
����������
�������

Citation: Bors, C.; Ferrer, M.V.;

Hernández, S. Bounded Sets in

Topological Spaces. Axioms 2022, 11,

71. https://doi.org/10.3390/

axioms11020071

Academic Editors: Elena

Martín-Peinador, Mikhail Tkachenko,

T. Christine Stevens and Xabier

Domínguez

Received: 14 December 2021

Accepted: 4 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Bounded Sets in Topological Spaces

Cristina Bors †,‡, María V. Ferrer †,‡ and Salvador Hernández *,†,‡

Departament de Matemàtiques, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; chis@uji.es (C.B.);
mferrer@uji.es (M.V.F.)
* Correspondence: hernande@uji.es
† All authors have contributed equally to this work.
‡ Dedicated to Professor María Jesús Chasco.

Abstract: Let G be a monoid that acts on a topological space X by homeomorphisms such that there
is a point x0 ∈ X with GU = X for each neighbourhood U of x0. A subset A of X is said to be
G-bounded if for each neighbourhood U of x0 there is a finite subset F of G with A ⊆ FU. We prove
that for a metrizable and separable G-space X, the bounded subsets of X are completely determined
by the bounded subsets of any dense subspace. We also obtain sufficient conditions for a G-space
X to be locally G-bounded, which apply to topological groups. Thereby, we extend some previous
results accomplished for locally convex spaces and topological groups.
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1. Introduction and Basic Facts

The notion of a bounded subset is ubiquitous in many parts of mathematics, parti-
cularly in functional analysis and topological groups. Here, we approach this concept
from a broader viewpoint. Namely, we consider the action of a monoid G on a topological
space X and associate it with a canonical family of G-bounded subsets. This provides a
very general notion of boundedness that includes both the bounded subsets considered in
functional analysis and in topological groups. In this paper, we initiate the study of this
new notion of G-bounded subset. Among other results, it is proved that for a metrizable
and separable G-space X, the bounded subsets of X are completely determined by the
bounded subsets of any dense subspace, extending results obtained by Grothendieck
for metrizable separable locally convex spaces [1], generalized subsequently by Burke
and Todorčević and, separately, Saxon and Sánchez-Ruiz for metrizable locally convex
spaces [2,3] and by Chis, Ferrer, Hernández and Tsaban for metrizable groups [4,5]. We
also obtain sufficient conditions for a G-space X to be locally G-bounded, which applies
to topological groups. This also provides the frame for extending to this setting some
results by Burke and Todorčević and, separately, Saxon and Sáchez-Ruiz (loc. cit.) for
metrizable locally convex spaces. A different approach to the notion of the bounded set
was given by Hejcman [6] and Hu [7], who studied this concept in the realm of uniform
and even topological spaces. Vilenkin [8] applied this general approach in the realm of
topological groups.

2. G-Spaces

Let X be a topological space and let G be a monoid, i.e, a semigroup with a neutral
element, which will be denoted by e. A left action of G on X is a map π : G × X → X
satisfying that ex = x and g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ X, where as usual,
we write gx instead of π(g, x) = πg(x) = πx(g). A topological space X is said to be a
(left) G-space if all translations πg : X → X are homeomorphisms. We sometimes denote
the G-space X by the pair (G, X). Let G× X → X and G×Y → Y be two actions. A map
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f : X → Y between G-spaces is a G-map if f (gx) = g f (x) for every (g, x) ∈ G× X. Given
x ∈ X, its orbit is the set Gx = {gx : g ∈ G}. Given A ⊆ X, we define GA = ∪{Gx : x ∈ A}.

A right G-space (X, G) can be defined analogously. If Gop is the opposite semigroup
of G with the same topology then (X, G) can be treated as a left G-space (Gop, X) (and
vice versa).

We say that a point x ∈ X topologically generates a G-space X if for each neighborhood
U of x we have GU = X. The set of generating points is denoted by Xtg. We say that X is
point-generated when Xtg 6= ∅. We refer to [9] for unexplained topological definitions.

2.1. G-Boundedness

Let (G, X) be a point-generated G-space and let us fix a point x0 ∈ Xtg. We say that a
set A ⊆ X is (G, x0)-bounded (or G-bounded for short when there is no possible confusion)
if for every neighborhood U of x0, there is a finite set F ⊆ G such that A ⊆ FU. The
set B(G, X, x0) (or B(G, X) for short) of all G-bounded sets in X is called the canonical
(G, x0)-boundedness on X. The G-space (G, X) is said to be homogeneous if for every pair of
points x, y in X, there is a homeomorphism fxy : X → X such that fxy(x) = y and fxy(A) is
G-bounded for every G-bounded subset A ⊆ X. The proof of the following proposition
is straightforward.

