τ)]dτ

+
∫ T

t
(τ − a)ρ−1

∫
R
[C1(1∧ |s|)|Z(τ, s)| − κ(τ, s)Z(τ, s)]Q(τ, ds)η(τ)dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)ÑQ(dτ, ds)

≥ ζ −
∫ T

t
(τ − a)ρ−1Y(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)ÑQ(dτ, ds),

where a ≤ t ≤ T and 0 < ρ ≤ 1; note that φ(τ)Y(τ) = µ1Y(τ) > 0 and κ(τ, s)Z(τ, s) =
C1(1∧ |s|)Z(τ, s) > 0, we have

X(t) = ζ −
∫ T

t
(τ − a)ρ−1Y(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)ÑQ(dτ, ds).

Taking the conditional expectation under the probability measure Q, we obtain
X(t) = infQ∈D EQ[ζ|Ft]. Notice that Assumption 1 is satisfied for the generator g1(t, x, y, z).
From Definition 4, we get X(t) = Eg1 [ζ|Ft], that is, Eg1 [ζ|Ft] = infQ∈D EQ[ζ|Ft].

The proof is complete.

Proposition 3. Let Eg be a g-expectation and ζ, ζ1, ζ2 ∈ L2(Ω,FT ,P).
(i) Translation invariance: for any constant c ∈ R and a ≤ t ≤ T, we have

Eg[ζ + c|Ft] = Eg[ζ|Ft] + c,

where the generator g is independent of X(·).
(ii) Homogeneity: for any constant c > 0 and a ≤ t ≤ T, we have

Eg[cζ|Ft] = cEg[ζ|Ft],

where the generator g is positively homogenous.
(iii) Convexity: for any c ∈ (0, 1) and a ≤ t ≤ T, the g-expectation Eg is convex

Eg[cζ1 + (1− c)ζ2|Ft] ≤ cEg[ζ1|Ft] + (1− c)Eg[ζ2|Ft],

if the generator g is convex, namely:

g(t, cx1 + (1− c)x2, cy1 + (1− c)y2, cz1 + (1− c)z2)

≤ cg(t, x1, y1, z1) + (1− c)g(t, x2, y2, z2), ∀(x1, y1, z1), (x2, y2, z2) ∈ (R,R, L2
Q).

(iv) Sub-linearity and sub-additivity: the g-expectation Eg is sub-linear, sub-additive and
positively homogenous

Eg[ζ1 + ζ2|Ft] ≤ Eg[ζ1|Ft] + Eg[ζ2|Ft],

if the generator g is positively homogenous and satisfies:

g(t, x1 + x2, y1 + y2, z1 + z2)

≤ g(t, x1, y1, z1) + g(t, x2, y2, z2), ∀(x1, y1, z1), (x2, y2, z2) ∈ (R,R, L2
Q).
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Proof. Case (i). Consider the following conformable backward stochastic differen-
tial equations:

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, X(τ), Y(τ), Z(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),

X′(t) = ζ + c +
∫ T

t
(τ − a)ρ−1g(τ, X′(τ), Y′(τ), Z′(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y′(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z′(τ, s)Ñ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), c ∈ R, a ≤ t ≤ T and 0 < ρ ≤ 1. Let

dQ
dP

∣∣∣∣Ft = M(t), M(a) = 1

dM(t)
M(t)

= α̃(t)dB(t) +
∫
R

β̃(t)Ñ(dt, ds), a ≤ t ≤ T, (9)

where α̃(·) and β̃(·) are the predictable processes. If we choose a generator g(t, X(t), Y(t),
Z(t)) = α̃(t)Y(t) +

∫
R β̃(t)Z(t, s)Q(t, ds)η(t) which does not depend on X(·), using

Lemma 3, one has:

X(t) = ζ −
∫ T

t
(τ − a)ρ−1Y(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)ÑQ(dτ, ds),

X′(t) = ζ + c−
∫ T

t
(τ − a)ρ−1Y′(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z′(τ, s)ÑQ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), c ∈ R, a ≤ t ≤ T and 0 < ρ ≤ 1. Hence, we get X(t) = EQ[ζ|Ft]
and X′(t) = EQ[ζ + c|Ft] = EQ[ζ|Ft] + c under the probability measure Q, that is, X′(t) =
X(t) + c, Y(t) = Y′(t) and Z(t, s) = Z′(t, s).

