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Abstract: The paper deals with multiplayer normal form games which are preceded by a ‘preplay
negotiation phase’ consisting of exchange of preplay offers by players for payments of utility to other
players conditional on them playing designated in the offers strategies. The game-theoretic effect of
such preplay offers is a transformation of the payoff matrix of the game, obtained by transferring
the offered payments between the payoffs of the respective players; thus, certain groups of game
matrix transformations naturally emerge. The main result is an explicit and rather transparent
algebraic characterization of the possible transformations of the payoff matrix of any given N-
person normal form game induced by preplay offers for transfer of payments. That result can be
used to describe the ‘bargaining space’ of the game and to determine the mutually optimal game
transformations that rational players can achieve by exchange of preplay offers.

Keywords: normal form games; preplay offers; game transformations; groups of game matrix
transformations

MSC: 91A05; 91A06; 91A10; 15A30; 15B99

1. Introduction

Some normal form games have no pure strategy Nash equilibria, while others, such
as the Prisoners’ Dilemma, have rather unsatisfactory ones, i.e., they are strongly Pareto-
dominated. Sometimes, more mutually beneficial outcomes can be achieved if players
could communicate before the play of the game, to make binding offers for payments
of bonuses to other players to provide additional incentives for them to play as desired
by offering players strategies. More precisely, I assume the possibility that before playing
the game, any player A can make a binding offer to any other player B to pay them. After the game
is played, a declared amount of utility δ is awarded if B plays strategy s, as specified in the offer
by A.

Every player can make several such preplay offers (possibly to different players), and
I only consider offers contingent on pure strategies, even though players can still play
mixed strategies. Any preplay offer of player A is binding and irrevocable for A, and it is
contingent on B playing the strategy specified by A. However, such an offer does not create
any obligation for B (and, therefore, does not transform the game into a cooperative one),
as B remains free to choose their strategy when the game is actually played. The key
point here is that every preplay offer transforms the given normal form game into another one by
an explicitly defined transformation of the payoff matrix.

By exchanging preplay offers of payments, the players create a preliminary negotia-
tion phase essentially structured as an extensive-form bargaining game. Such scenarios
arise in a wide spectrum of economic, social, and political situations, such as collusions,
compensations, incentives, concessions, compromises, and other kinds of deals in economic
and political negotiations, out-of-court settlements of legal cases, and corruption schemes.
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Normal form games with preplay negotiation phase consisting of exchange of preplay
offers were introduced and studied in [1–3], where some results analyzing efficiency of
preplay negotiations on such game transformations between rational players were obtained.
In the present paper, I study the purely mathematical effect of preplay offers on the payoff
matrices of normal form games, disregarding any rationality considerations that may
prescribe to players if and what offers are available to make. That is, here we are only
interested in how a game matrix can be transformed by preplay offers, but not why players
may wish to exchange offers inducing a given transformation. Our objective is to obtain
an explicit algebraic characterization of all possible offer-induced transformations of a given
normal form game. Thus, the present work is a technical counterpart to the truly game
theoretic study initiated in the above-referred papers. In the concluding section, I briefly
discuss the game-theoretic use and impact of our results.

1.1. Contributions

The contributions of this paper are as follows:

1. Introduction and initial study of offer-induced game matrix transformation. I show,
inter alia, that the set of such transformations on the class of all game payoff matrices
of given dimension forms a group with respect to composition of transformations;

2. Complete and transparent characterization of the orbit of any game payoff matrix
under that group of transformations, i.e., explicit characterization of the class of all
normal form games that can be obtained from a given game matrix by means of
offer-induced transformations. I first obtain such characterization for two-person
games (Theorem 1), and then extend the result to N-person games (Theorem 3).
While the proofs are standard applications of linear algebra, I argue that the char-
acterizations themselves are quite useful from game-theoretic perspective as they
indicate to the players how they can possibly transform the game they are playing by
exchanging suitable preplay offers; thus, describing their “bargaining space“ for that
game;

3. Proof that any such transformation of a game payoff matrix M can be obtained by
choosing any strategy profile in M and setting suitable payoffs satisfying a certain con-
dition for all outcomes obtained by allowing any one, and only one, player to deviate
from that strategy profile, by using recurrent formulae for computing the remaining
payoffs in the transformed matrix.

1.2. Related Work

The formal theory of bargaining goes back to Nash [4] and Harsanyi [5]. Since then,
there were extensive studies of negotiations and bargaining in cooperative and noncooper-
ative games, e.g., surveys in [6]. The preplay negotiation games studied here are closely
related in spirit to bargaining games, see [7–11] and were introduced and studied in [1–3],
which are precursors and most closely related publications to the present work. The pa-
per [1] introduces the extension of normal form games with a preplay negotiations phase,
where players can exchange preplay offers that are conditional on suggested matching
offers of the same kind made in return by the receiver. The follow-up paper [3] studies
and analyses solution concepts for two-player normal form games with such preplay ne-
gotiation phase, under several assumptions for the bargaining power of the players, as
well as the value of time for the players in such negotiations, and obtain results describing
the possible solutions that can be achieved in such negotiation process in the resulting
bargaining games. Strategic form games extended with preplay negotiations are further
studied in [2], where where players can exchange unconditional offers, which substantially
changes their strategic behavior. The preplay phase itself generates an unbounded-horizon
extensive-form preplay negotiations game, in which the optimal strategic behavior of the play-
ers is analyzed and an algorithmic method for computing players’ best offers is developed
in [2], under the assumption of myopic rationality reasoning.
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Besides, somewhat more general types of contractual side payments—not only posi-
tive but also possibly negative (threats for punishments), and contingent not just on the
recipient’s strategy but also on their own actions, or on an entire strategy profile (i.e.,
on an outcome)—were studied before in the literature, most notably in [12,13], and later
in the follow-up [14]. There are some essential differences in the assumptions made in those
papers and in the present work, and respectively in the game-theoretic properties and
effects of such payments, as demonstrated in [2,3], to which I refer the reader for further
details on related work. As shown in the present paper, the game matrix transformations
induced by preplay offers considered here can simulate negative payments, but not the type
of offers for contractual payments contingent on strategy profiles considered in [12,14].