Proposition 1. Let (G, X) be a G-space with a generating point x0 ∈ Xtg. The following assertions
hold true:

1. A ⊆ X is (G, x0)-bounded if and only if A is (G, x1)-bounded for any other point x1 ∈ Xtg.
2. Subsets of G-bounded sets are G-bounded.
3. If A and B are G-bounded so is A ∪ B.
4. Finite sets are G-bounded.
5. If A is G-bounded so is gA for all g ∈ G.
6. Relatively compact subsets are G-bounded.
7. Every topological vector space E is an R∗-space with the action (r, v) 7→ rv, r ∈ R∗ and

v ∈ E, where R∗ = R \ {0}. The usual family of bounded subsets of E coincides with the
canonical R∗-boundedness, with 0 ∈ E as the point that topologically generates E.

8. If H is a topological group, K is a closed subgroup and G is a dense submonoid of H then the
coset space H/K defined by the quotient map p : H → H/K is canonically a G-space by the
action ghK := p(gh). We say that a set A ⊆ H/K is G-bounded if for every neighborhood U
of K (seen as an element of H/K) there is a finite set F ⊆ G such that A ⊆ FU. This defines
the canonical G-boundedness on H/K, where K is the point that topologically generates H/K.
Here, the family of G-bounded subsets coincide with the family of all precompact subsets for
the left uniformity on H/K.

Definition 1. A point-generated G-space X is said to be locally G-bounded if for every point
x ∈ X there is a G-bounded open subset U containing it.

The proof of the following proposition is straightforward.

Proposition 2. Let X be a point-generated G-space. If there is a point x ∈ Xtg and a neighborhood
U of x that is G-bounded, then X is locally G-bounded.

Remark 1. From the above proposition, it follows that if a point-generated G-space X is not locally
G-bounded then no neighborhood of a point x ∈ Xtg can be G-bounded.

2.2. Infinite Cardinals

In what follows, we shall use the notation ZFC for Zermelo-Fraenkel set theory
including the axiom of choice, CH for the continuum hypothesis (C = ℵ1) and GCH for the
generalized continuum hypothesis (2ℵl = ℵl+1 for each cardinal ℵl). If CH is false, then
there are cardinals strictly between ℵ0 and C.
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Following [10], consider the set of functions NN from N into N endowed with the
quasi-order ≤∗ defined by

f ≤∗ g if {n ∈ N : f (n) > g(n)} is finite.

A subset C of NN is said to be cofinal if for each f ∈ NN there is some g ∈ C with
f ≤∗ g. A subset of NN is said to be unbounded if it is unbounded in (NN,≤∗). One defines

b = min{|B| : B is an unbounded subset of NN}

and

d = min{|D| : D is a cofinal subset of NN},

yielding ℵ1 ≤ b ≤ d ≤ c.
If instead of f ≤∗ g we consider f ≤ g, that is f (n) ≤ g(n) for all n ∈ N, the value of

b would be ℵ0. As for d, it would not change its value. Indeed, let D be a d-sized cofinal
subset of NN. Thus, given any f ∈ NN, there exists g ∈ D with f (n) ≤ g(n) for almost all
n ∈ N. Now the set D = {mg : m ∈ N and g ∈ D} still has size ℵ0 · d = d.

3. Dense Subspaces

In [1], Grothendieck proved that, when E is a metrizable and separable locally convex
space, the bounded subsets of E are completely determined by the bounded subsets of any
dense subspace. This result has been extended by Burke and Todorčević [2] and, separately,
Saxon and Sánchez-Ruiz [3] for some nonseparable spaces. Subsequenly, Chis, Ferrer,
Hernández and Tsaban [5] extended these results for metrizable groups. As we show next,
the same assertion holds for point-generated G-spaces if G is a countable monoid. First, we
need the following lemma, which is analogous to ([4], Lemma 2.2.10) (resp. [5], Th. 3.6).
We include its proof here for the reader’s sake.

Lemma 1. Let G = {gi : i ∈ N} be a countable monoid and let X be a non locally G-bounded
G-space with a generating point x0 ∈ Xtg that has a countable neighborhood basis. Then there are
two order preserving maps

ΦV : B(G, X)→ NN Ψ : NN → B(G, X)

such that ΦV (B(G, X)) is cofinal in NN and Ψ(NN) is cofinal in B(G, X).