On the other hand, since the generator g(t, X(t), Y(t), Z(t)) = α̃(t)Y(t)+∫
R β̃(t)Z(t, s)Q(t, ds)η(t) satisfies Assumption 1, we have X(t) = Eg[ζ|Ft] and X′(t) =
Eg[ζ + c|Ft]. Hence, we conclude that Eg[ζ + c|Ft] = X′(t) = X(t) + c = Eg[ζ|Ft] + c.

Case (ii). Let c > 0, and using the same method as in case (i), consider the follow-
ing equation:

X′′(t) = cζ +
∫ T

t
(τ − a)ρ−1g(τ, X′′(τ), Y′′(τ), Z′′(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y′′(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z′′(τ, s)Ñ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T and 0 < ρ ≤ 1. Choose

g(t, X′′(t), Y′′(t), Z′′(t)) = α̃(t)Y′′(t) +
∫
R

β̃(t)Z′′(t, s)Q(t, ds)η(t),

which is positively homogenous. With the framework of (12), we have

X′′(t) = cζ −
∫ T

t
(τ − a)ρ−1Y′′(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z′′(τ, s)ÑQ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T and 0 < ρ ≤ 1. Then we get X′′(t) = cEQ[ζ|Ft].
From Definition 4 and X(t) = EQ[ζ|Ft] = Eg[ζ|Ft], we have Eg[cζ|Ft] = X′′(t) =

cEQ[ζ|Ft] = cEg[ζ|Ft].
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Case (iii). Let 0 < c < 1, and consider the following conformable backward stochastic
differential equations

X̄(t) = cζ1 + (1− c)ζ2 +
∫ T

t
(τ − a)ρ−1g(τ, X̄(τ), Ȳ(τ), Z̄(τ))dτ

−
∫ T

t
(τ − a)ρ−1Ȳ(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z̄(τ, s)Ñ(dτ, ds), (10)

Xi(t) = ζi +
∫ T

t
(τ − a)ρ−1g(τ, Xi(τ), Yi(τ), Zi(τ))dτ

−
∫ T

t
(τ − a)ρ−1Yi(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Zi(τ, s)Ñ(dτ, ds),

where i = 1, 2, ζi ∈ L2(Ω,FT ,P), 0 < c < 1, a ≤ t ≤ T and 0 < ρ ≤ 1.
Notice that:

g(t, cX1 + (1− c)X2, cY1 + (1− c)Y2, cZ1 + (1− c)Z2)

≤ cg(t, X1, Y1, Z1) + (1− c)g(t, X2, Y2, Z2),

and we see that:

g(t, cX1 + (1− c)X2, cY1 + (1− c)Y2, cZ1 + (1− c)Z2) + f (t)

= cg(t, X1, Y1, Z1) + (1− c)g(t, X2, Y2, Z2),

where the nonnegative function f (t) depends on Xi, Yi and Zi and i = 1, 2. Let X3(t) =
cX1(t) + (1− c)X2(t), Y3(t) = cY1(t) + (1− c)Y2(t) and Z3(t) = cZ1(t) + (1− c)Z2(t),
and we have

X3(t) = cζ1 + (1− c)ζ2 +
∫ T

t
(τ − a)ρ−1[cg(τ, X1(τ), Y1(τ), Z1(τ))

+(1− c)g(τ, X2(τ), Y2(τ), Z2(τ))]dτ

−
∫ T

t
(τ − a)ρ−1[cY1(τ) + (1− c)Y2(τ)]dB(τ)