1.3. Background

The reader is expected to have basic background on N-person normal form games,
e.g., [9,10], as well as basic background on linear algebra within any standard textbook,
e.g., [15], and on theory of groups, again within any standard reference on abstract alge-
bra, e.g., [16].

1.4. The Structure of the Paper

Section 2 begins with an illustrating example, showing how the Prisoners Dilemma can
be solved in a Pareto optimal way by players exchanging preplay offers, and then provides
the basic definition related to preplay offers and payoff matrix transformations. Section 3
introduces the group of offer-induced game transformations for a given N-player normal
form game. Section 4 characterizes explicitly the class of normal form game payoff matrices
that can be produced by means of such offer-induced game transformations from a given
two-player game. Section 5 extends that characterization result to N-player games and
illustrates it with an example. The paper ends with the concluding Section 6.

2. Preplay Offers and Payoff Matrix Transformations
2.1. An Illustrating Example

Consider a standard version of the Prisoners’ Dilemma (PD) game with a payoff matrix

I\II C D
C 4, 4 0, 5
D 5, 0 1, 1

The only Nash Equilibrium is (D,D) with the paltry payoff (1,1).
Now, suppose I makes to II a binding offer to pay her two utils after the game if II plays

C. That offer transforms the game by transferring two utils from the payoff of I to the payoff
of II in every entry of the column of the game matrix, where II plays C, as follows:

I\II C D
C 2, 6 0, 5
D 3, 2 1, 1

In this transformed game, player I still has the incentive to play D, which strictly
dominates C for him, but the dominant strategy for II now is C; thus, the only Nash
Equilibrium is (D,C) with payoff (3,2), which is strictly better than the original payoff (1,1).

Of course, player II can now realize that player I has no incentive to cooperate yet.
That incentive, however, can be created if player II makes a respective offer to pay two
utils to player I after the game if player I cooperates. Then, the game transforms again,
as follows:

I\II C D
C 4, 4 2, 3
D 3, 2 1, 1
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In this game, the only Nash Equilibrium is (C,C) with payoff (4,4), which is Pareto
optimal. This is the same payoff for (C,C) as in the original PD game, but now both players
have transformed the game into one where they both have incentives to cooperate, and
thus escape from the trap of the original Nash Equilibrium (D,D).

2.2. Transformations of Normal Form Games by Preplay Offers

Now, let us generalize. Consider a general two-person (for technical simplicity only)
normal form (NF) game with a payoff matrix

A\B B1 · · · Bj · · ·
A1 · · · · · · a1j, b1j · · ·
A2 · · · · · · a2j, b2j · · ·
· · · · · · · · · · · · · · ·
Ai · · · · · · aij, bij · · ·
· · · · · · · · · · · · · · ·

Suppose player A makes a preplay offer to player B to pay her additional utility δ ≥ 0

if B plays Bj. I will denote such preplay offer by A
δ/Bj−−→ B.

(Of course, preplay offers where δ = 0 make no difference in the game. The technical
reason for which we allow δ = 0 is to have an identity transformation at hand, but such
vacuous offers can also be used by players for signalling.)

That offer transforms the payoff matrix of the game as follows:

A\B B1 · · · Bj · · ·
A1 · · · · · · a1j − δ, b1j + δ · · ·
A2 · · · · · · a2j − δ, b2j + δ · · ·
· · · · · · · · · · · · · · ·
Ai · · · · · · aij − δ, bij + δ · · ·
· · · · · · · · · · · · · · ·

I will call such transformation of a payoff matrix a primitive offer-induced transfor-
mation, or a POI-transformation, for short.

Several preplay offers can be made by each player. Clearly, the transformation of
a payoff matrix induced by several preplay offers can be obtained by applying the POI-
transformations corresponding to each of the offers consecutively, in any order. I will call
such transformations general offer-induced transformations, or GOI-transformations,
for short. Thus, every GOI-transformation corresponds to a finite set of preplay offers,
and respectively, a set of POI-transformations. Note that the sets generating a given
GOI-transformation need not be unique. For instance, A can make two independent
consecutive offers

A
δ1/Bj−−−→ B and A

δ2/Bj−−−→ B equivalent to the offer A
δ1+δ2/Bj−−−−−→ B.