Proof. The map ΦV is defined in a similar way as in ([4], Section 2.2.4) (resp. [5], Def. 3.5).
Indeed, let U = {Um}m<ω be a countable neighborhood basis at x0. By Proposition 1, no
neighborhood of x0 is G-bounded. Therefore, there is Um0 ∈ U such that U1 *

⋃
i≤n

giUm0 ,

∀n < ω. Analogously there is Um1 ∈ U such that V1 := U1 ∩Um0 *
⋃

i≤n
giUm1 , ∀n < ω.

Repeating this procedure, we obtain a decreasing neighborhood base V = {Vm}m<ω at x0
by Vm+1 := Vm ∩Un+1 ∩Umn *

⋃
i≤n

giUmn+1 , ∀n < ω.

Define
ΦV : B(G, X)→ NN

by the rule

ΦV (K)(m) := min

{
n : K ⊆

⋃
i≤n

giVm

}
.

Obviously,
ΦV (K) := {ΦV (K)(m)}m≤ω.
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This map is order preserving and relates the confinality of B(G, X) and NN. Indeed,

take α ∈ NN. Set V0 := U1 and take xm ∈ Vm−1 \
α(m)⋃
i=1

giVm. The sequence K := {xm}m<ω

converges to x0. Thus K ∪ {x0} is G-bounded and ΦV (K)(m) = min
{

n : K ⊆ ⋃i≤n giVm
}

.
It follows that α ≤ ΦV (K).

As for the map Ψ, set
Ψ : NN → B(G, X)

by

Ψ(α)(n) :=
⋂

m<ω

α(n)⋃
i=1

giVm.

Obviously this map is order preserving. Moreover, Ψ(NN) is cofinal in B(G, X). To
see this, take an arbitrary G-bounded subset K, then for every n < ω there is a finite subset
Fn ⊆ N such that K ⊆ ⋃

i∈Fm

giVm. Set α ∈ NN such that α(m) := max{i : i ∈ Fm} for every

m < ω. Then K ⊆ Ψ(α).

Theorem 1. Let G = {gn : n ∈ N} be a countable monoid and let X be a first countable G-space
with a generating point x0 ∈ Xtg. If Y is a dense subset of X, then for each G-bounded K ⊆ X
whose density is less than b, there is a G-bounded P ⊆ Y such that P ⊇ K.

Proof. Suppose first that X is locally G-bounded and let U be a G-bounded neighborhood
of x0. Let F be a finite subset of G such that K ⊆ FU. Since G acts on X by homeomor-

phisms and Y is dense in X, it follows that F(U ∩Y)
X ⊇ FU. Therefore, it suffices to take

P = F(U ∩Y).

Assume without loss of generality that X is not locally G-bounded and set D ⊆ K such
that |D| < b and DK

= K. Since K is G-bounded, we take the map ΦV defined in Lemma 1
above, where V = {Vm}m<ω is a decreasing basis at x0. We have

K ⊆
ΦV (K)(m)⋃

n=1

gnVm

for all m < ω. On the other hand, since Y is dense in X, for all d ∈ D ⊆ K, there is a
sequence Sd ⊆ Y which converges to d. Therefore, since Sd

⋃{d} is compact, we have

Sd = Sd
⋃
{d} ⊆

ΦV (Sd)(m)⋃
n=1

gnVm

for all m < ω. So, we have a family
{

ΦV (Sd)
}

d∈D ⊆ NN of cardinality less than b, then it is
bounded in (NN,≤∗). Therefore, there is α ∈ NN such that ΦV (Sd) ≤∗ α ∀d ∈ D. That is,
if d ∈ D, then there is md < ω with ΦV (Sd)(m) ≤ α(m) ∀m ≥ md. We also assume that
ΦV (K)(m) ≤ α(m) ∀m < ω. Pick now a fixed element d ∈ D. If m < md, we have

K ⊆
ΦV (K)(m)⋃

n=1

gnVm ⊆
α(m)⋃
n=1

gnVm.

Therefore,

K ⊆
md−1⋂
m=1

α(m)⋃
n=1

gnVm

 = Ad
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that is an open set. Since this open set contains the element d ∈ D and the sequence Sd
converges to d, there is S′d = Sd r {a finite subset} such that S′d ⊆ Ad. Consider now

P :=
⋃

d∈D

S′d ⊆ Y

and let us verify that P is G-bounded. Take an open set V of X such that x0 ∈ V, then there
is Vm ∈ V such that Vm ⊆ V. For each d ∈ D we have one of the following two options:

(1) m < md, which implies S′d ⊆ Ad ⊆
α(m)⋃
n=1

gnVm.