−
∫ T

t
(τ − a)ρ−1

∫
R
[cZ1(τ, s) + (1− c)Z2(τ, s)]Ñ(dτ, ds)

= cζ1 + (1− c)ζ2 +
∫ T

t
(τ − a)ρ−1[g(τ, X3(τ), Y3(τ), Z3(τ))

+ f (τ, Xi(τ), Yi(τ), Zi(τ))]dτ −
∫ T

t
(τ − a)ρ−1Y3(τ)dB(τ)

−
∫ T

t
(τ − a)ρ−1

∫
R

Z3(τ, s)Ñ(dτ, ds), (11)

where i = 1, 2, 0 < c < 1, ζi ∈ L2(Ω,FT ,P), a ≤ t ≤ T and 0 < ρ ≤ 1. Using the compari-
son theorem to the Equations (10) and (11), we see that X̄(t) ≤ X3(t). From Definition 4,
one has

Eg[cζ1 + (1− c)ζ2|Ft] = X̄(t) ≤ X3(t) = cX1(t) + (1− c)X2(t) ≤ cEg[ζ1|Ft] + (1− c)Eg[ζ2|Ft],

where i = 1, 2, 0 < c < 1, ζi ∈ L2(Ω,FT ,P) and a ≤ t ≤ T.
Case (iv). Similar to the proof process in case (iii), we get the result in case (iv).
The proof is complete.

Theorem 2. Suppose g(t, X(t), Y(t), Z(t)) = α̃(t)Y(t) +
∫
R β̃(t)Z(t, s)Q(t, ds)η(t), a ≤ t ≤

T. Then the g-expectation is equivalent to the expectation under a probability measure Q.
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Proof. Consider the following conformable backward stochastic differential equation

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, X(τ), Y(τ), Z(τ))dτ

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T and 0 < ρ ≤ 1.
It is clear that the generator g(t, X(t), Y(t), Z(t)) = α̃(t)Y(t)+

∫
R β̃(t)Z(t, s)Q(t, ds)η(t)

satisfies Assumption 1. From Definition 4, we have X(t) = Eg[ζ|Ft].
Let

dQ
dP

∣∣∣∣Ft = M(t), M(a) = 1

dM(t)
M(t)

= α̃(t)dB(t) +
∫
R

β̃(t)Ñ(dt, ds), a ≤ t ≤ T, (12)

where α̃(·) and β̃(·) are the predictable processes. Using Lemma 3, one has:

X(t) = ζ −
∫ T

t
(τ − a)ρ−1Y(τ)dBQ(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)ÑQ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T and 0 < ρ ≤ 1. Hence, we get X(t) = EQ[ζ|Ft]
under the probability measure Q. From the uniqueness of the solution, we conclude that
Eg[ζ|Ft] = X(t) = EQ[ζ|Ft]. The proof is complete.

4. Doob–Meyer Decomposition Theorem

We first give some definitions.

Definition 5. The process X(·) is called a g-martingale if for any a ≤ s ≤ t ≤ T, we have
E[|X(t)|2] < ∞ and

Eg[X(t)|Fs] = X(s).

Definition 6. The process X(·) is called a g-supermartingale if for any a ≤ s ≤ t ≤ T, we have
E[|X(t)|2] < ∞ and

Eg[X(t)|Fs] ≤ X(s).

Theorem 3. Assume that the generator g satisfies Assumption 1. If the process X(·) ∈ S2(R) is
a g-supermartingale on [a, T], then there exists a unique triple (Y, Z) ∈ H2(R)×H2

N(R) and a
continuous increasing process A(·) such that:

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, X(τ), Y(τ), Z(τ))dτ + A(T)− A(t)

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T, 0 < ρ ≤ 1, A(a) = 0 and E[|A(T)|2] < ∞.