Thus, every GOI-transformation has a canonical form

{A
δA

1 /B1−−−→ B, . . . , A
δA

m /Bm−−−−→ B} ∪ {B
δB

1 /A1−−−−→ A, . . . , B
δB

n /An−−−−→ A }

for some non-negative numbers δA
1 , . . . δA

m , δB
1 , . . . δB

n .
That transformation changes the payoffs from (aij, bij) to (âij, b̂ij) as follows:

âij = aij − δA
j + δB

i , b̂ij = bij + δA
j − δB

i .

Note that the players can collude to make any outcome, with any non-negative redistri-
bution of the payoffs in it, a strictly dominant strategy equilibrium by exchanging sufficiently
high offers to make the strategies generating that outcome strictly dominant.
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Remark: clearly, rational players would only be interested in making offers inducing
payoffs that are optimal for them. Thus, a ‘preplay negotiation phase’ emerges, which is
studied in [1–3]. In this paper I do not take rationality considerations into account.

3. The Group of Offer-Induced Game Transformations

All definitions and observations in the previous section generalize in a straightforward
way to N-person games, for any fixed integer N > 2. I will name the N players by
{1, 2, . . . N}, but will still usually denote players by A and B, possibly indexed. If an N-
person game payoff matrix M is such that for each i ∈ {1, 2, . . . N} player i has mi available
strategies, we say that M has dimension dim(M) = m1×m2× . . .×mN . Two game payoff
matrices match if they have the same dimension.

I begin with some useful general observations on GOI-transformations of NF games
for any fixed number of players N.

1. A GOI-transformation does not change the dimension of the game matrix, nor the sum
of the payoffs of all players in any outcome in the matrix; it only redistributes them.
In particular, GOI-transformations preserve the class of zero-sum games.

2. A GOI-transformation induced by a preplay offer of player A does not change the pref-
erences of A regarding their own strategies. In particular, dominance between strategies
of player A is invariant under GOI-transformations induced by preplay offers of
A, i.e., a strategy Ai dominates (weakly, respectively strongly) a strategy Aj before
a transformation induced by a preplay offer made by A if, and only if, Ai dominates
(weakly, respectively strongly) Aj after the transformation.

Proposition 1. The set of all GOI-transformations of payoff matrices of N-person strategic games
of any fixed dimension, for any given N >1 forms a commutative group under composition.

Proof. In this proof, we can restrict attention to the set of GOI-transformations of game
matrices of a fixed given dimension. The composition of two such GOI-transformations is
a GOI-transformation of the same type, corresponding to the union of the preplay offers
generating the two transformations. Furthermore, the composition of GOI-transformations
is clearly associative and commutative, because the order of transforming the matrix with
regards to the primitive preplay offers generating the composed GOI-transformations is
not essential.

The identity GOI-transformation is the one corresponding to any offer A
0/Bj−−→ B. Note

that, even though there are many offers of this type, they generate the same transformation.
The existence of an inverse GOI-transformation to any GOI-transformation is a bit

trickier, because an offered payment cannot be negative. However, note first that the in-

verse of the POI-transformation corresponding to an offer A
δ/Bj−−→ B can be composed

from the following offers:

• Player A makes an offer A
δ/Bk−−−→ B for every strategy Bk of B, for k 6= j. That basically

means that A offers a reward δ to B if B does not play the strategy Bj.

• Player B makes an offer B
δ/Ai−−−→ A for every strategy Ai of A. That basically means

that B offers unconditionally a refund δ to A.

The cumulative effect of these offers is that none of A and B gets anything from the other
if B plays any Bk where k 6= j, but if B plays Bj then she effectively pays back an amount δ

to A, thus canceling the offer A
δ/Bj−−→ B

Finally, the inverse of any GOI-transformation T is obtained by composing the inverses
of the primitive OI-transformations, of which T is composed.

The above proof also shows that offers for negative payments (i.e., threats of punish-
ments) can be affected by GOI-transformations, too. Thus, henceforth we may assume that
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an offered payment may be any real number and consider the respectively extended class
of GOI-transformations of the following canonical form:

{A
δA

1 /B1−−−→ B, . . . , A
δA

m /Bm−−−−→ B} ∪ {B
δB

1 /A1−−−−→ A, . . . , B
δB

n /An−−−−→ A }

for some real numbers δA
1 , . . . δA

m , δB
1 , . . . δB

n .
I note that GOI-transformations can also simulate more complex offers, such as the con-

ditional offers considered in [3]. On the other hand, it will follow from Theorem 1 that
GOI-transformations cannot simulate the contractual offers considered in [12,14], contingent
not just on the recipient’s strategy, but on an entire strategy profile (i.e., on an outcome).

I denote the group of GOI-transformations of N-person NF games of a given dimension
D by GD

OIT . For a given payoff matrix M, let us denote by GD
OIT(M) of dimension D the orbit

of M under GD
OIT , i.e., the result of the action of that group on M, which is the set of all

payoff matrices obtained by applying GOI-transformations to M. I will also call GD
OIT(M)

the offer-induced transformation type (OIT type) of M. Since GD
OIT is a group, the set

of OIT types of NF game matrices forms a partition of the set of NF game matrices and thus
generates an equivalence relation on that set.

4. Characterizing the GOI-Transformations of 2-Person NF Games

I leave the general algebraic theory of GOI-transformations and the groups GD
OIT

to further study, and here I address the question: given a game payoff matrix M, how is the OIT
type GD

OIT(M) of M characterized and constructed? That is, what are the possible results of
GOI-transformations ofM?