(2) m ≥ md, then S′d ⊆ Sd ⊆
ΦV (Sd)(m)⋃

n=1
gnVm ⊆

α(m)⋃
n=1

gnVm.

In both cases, S′d ⊆
α(m)⋃
n=1

gnVm ⊆
α(m)⋃
n=1

gnV.

Therefore, P =
⋃

d∈D
S′d ⊆

α(m)⋃
n=1

gnV, and since V is arbitrary this means that P is

G-bounded.
It is readily seen that P ⊇ K.
A consequence of this theorem is the following.

Corollary 1. Let G be a countable monoid and let X be a point-generated, metrizable, G-space. If
X contains a dense subset of cardinality less than b, and D is an arbitrary dense subset of X, then
for each G-bounded K ⊆ X, there is a G-bounded P ⊆ D such that P ⊇ K.

Proof. Since X is metrizable, it is first countable and the generating point x0 has a countable
neighborhood basis and K contains a dense subset of cardinality less than b.

The following result improves Corollary 2.3.3 in [4] (resp. Corollary 3.19 in [5]).

Corollary 2. Let H be a topological group, K a closed subgroup of H such that H/K is metrizable
and let L be a dense subgroup of H. If P ⊆ H/K is precompact, then there is a precompact subset
Q ⊆ L/K such that P ⊆ Q.

Proof. Let p : H → H/K denote the canonical quotient map. Observe that P is separable
because it is metrizable and precompact. Let D be a countable dense subset of P. For
every d ∈ D, there is a sequence Sd ⊆ L such that p(Sd) converges to d. Consider the

countable subset E = D
⋃( ⋃

d∈D
p(Sd)

)
=

⋃
d∈D

p(Sd) = {yi}∞
i=1 and the set HE = < E >

with the topology inherited from H/K. We have that P ⊆ HE, and HE is separable and
metrizable. Let G be a countable subgroup of p−1(HE) such that p(G) = 〈{yi}∞

i=1〉, which
is dense in HE. Then H/K is a point generated G-space according to Proposition 1(viii),
where the family of G-bounded subsets coincides with the family of precompact subsets of
the left uniformity of H/K. On the other hand, L

⋂
HE is countable and dense in HE and

P is G-bounded. Accordingly, we apply Theorem 1 to deduce that there is Q ⊆ L
⋂

HE,
which is G-bounded (therefore, precompact) and P ⊆ QHE ⊆ Q. It is readily seen that Q is
precompact in L.

The metrizability condition in the previous theorem is essential even for the special
case of topological groups ([4], Example 2.3.5) (resp. [5], [Remark 3.21]).

4. G-Barrelled Groups

In this section, we have a countable monoid G = {gi : i ∈ N} and a metrizable
G-space X. We assume WLOG that g1 = eG is the neutral element of G.
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Definition 2. Given a G-space X, we say that A ⊆ X is G-absorbent (or simply A is absorbent
for short) when GA = X. A G-space X is said to be barrelled when for every closed absorbent
subset Q there is an index i ∈ N such that giQ has a nonempty interior.

Theorem 2. Suppose that G = {gi : i ∈ N} is a countable monoid and X is a homogeneous,
barrelled G-space with a generating point x0 ∈ Xtg that has a countable neighborhood basis at x0.
If X can be covered by less than b bounded subsets, then X is locally bounded.

Proof. Let V = {Vm}m<ω be a decreasing neighborhood base at x0 defined as in Lemma 1
and let π : G× X → X denote the action of G on X. For every gm ∈ G we define the map

pm : X → N by pm(x) = min{n : x ∈
⋃
j≤n

gjVm}.

As a consequence, every element x ∈ X defines a sequence {pm(x)}m<ω and, therefore,
we have defined the map p : X → NN as p(x) = {pm(x)}m<ω so that p(x)[m] = pm(x).
Suppose there is a collection of G-bounded sets B such that |B| < b and X =

⋃
P∈B

P. Every

P ∈ B is associated with a map ΦV (P) ∈ NN defined previously; that is

ΦV (P)(m) = min{n : P ⊆
⋃
j≤n

gjVm}.