Proof. Consider the following conformable backward stochastic differential equation:

Xn(t) = ζ +
∫ T

t
(τ − a)ρ−1gn(τ, Xn(τ), Yn(τ), Zn(τ))dτ

−
∫ T

t
(τ − a)ρ−1Yn(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Zn(τ, s)Ñ(dτ, ds), (13)

where ζ ∈ L2(Ω,FT ,P), a ≤ t ≤ T, 0 < ρ ≤ 1 and n = 1, 2, 3, · · ·.
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Assume that gn(t, x, y, z) = g(t, x, y, z) + n(X(t)− x), so Equation (13) can be writ-
ten as:

Xn(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, Xn(τ), Yn(τ), Zn(τ))dτ + An(T)− An(t)

−
∫ T

t
(τ − a)ρ−1Yn(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Zn(τ, s)Ñ(dτ, ds), (14)

where An(t) =
∫ t

a n(τ − a)ρ−1(X(τ)− Xn(τ))dτ. From Lemma 5 and a comparison the-
orem, we get that the sequence (Xn(t))n∈N+ is increasing and monotonically converges.
Hence the sequence (An(t))n∈N+ is continuous and increasing. From Equation (14), we have

An(T) = Xn(a)− ζ −
∫ T

a
(τ − a)ρ−1g(τ, Xn(τ), Yn(τ), Zn(τ))dτ

+
∫ T

a
(τ − a)ρ−1Yn(τ)dB(τ) +

∫ T

a
(τ − a)ρ−1

∫
R

Zn(τ, s)Ñ(dτ, ds)

≤ |Xn(a)|+ |ζ|+ k
∫ T

a
(τ − a)ρ−1[|Xn(τ)|+ |Yn(τ)|+

∫
R
|Zn(τ, s)|Q(τ, ds)η(τ)]dτ

+
∫ T

a
(τ − a)ρ−1|Yn(τ)|dB(τ) +

∫ T

a
(τ − a)ρ−1

∫
R
|Zn(τ, s)|Ñ(dτ, ds),

where k depends on K and δx,y,z,z′(t, s). Then,

E[|An(T)|2] ≤ E[|Xn(a)|2] +E[ζ2] + k1E[ sup
a≤t≤T

|Xn(t)|2]

+k2E
[ ∫ T

a
(τ − a)2(ρ−1)

(
|Yn(τ)|2 +

∫
R
|Zn(τ, s)|2Q(τ, ds)η(τ)

)
dτ

]
,

for a k1 depending on T, ρ and a, and k2 is a constant. Hence, there exists a constant l1 such
that:

E[|An(T)|2] ≤ l1 + k2E
[ ∫ T

a
(τ − a)2(ρ−1)

(
|Yn(τ)|2 +

∫
R
|Zn(τ, s)|2Q(τ, ds)η(τ)

)
dτ

]
, (15)

where a ≤ t ≤ T, 0 < ρ ≤ 1 and n = 1, 2, 3, · · ·. Apply Lemma 2 to |Xn(t)|2, and we have:

|Xn(t)|2 = ζ2 + 2
∫ T

t
(τ − a)ρ−1|Xn(τ)|g(τ, Xn(τ), Yn(τ), Zn(τ))dτ

+2
∫ T

t
|Xn(τ)|dAn(τ)− 2

∫ T

t
(τ − a)ρ−1|Xn(τ)|Yn(τ)dB(τ)

−2
∫ T

t
(τ − a)ρ−1|Xn(τ)|

∫
R

Zn(τ, s)Ñ(dτ, ds)−
∫ T

t
(dXn(τ))2,

where a ≤ t ≤ T, 0 < ρ ≤ 1 and n = 1, 2, 3, · · ·. According to Lemma 4, Assumption 1 and
Lemma 1, one has:
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E[|Xn(t)|2] ≤ E[ζ2] + 2E
[ ∫ T

t
(τ − a)ρ−1|Xn(τ)|g(τ, Xn(τ), Yn(τ), Zn(τ))dτ

]
+2E

[ ∫ T

t
|Xn(τ)|dAn(τ)