Let us first rephrase the question: given another game matrix M̂ of the same dimension,
can M̂ be obtained from M by a GOI-transformation?

To answer this question, let us first consider, for technical simplicity, the case of two-
person games. Let

M =

A\B B1 · · · Bj · · · Bm
A1 a11, b11 · · · a1j, b1j · · · a1m, b1m
· · · · · · · · · · · · · · · · · ·
Ai ai1, bi1 · · · aij, bij · · · aim, bim
· · · · · · · · · · · · · · · · · ·
An an1, bn1 · · · anj, bnj · · · anm, bnm

Further I will use a compact notation for M as follows: M =

[
aij, bij

]
i=1,...,n
j=1,...,m

.

Now, let

M̂ =

A\B B1 · · · Bj · · · Bm

A1 â11, b̂11 · · · â1j, b̂1j · · · â1m, b̂1m
· · · · · · · · · · · · · · · · · ·
Ai âi1, b̂i1 · · · âij, b̂ij · · · âim, b̂im
· · · · · · · · · · · · · · · · · ·
An ân1, b̂n1 · · · ânj, b̂nj · · · ânm, b̂nm

Suppose M̂ can be obtained from M by a GOI-transformation

τ = {A
δA

1 /B1−−−→ B, . . . , A
δA

m /Bm−−−−→ B} ∪ {B
δB

1 /A1−−−−→ A, . . . , B
δB

n /An−−−−→ A }

for some real numbers δA
1 , . . . δA

m , δB
1 , . . . δB

n .
Recall, that the transformation τ changes the payoffs as follows:

âij = aij + δB
i − δA

j , b̂ij = bij + δA
j − δB

i .
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Theorem 1. Let M =

[
aij, bij

]
i=1,...,n
j=1,...,m

and M̂ =

[
âij, b̂ij

]
i=1,...,n
j=1,...,m

be 2-person NF game matrices

of dimension n×m. The matrix M̂ can be obtained from M by a GOI-transformation if and only if
the following two conditions hold, where cij = âij − aij and dij = b̂ij − bij:

C1: aij + bij = âij + b̂ij, or equivalently, dij = −cij, for all i = 1, . . . n, j = 1, . . . m.
C2: cij − ci(j+1) = c(i+1)j − c(i+1)(j+1), or equivalently, cij + c(i+1)(j+1) = ci(j+1) + c(i+1)j, for

all i = 1, . . . n− 1, j = 1, . . . m− 1.

Proof. Condition C1 is obviously necessary, because all side payments are between the two
players, so the sum of their payoffs in any given outcome remains constant.

To show the necessity of C2, a simple calculation suffices:
cij + c(i+1)(j+1) =
âij − aij + â(i+1)(j+1) − a(i+1)(j+1) =
aij + δB

i − δA
j − aij + a(i+1)(j+1) + δB

i+1 − δA
j+1 − a(i+1)(j+1) =

δB
i − δA

j + δB
i+1 − δA

j+1.

Likewise:
ci(j+1) + c(i+1)j =
âi(j+1) − ai(j+1) + â(i+1)j − a(i+1)j =
ai(j+1) + δB

i − δA
j+1 − ai(j+1) + a(i+1)j + δB

i+1 − δA
j − a(i+1)j =

δB
i − δA

j+1 + δB
i+1 − δA

j .

Clearly, the two results are equal.
For the sufficiency, suppose C1 and C2 hold. Then, first observe that, due to C1, any

OI-transformation that transforms A’s payoffs in M into A’s payoffs in M̂ will transform
accordingly the payoffs of B in M into the payoffs of B in M̂. So, we can ignore B’s payoffs
and consider only the transformation of the matrices of A’s payoffs.

To prove the existence of (real valued) payments δA
1 , . . . δA

m , δB
1 , . . . δB

n that effect the trans-
formation from M to M̂, we consider the system (indicated below with “‖”) of mn linear
equations for these n + m unknowns that expresses the changes of A’s payoffs:

‖δB
i − δA

j = cij, for all i = 1, . . . n, j = 1, . . . m.

Thus, M̂ can be obtained from M by a GOI-transformation precisely when that system
has a real solution. The rest is a simple application of standard linear algebra. The matrix
of the system is 

δB
1 δB

2 . . . δB
n δA

1 δA
2 . . . δA

m cij
1 0 0 0 −1 0 0 0 c11
1 0 0 0 0 −1 0 0 c12

. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 0 0 0 0 0 −1 c1m
0 1 0 0 −1 0 0 0 c21
0 1 0 0 0 −1 0 0 c22

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1 0 0 0 0 0 −1 c2m

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 −1 0 0 0 cn1
0 0 0 1 0 −1 0 0 cn2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 0 0 0 −1 cnm
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We now apply to it the standard Gauss–Jordan elimination method. Subtracting row 1
from each of rows 2, . . . , m, then row m + 1 from rows m + 2, . . . , 2m, etc., and finally row
(n− 1)m + 1 from rows (n− 1)m + 2, . . . , nm produces:

δB
1 δB

2 . . . δB
n δA

1 δA
2 . . . δA

m cij
1 0 0 0 −1 0 0 0 c11
0 0 0 0 1 −1 0 0 c12 − c11

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 0 0 −1 c1m − c11
0 1 0 0 −1 0 0 0 c21
0 0 0 0 1 −1 0 0 c22 − c21

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 0 0 −1 c2m − c21

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 −1 0 0 0 cn1
0 0 0 1 0 −1 0 0 cn2 − cn1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 0 0 0 −1 cnm − cn1


Now, note that rows k, m + k, . . . (n− 1)m + k have the same left-hand sides, for each

k = 2, 3, . . . , m. For the system to be consistent, the right-hand sides must be equal, too.
Indeed, by consecutive applications of condition C2: c1k − c11 = c2k − c21 = . . . cnk − cn1.