Take x ∈ X. Then, there is P ⊆ B such that x ∈ P. Therefore p(x) ≤ ΦV (P). Since
|B| < b it follows that ΦV (B) = {ΦV (P) : P ∈ B} is bounded in (NN,≤∗). Thus, there is
α ∈ NN such that ΦV (P) ≤∗ α and, since p(x) ≤ ΦV (P), we have p(x) ≤∗ α for all x ∈ X.
So, for every x ∈ X, there is mx < ω such that pm(x) ≤ α(m) for all m ≥ mx.

Define

Qα = {x ∈ X : pm(x) ≤ α(m) ∀m < ω} =
⋂

m<ω

 ⋃
j≤α(m)

gjVm

.

Clearly, the set Qα is bounded. Let us verify that Qα is also absorbent. Take x ∈ X.
Then, since pm(x) ≤ α(m) ∀m ≥ mx, we have

x ∈
⋂

m≥mx

 ⋃
j≤α(m)

gjVm

.

Thus,

x ∈ Qα

⋃ ⋂
m<mx

 ⋃
j≤pm(x)

gjVm

.

Set
Fx = {i ∈ N : i ≤ pm(x), m < mx}.

We claim that
x ∈

⋃
i∈Fx

giQα.

Indeed, since each map πg, is a bijection and g1 is the neutral element of G, we have

⋃
i∈Fx

giQα =
⋃

i∈Fx

gi

 ⋂
m<ω

⋃
j≤α(m)

gjVm

 =
⋃

i∈Fx

 ⋂
m<ω

gi
⋃

j≤α(m)

gjVm
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=
⋃

i∈Fx

 ⋂
m<ω

⋃
j≤α(m)

gigjVm

 ⊇
 ⋂

m≥mx

⋃
j≤α(m)

gjVm

⋂( ⋂
m<mx

⋃
i∈Fx

giVm

)
3 x.

This proves that Qα is absorbent. Therefore Qα is absorbent too and, since X is G-
barrelled, there is g ∈ G such that gQα has nonempty interior. Thus, gQα is a G-bounded
subset containing an open, G-bounded, subset U. Take any point u ∈ U. Since X is
homogeneous, there is a homeomorphism fux0 : X → X such that fux0(u) = x0 and fux0(U)
is an open, bounded subset containing x0. By Proposition 2, it follows that X is locally
G-bounded.

As a consequence, we next obtain results that contain the previous results obtained by
locally convex spaces [2] and topological groups [5].

Let G be a topological group, we say that a subset A ⊆ G is absorbent when for every
dense subgroup H of G it holds that HA = G. The group G is said to be barrelled when
every closed absorbent subset Q has a nonempty interior. Remark that every separable
Baire group is barrelled.

Corollary 3. Let G be either a metrizable, barrelled, locally convex space or a separable, metrizable,
barrelled group. If G is covered by less than b bounded (resp. precompact) subsets. Then G is
normable (resp.locally precompact).

Proof. In both cases, G is homogeneous and the homeomorphisms preserving bounded
subsets are translations. If G is a metrizable, barrelled, locally convex space, applying
Theorem 2, we obtain that G has a neighborhood basis of zero consisting of bounded
subsets, which implies that G is normable. If G is a topological group, take any countable
dense subgroup H of G and consider the canonical action of H on G that makes G an
H-space. By Proposition 1, a subset A of G is H-bounded if and only if it is precompact.
Again, it suffices now to apply Theorem 2.

5. Discussion

We have considered the action of a monoid G on a topological space X and associated
it with a canonical family of G-bounded subsets. This provides a very general notion of
boundedness that include both the bounded subsets considered in functional analysis and
in topological groups. In this paper, we have initiated the study of this new notion of a
G-bounded subset. Among other results, it is proved that for a metrizable and separable
G-space X, the bounded subsets of X are completely determined by the bounded sub-
sets of any dense subspace, extending results obtained by Grothendieck for metrizable
separable locally convex spaces [1], generalized subsequently by Burke and Todorčević
and, separately, Saxon and Sánchez-Ruiz for metrizable locally convex spaces [2,3] and by
Chis, Ferrer, Hernández and Tsaban for metrizable groups [4,5]. We have also obtained
sufficient conditions for a G-space X to be locally G-bounded, which applies to topological
groups. This also provides the frame for extending to this setting some results by Burke
and Todorčević and, separately, Saxon and Sáchez-Ruiz (loc. cit.) for metrizable locally
convex spaces.
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