]
−E

[ ∫ T

t
(τ − a)2(ρ−1)|Yn(τ)|2dτ

]
−E
[ ∫ T

t

∫
R
(τ − a)2(ρ−1)|Zn(τ, s)|2Q(τ, ds)η(τ)dτ

]
≤ E[ζ2] + 2KE

[ ∫ T

t
(τ − a)ρ−1|Xn(τ)|2dτ

]
+ 2KE

[ ∫ T

t
(τ − a)ρ−1|Xn(τ)|Yn(τ)dτ

]
+2kE

[ ∫ T

t

∫
R
(τ − a)ρ−1|Xn(τ)|Zn(τ, s)Q(τ, ds)η(τ)dτ

]
+ 2E

[ ∫ T

t
|Xn(τ)|dAn(τ)

]
−E
[ ∫ T

t
(τ − a)2(ρ−1)|Yn(τ)|2dτ

]
−E

[ ∫ T

t

∫
R
(τ − a)2(ρ−1)|Zn(τ, s)|2Q(τ, ds)η(τ)dτ

]
≤ E[ζ2] + 2KE

[ ∫ T

t
(τ − a)ρ−1|Xn(τ)|2dτ

]
+ (γK− 1)E

[ ∫ T

t
(τ − a)2(ρ−1)|Yn(τ)|2dτ

]
+

1
γ
(K + k + 1)E

[ ∫ T

t
|Xn(τ)|2dτ

]
+ γE[|An(T)|2]

+(γK− 1)E
[ ∫ T

t

∫
R
(τ − a)2(ρ−1)|Zn(τ, s)|2Q(τ, ds)η(τ)dτ

]
,

namely,

E
[ ∫ T

a
(τ − a)2(ρ−1)

(
|Yn(τ)|2 +

∫
R
|Zn(τ, s)|2Q(τ, ds)η(τ)

)
dτ

]
≤ l2 +

γ

1− γK
E[|An(T)|2], (16)

where l2 is a constant and γ ≤ 1
K . Combining Equations (15) and (16), we conclude that

there exists a constant C, independent of n, such that E[|An(T)|2] ≤ C and

E
[ ∫ T

a
(τ − a)2(ρ−1)|Yn(τ)|2dτ

]
+E

[ ∫ T

a

∫
R
(τ − a)2(ρ−1)|Zn(τ, s)|2Q(τ, ds)η(τ)dτ

]
≤ C,

where a ≤ t ≤ T, 0 < ρ ≤ 1 and n = 1, 2, 3, · · ·. In addition, we also get

E
[ ∫ T

a
(τ − a)2(ρ−1)g(τ, Xn(τ), Yn(τ), Zn(τ))dτ

]
≤ C.

In other words, these sequences (Xn(t))n∈N+ , (Yn(t))n∈N+ and (Zn(t, ·))n∈N+ weakly
converge in their spaces, and then for all stopping time ς, we have

lim
n→∞

∫ ς

a
(τ − a)ρ−1Xn(τ)dτ =

∫ ς

a
(τ − a)ρ−1X(τ)dτ,

lim
n→∞

∫ ς

a
(τ − a)ρ−1Yn(τ)dB(τ) =

∫ ς

a
(τ − a)ρ−1Y(τ)dB(τ),

and

lim
n→∞

∫ ς

a
(τ − a)ρ−1

∫
R

Zn(τ, s)Ñ(dτ, ds) =
∫ ς

a
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),
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and hence we have:

X(t) = ζ +
∫ T

t
(τ − a)ρ−1g(τ, X(τ), Y(τ), Z(τ))dτ + A(T)− A(t)

−
∫ T

t
(τ − a)ρ−1Y(τ)dB(τ)−

∫ T

t
(τ − a)ρ−1

∫
R

Z(τ, s)Ñ(dτ, ds),

where a continuous increasing process A(·) satisfies A(a) = 0 and E[|A(T)|2] < ∞.
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