Further, we subtract row k from each of m + k, . . . (n− 1)m + k, for each k = 2, 3, . . . , m
and remove the resulting 0-rows. After rearrangement of the remaining rows we obtain:

δB
1 δB

2 . . . δB
n δA

1 δA
2 . . . δA

m cij
1 0 0 0 −1 0 0 0 c11
0 1 0 0 −1 0 0 0 c21

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 −1 0 0 0 cn1
0 0 0 0 1 −1 0 0 c12 − c11

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 0 0 −1 c1m − c11


Finally, subtracting row n + m− 2 from n + m− 1, then row n + m− 3 from n + m− 2,

etc., and lastly, row n + 1 from n + 2, we obtain:

δB
1 δB

2 . . . δB
n δA

1 δA
2 . . . δA

m cij
1 0 0 0 −1 0 0 0 c11
0 1 0 0 −1 0 0 0 c21

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 1 −1 0 0 0 cn1
0 0 0 0 1 −1 0 0 c12 − c11
0 0 0 0 0 1 −1 0 c13 − c12

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 1 −1 c1m − c1(m−1)


The ranks of the matrix and the extended matrix above are clearly equal to n + m− 1,

so the corresponding system is consistent. Moreover, it has infinitely many solutions
obtained by treating δA

m as a real parameter and solving for all other unknowns in terms
of it. This completes the proof.

Note that if either of the conditions C1 and C2 of Theorem 1 holds for payoff matrices
M and M̂, then it respectively holds for M′ and M̂′, where M′ is a payoff matrix obtained
by permuting the order of strategies of M.
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Corollary 1. In the case of 2× 2 payoff matrices

M =

 A\B B1 B2
A1 a11, b11 a12, b12
A2 a21, b21 a22, b22

, M̂ =

 A\B B1 B2

A1 â11, b̂11 â12, b̂12
A2 â21, b̂21 â22, b̂22


the matrix M̂ can be obtained from M by a GOI-transformation if and only if:

C1: aij + bij = âij + b̂ij, for all i, j ∈ {1, 2}.
C2: c11 + c22 = c12 + c21, where cij = âij − aij.

Corollary 2. No OI-transformation applied to a game matrix M can produce a game matrix
that differs from M in only one outcome.

Consequently, OI-transformations cannot simulate the offers considered in [12,14],
contingent on a single outcome.

Example 1. For example, the payoff matrix A\B B1 B2
A1 4, 4 0, 5
A2 3, 0 1, 1


can be OI-transformed to  A\B B1 B2

A1 2, 6 2, 3
A2 0, 3 2, 0


but not to  A\B B1 B2

A1 2, 6 2, 3
A2 0, 3 1, 1


neither to  A\B B1 B2

A1 2, 6 3, 2
A2 0, 3 2, 0


The condition C2 from Theorem 1 can be rewritten as a recurrent formula c(i+1)(j+1) =

c(i+1)j + ci(j+1) − cij, which suggests that all values of cij, and therefore all values of âij,
can be computed iteratively from some initial values along one row and one column.
Therefore, by using conditions C1 and C2, every OI-transformation can be determined
locally, by specifying the resulting payoffs for any of the two players on one row and one
column. In other words, fix a strategy profile in the transformed matrix, fix one of the players,
and assign any real payoffs for that player to all outcomes where at least one of the players
follows their strategy from the fixed strategy profile. The resulting partly defined matrix
can then be uniquely extended to one that can be obtained by an OI-transformation
from the initial matrix M. The following result formalizes this observation.

Theorem 2. Let M =

[
aij, bij

]
i=1,...,n
j=1,...,m

. Then for every fixed i ∈ {1, . . . , n} and j ∈ {1, . . . , m},

every tuple of n + m− 1 reals âi1, . . . âim, â1j, . . . , ânj can be extended to a unique payoff matrix

M̂ =

[
âij, b̂ij

]
i=1,...,n
j=1,...,m

that can be obtained from M by a GOI-transformation.
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Proof. For notational simplicity, let us assume that i = 1 and j = 1 and that m ≤ n. Clearly,
the argument for any other combination of i, j is analogous. To determine the matrix M̂ it
suffices to determine the values of all âij, for i = 1, . . . , n, j = 1, . . . , m and then compute all
values b̂ij by applying condition C1 from Theorem 1.

Now, note that all values âij can be computed iteratively, step-by-step, by using
the identities in C2 of Theorem 1: first, compute â22; then, â23 and â32, etc.. More precisely,
given all values along the diagonal â1k, â2(k−1) . . . , âk1, for k < n, using C2 of Theorem 1 one
can compute uniquely values for â2(k+1), â2k . . . , â(k+1)2. When k increases between m and
n, the argument continues likewise, but for values along the diagonals âkm, . . . , â2(m+k−2),
and then further, along the shrinking diagonals âkm, . . . , âj(m+k−j), until eventually ânm
is computed.

The resulting matrix M̂ =

[
âij, b̂ij

]
i=1,...,n
j=1,...,m

satisfies the conditions C1 and C2 by con-

struction. Therefore, by Theorem 1, M̂ can be obtained from M by a GOI-transformation.
The uniqueness of M̂ follows from the construction, too.

The case of arbitrary i and j is essentially the same, but the computation of the values
of the âpqs now propagates from âij in all four diagonal directions.

Thus, in summary, Theorems 1 and 2 together say that any payoff matrix M̂ can be
obtained from matrix M by a GOI-transformation by choosing suitable payoffs in one row
and one column satisfying condition C1, and then computing the rest by using the recurrent
formulae derived from condition C2. In particular, that means that for any fixed strategy
profile of the two players in a given NF-game with matrix M and respective desired
outcomes corresponding to each of the strategies in the profile, which are consistent with
the conditions M (i.e., preserving the total payoff in each outcome) there is a unique
GOI-transformation of M producing a payoff matrix with the desired outcomes.

Example 2. Suppose the starting payoff matrix is

M =


A\B B1 B2 B3
A1 4, 4 6, 2 0, 6
A2 2, 6 1, 1 2, 2
A3 5, 0 0, 1 1, 5
A4 0, 0 2, 3 3, 0


and row 1 and column 1 of the transformed matrix are as follows:

M̂ =


A\B B1 B2 B3
A1 1, 7 4, 4 2, 4
A2 7, 1
A3 3, 2
A4 0, 0


The remaining entries are computed consecutively from condition C2 of Theorem 1:

First, we obtain c22 = c21 + c12 − c11 = 5 + (−2)− (−3) = 6.

Then: c23 = c22 + c13 − c12 = 6 + 2− (−2) = 10; c32 = c31 + c22 − c21 = −2 + 6− 5 =
−1, etc.
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Thus, the whole matrix C =
(
cij
)

i=1,...,4
j=1,...,3

of differences cij (representing the side payments to be

received by player A) is computed as follows:

C =


i\j 1 2 3
1 −3 −2 2
2 5 6 10
3 −2 −1 3
4 0 1 5


Eventually, from the definition of cij and Condition C1 of Theorem 1, we obtain:

M̂ =


A\B B1 B2 B3
A1 1, 7 4, 4 2, 4
A2 7, 1 7,−5 12,−8
A3 3, 2 −1, 2 4, 2
A4 0, 0 3, 2 8,−5


5. Characterizing the OI-Transformations of N-Person Normal Form Games

Generalizing these results to N-person NF games is relatively easy, but it adds a sub-
stantial notational overhead.

Let the players be indexed with {1, 2, . . . N} and consider two NF game matrices of
the same dimension: m1 ×m2 × . . .×mN :

M =
(
〈a1

i1i2 ...iN
, a2

i1i2 ...iN
, . . . aN

i1i2 ...iN
〉
)

ik≤mk
k=1,2,...N

and
M̂ =

(
〈â1

i1i2 ...iN
, â2

i1i2 ...iN
, . . . âN

i1i2 ...iN
〉
)

ik≤mk
k=1,2,...N

Let ck
i1i2 ...iN

= âk
i1i2 ...iN

− ak
i1i2 ...iN

.

Theorem 3. Let M, M̂ be N-person NF game matrices of dimension m1×m2× . . .×mN . The ma-
trix M̂ can be obtained from M by a GOI-transformation if and only if the following two condi-
tions hold:

CN
1 : ∑N

j=1 âj
i1i2 ...iN

= ∑N
j=1 aj

i1i2 ...iN
, for any ik ≤ mk, k = 1, 2, . . . N.

(The sum of all payoffs in any given outcome must remain the same.)
CN

2 : For any fixed k, j = 1, 2, . . . N the difference

dj,k
i1 ...iN

:= cj
i1 ...ik+1...iN

− cj
i1 ...ik ...iN

is the same for every i1, . . . , ij, . . . , iN such that ip ≤ mp, p = 1, . . . , N and ij < mj.

Proof. The proofs follows the same reasoning as in the two-person case.
The necessity of condition CN

1 is obvious. To show the necessity of condition CN
2 , we

do again simple calculations. Let M̂ be obtained from M by a GOI-transformation effected
by side payment offers {δi,k

j }k=1,...,N;1≤j≤mj
, where δi,k

j is the side payment offered by player
i to player k 6= i contingent on k playing action j. For technical convenience I also put
δi,i

j = 0 for any j. Then we have:

cj
i1 ...ij ...iN

= âj
i1 ...ij ...iN

− aj
i1 ...ij ...iN

=
N

∑
i=1

δ
i,j
ij
−

N

∑
k=1

δ
j,k
ik

.
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Note that it suffices to show that

dj,k
i1 ...ip ...iN

= dj,k
i1 ...ip+1...iN

for any j, k, p = 1, . . . , N, i.e.,

cj
i1 ...ik+1...ip ...iN

− cj
i1 ...ik ...ip ...iN

= cj
i1 ...ik+1...ip+1...iN

− cj
i1 ...ik ...ip+1...iN

for k < p ≤ N and likewise

cj
i1 ...ip ...ik+1...iN

− cj
i1 ...ip ...ik ...iN

= cj
i1 ...ip+1...ik+1...iN

− cj
i1 ...ip+1...ik ...iN

for 1 ≤ p < k. Both cases are completely analogous, so let us check the first equality. It is
equivalent to

cj
i1 ...ik+1...ip ...iN

+ cj
i1 ...ik ...ip+1...iN

= cj
i1 ...ik+1...ip+1...iN

+ cj
i1 ...ik ...ip ...iN

First, suppose j 6= p, k. By definition, we have for the left-hand side:
cj

i1 ...ik+1...ip ...iN
+ cj

i1 ...ik ...ip+1...iN
=

∑N
q=1 δ

q,j
ij
−∑N

q=1
q 6=k

δ
j,q
iq − δ

j,k
ik+1 + ∑N

q=1 δ
q,j
ij
−∑N

q=1
q 6=p

δ
j,q
iq − δ

j,p
ip+1.

Respectively, for the right hand side:

cj
i1 ...ik+1...ip+1...iN

+ cj
i1 ...ik ...ip ...iN

=

∑N
q=1 δ

q,j
ij
−∑N

q=1
q 6=k,p

δ
j,q
iq − δ

j,p
ip+1 − δ

j,k
ik+1 + ∑N

q=1 δ
q,j
ij
−∑N

q=1 δ
j,q
iq .

A direct inspection shows that these are equal.

Now, consider the case where j = p. For the left hand side we get:

cj
i1 ...ik+1...ij ...iN

+ cj
i1 ...ik ...ij+1...iN

=

∑N
q=1 δ

q,j
ij
−∑N

q=1
q 6=k

δ
j,q
iq − δ

j,k
ik+1 + ∑N

q=1 δ
q,j
ij+1 −∑N

q=1
q 6=j

δ
j,q
iq − δ

j,j
ij+1.

Respectively, for the right-hand side:

cj
i1 ...ik+1...ij+1...iN

+ cj
i1 ...ik ...ij ...iN

=

∑N
q=1 δ

q,j
ij+1 −∑N

q=1
q 6=k,j

δ
j,q
iq − δ

j,j
ij+1 − δ

j,k
ik+1 + ∑N

q=1 δ
q,j
ij
−∑N

q=1 δ
j,q
iq .

Again, by direct inspection we see that these are equal.

Finally, the case where j = k is completely analogous.

Now, suppose conditions CN
1 and CN

2 hold for the matrices M and M̂, and all parame-

ters cj
i1 ...ij ...iN

are defined as before. As in the two-person case, we can show that the system
of equations ∥∥∥∥∥ N

∑
i=1

δ
i,j
ij
−

N

∑
k=1

δ
j,k
ik

= cj
i1 ...ij ...iN

for all j, i1, . . . , ij, . . . , iN such that ip ≤ mp, p = 1, . . . , N, for the unknown real payments
{δi,k

j }k=1,...,N;1≤j≤mj
, is consistent. We can use again standard linear algebra and show

that elementary matrix transformations would reduce the system to a consistent one
in a canonical form. I omit the routine, though messy technicalities.
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As in the two-person case, every OI-transformation can be determined by the payoffs
for all players in the outcomes along the rows in all coordinate directions passing from any
fixed outcome, that is, all outcomes resulting from all but one players following a fixed
strategy profile. Here is the formal result.

Theorem 4. Let
M =

(
〈a1

i1i2 ...iN
, a2

i1i2 ...iN
, . . . aN

i1i2 ...iN
〉
)

ik≤mk
k=1,2,...N

and 〈p1 . . . pN〉 be a fixed tuple such that pk ∈ {1, . . . , mk} for each k = 1, . . . N. Then every tuple

T =

〈
〈âk

1p2 ...pN
, âk

2p2 ...pN
, . . . , âk

m1 p2 ...pN
, âk

p11...iN
, âk

p12...iN
, . . . , âk

p1m2 ...pN
, . . . ,

âk
p1 p2 ...1, âk

p1 p2 ...2, . . . , âk
p1 p2 ...mN

〉 | k = 1, . . . , N
〉

satisfying condition CN
1 of Theorem 3 can be extended to a unique payoff matrix

M̂ =
(
〈â1

i1i2 ...iN
, â2

i1i2 ...iN
, . . . âN

i1i2 ...iN
〉
)

ik≤mk
k=1,2,...N

that can be obtained from M by a GOI-transformation.

Proof. Given any tuple of values T satisfying the conditions of the theorem, the extension
to a matrix M̂ can be performed as follows. First, we use T and the entries of M to compute
the values of all cj

i1 ...iN
whose index vectors corresponding to the entries in T .

We take the identities

dj,k
i1 ...ip ...iN

= dj,k
i1 ...ip+1...iN

for all j, k, p = 1, . . . , N

and expand them (assuming e.g., that k < p ≤ N):

cj
i1 ...ik+1...ip ...iN

− cj
i1 ...ik ...ip ...iN

= cj
i1 ...ik+1...ip+1...iN

− cj
i1 ...ik ...ip+1...iN

Then we rewrite them as:

cj
i1 ...ik+1...ip+1...iN

= cj
i1 ...ik ...ip+1...iN

+ cj
i1 ...ik+1...ip ...iN

− cj
i1 ...ik ...ip ...iN

These are recurrent formulae computing the values of all cj
i1 ...iN

from those computed

initially by propagating from cj
p1 ...pN in all diagonal directions. I leave the tedious details out.

Once all cj
i1 ...iN

are computed, the matrix M̂ is determined. By construction it satisfies condi-
tions CN

1 and CN
2 of Theorem 3, hence it can be obtained from M by a GOI-transformation.

The uniqueness of M̂ follows immediately.

Example 3. Consider a three-person game with players A1, A2, A3 of dimension 3× 3× 2, with
2D matrix-slices for the two actions of player A3 as follows:

M1 =


A1\A2 A211 A221 A231

A111 1, 2, 0 2, 3, 1 3, 1, 2
A121 2, 3, 3 3, 4, 4 4, 2, 5
A131 6, 5, 6 7, 6, 7 5, 7, 8

 M2 =


A1\A2 A212 A222 A232

A112 1, 1, 8 2, 2, 7 3, 3, 6
A122 1, 2, 5 2, 3, 4 3, 4, 3
A132 2, 1, 2 3, 2, 1 1, 3, 0
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Suppose the tuple of desired entries in the transformed matrix is given with respect to the out-
come with coordinates (2, 2, 1) as follows:

M̂0
1 =


A1\A2 A211 A221 A231

A111 1, 2, 3
A121 4, 4, 0 5, 1, 5 3, 4, 4
A131 8, 4, 8

 M̂0
2 =


A1\A2 A212 A222 A232

A112
A122 3, 3, 3
A132


Note that condition CN

1 of Theorem 3 is satisfied.
The corresponding partial slices of the matrix of differences cj

i1i2i3
= âj

i1i2i3
− aj

i1i2i3
are:

C0
1 =


A1\A2 A211 A221 A231

A111 −1,−1, 2
A121 2, 1,−3 2,−3, 1 −1, 2,−1
A131 1,−2, 1

C0
2 =


A1\A2 A212 A222 A232

A112
A122 1, 0,−1
A132


The remaining entries of that matrix are then computed consecutively by using the identities

cj
i1+1i2+1i3

= cj
i1+1i2i3

+ cj
i1i2+1i3

− cj
i1i2i3

cj
i1i2+1i3+1 = cj

i1i2i3+1 + cj
i1i2+1i3

− cj
i1i2i3

,

cj
i1+1i2i3+1 = cj

i1i2i3+1 + cj
i1+1i2i3

− cj
i1i2i3

,

for each j = 1, 2, 3. Thus, we first obtain

C1 =


A1\A2 A211 A221 A231

A111 −1, 3,−2 −1,−1, 2 −4, 4, 0
A121 2, 1,−3 2,−3, 1 −1, 2,−1
A131 1, 2,−3 1,−2, 1 −2, 3,−1


then:

C1
2 =


A1\A2 A212 A222 A232

A112 −2, 2, 0
A122 1, 4,−5 1, 0,−1 −2, 5,−3
A132 0, 1,−1


and finally:

C2 =


A1\A2 A212 A222 A232

A112 −2, 6,−4 −2, 2, 0 −5, 7,−2
A122 1, 4,−5 1, 0,−1 −2, 5,−3
A132 0, 5,−5 0, 1,−1 −3, 6,−3


Eventually, we obtain the 2-dimensional matrix-slices of M̂ for the two actions of player A3:

M̂1 =


A1\A2 A211 A221 A231

A111 0, 5,−2 1, 2, 3 −1, 5, 2
A121 4, 4, 0 5, 1, 5 3, 4, 4
A131 7, 7, 3 8, 4, 8 3, 10, 7



M̂2 =


A1\A2 A212 A222 A232

A112 −1, 7, 4 0, 4, 7 −2, 10, 4
A122 2, 6, 0 3, 3, 3 1, 9, 0
A132 2, 6,−3 3, 3, 0 −2, 9,−3
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In summary, just like in the case of two-person games, Theorems 3 and 4 together
characterize precisely the payoff matrices M̂ that can be obtained from matrix M by a GOI-
transformation; namely, any of them can be obtained by choosing a strategy profile in M
and setting suitable payoffs satisfying condition CN

1 for all outcomes obtained by allowing
any one, and only one, player to deviate from that strategy profile. Then, all payoffs in M̂
are computed by using the recurrent formulae derived from condition CN

2 .

6. Conclusions

The main contributions of the present paper are explicit and easy to apply, and they
use characterizations of the game matrix transformations that can be induced by preplay
offers for payments (or threats for punishments) in multiplayer normal form games. I have
not considered here rationality issues that would determine which of these transformations
can be affected by offers made by rational players. These are analyzed in the companion
working paper in preparation [2]. Still, I argue that the results presented here are of direct
game-theoretic relevance, because they can be used by the players to determine what
mutually desirable transformed games (e.g., having dominant strategy equilibria with
Pareto optimal outcomes) they can achieve by exchange of preplay offers, and then to
search—by using the computational procedures that can be extracted from our proofs—
for suitable offers that would induce the necessary game matrix transformations leading
to the desired outcomes. Besides, the GOI-transformations of game payoff matrices and
the groups of such transformations introduced here appear to be interesting algebraic
constructs in their own right, worthy of further study.
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