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Abstract: Fibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits
of a second-order two-parametric difference equation, are considered. Using Maple and Wolfram Alpha,
the location of the largest and the smallest roots responsible for the cycles of period p among the
roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been
determined. These purely computational results of experimental mathematics, made possible by the
use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed
methods of formal mathematics.

Keywords: Fibonacci-like polynomials; generalized golden ratios; cycles; computational experiments;
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1. Introduction

The main results of this paper are purely computational, carried out in the contexts of
Maple and Wolfram Alpha. The paper deals with locating the roots of the Fibonacci-like poly-
nomials of degree k among the roots of the Fibonacci-like polynomials of degree m > k. Before
proceeding further, the Fibonacci-like polynomials discussed in detail in ref. [1] have to be
introduced. To this end, one may recall that in Pascal’s triangle (Figure 1), which, according
to ref. [2], was used by Pascal to record the sample spaces of experiments involving the
tossing of n coins for different values of n, Fibonacci numbers can be found when adding
the entries of the triangle along the so-called shallow diagonals [3]. The entries of Pascal’s
triangle can be rearranged as shown in Figure 2, where the first column is comprised of
ones located either on the left side of Pascal’s triangle or on its right side. The second, third,
fourth, and so on columns are the diagonals parallel, respectively, to the first one shifted by
two rows down along the column on its immediate left. Through this process, the numbers
on the shallow diagonals form rows of the rearranged Pascal’s triangle so that the sums of
numbers in these rows are Fibonacci numbers (Figure 2). Furthermore, the rows go in pairs:
two rows with one number, two rows with two numbers, two rows with three numbers,
and so on. Using these pairs of numbers as coefficients of the polynomials of degrees zero,
one, two, and so on, the following polynomials can be formed:

P−1(x) = 1, P0(x) = 1, P1(x) = x + 1, P2(x) = x + 2, P3(x) = x2 + 3x + 1,

P4(x) = x2 + 4x + 3, . . . , P8(x) = x4 + 8x3 + 21x2 + 20x + 5,

P9(x) = x5 + 9x4 + 28x3 + 35x2 + 15x + 1, P10(x) = x5 + 10x4 + 36x3 + 56x2 + 35x + 6.
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The above polynomials are called Fibonacci-like polynomials; the term Fibonacci pol-

ynomial has been used for another class of polynomials associated with Fibonacci num-

bers found in a number of publications; for example, in references [4,5]. What is special 

about Fibonacci-like polynomials is that any Fibonacci-like polynomial of degree n has 

exactly n different real roots. For example, using Wolfram Alpha (Figure 3), one can factor 

the polynomial P10(x) into the product (x + 1)(x + 2) (x + 3)(x2 + 4x + 1), so that: 

P10(x) = P1(x) P2(x) (x + 3) (x2 + 4x + 1).  

This factorization shows that all the roots of the polynomial P10(x) are real numbers, 

some of which coincide with the roots of P1(x) and P2(x). Furthermore, one can note that 

P4(x) = P2(x) + P3(x), P3(x) = xP2(x) + P1(x) and P8(x) = P10(x) − P9(x) = x4 + 8x 3 + 21x2 + 20x + 5.  

Noting that entries of Pascal’s triangle are binomial coefficients, the triangle shown 

in Figure 2 can be rewritten as shown in Figure 4. All these observations can be general-

ized, making it possible to define Fibonacci-like polynomials through the following recur-

sive formula [1]: 

𝑃𝑛(𝑥) = 𝑥𝑚𝑜𝑑(𝑛,2)𝑃𝑛−1(𝑥) + 𝑃𝑛−2(𝑥), 𝑃−1(𝑥) = 𝑃0(𝑥) = 1 (1) 

where mod(n,2) = 0 when n is even and mod(n,2) = 1 when n is odd. Drawing coefficients 

of the Fibonacci-like polynomials from the triangle shown in Figure 4 results in the fol-

lowing closed formulas involving binomial coefficients [1]: 

𝑃2𝑛−1(𝑥) = ∑ 𝐶2𝑛−𝑖
𝑖 𝑥𝑛−𝑖

𝑛

𝑖=0

 (2) 

and 

𝑃2𝑛(𝑥) = ∑ 𝐶2𝑛−𝑖+1
𝑖 𝑥𝑛−𝑖

𝑛

𝑖=0

 (3) 

 

Figure 1. Pascal’s triangle. Figure 1. Pascal’s triangle.
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parametric generalization of the well-known Fibonacci recursion in the form of the differ-

ence equation: 

𝑓𝑛+1 = 𝑎𝑓𝑛 + 𝑏𝑓𝑛−1, 𝑓0 = 𝑓1 = 1 (4) 
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The above polynomials are called Fibonacci-like polynomials; the term Fibonacci
polynomial has been used for another class of polynomials associated with Fibonacci
numbers found in a number of publications; for example, in refs. [4,5]. What is special
about Fibonacci-like polynomials is that any Fibonacci-like polynomial of degree n has
exactly n different real roots. For example, using Wolfram Alpha (Figure 3), one can factor
the polynomial P10(x) into the product (x + 1)(x + 2) (x + 3)(x2 + 4x + 1), so that:

P10(x) = P1(x) P2(x) (x + 3) (x2 + 4x + 1).
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This factorization shows that all the roots of the polynomial P10(x) are real numbers,
some of which coincide with the roots of P1(x) and P2(x). Furthermore, one can note that
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P4(x) = P2(x) + P3(x), P3(x) = xP2(x) + P1(x) and P8(x) = P10(x) − P9(x) = x4 + 8x3 + 21x2 + 20x + 5.

Noting that entries of Pascal’s triangle are binomial coefficients, the triangle shown in
Figure 2 can be rewritten as shown in Figure 4. All these observations can be generalized,
making it possible to define Fibonacci-like polynomials through the following recursive
formula [1]:

Pn(x) = xmod(n,2)Pn−1(x) + Pn−2(x), P−1(x) = P0(x) = 1 (1)

where mod(n,2) = 0 when n is even and mod(n,2) = 1 when n is odd. Drawing coefficients of
the Fibonacci-like polynomials from the triangle shown in Figure 4 results in the following
closed formulas involving binomial coefficients [1]:

P2n−1(x) =
n

∑
i=0

Ci
2n−ix

n−i (2)

and

P2n(x) =
n

∑
i=0

Ci
2n−i+1xn−i (3)
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2. Connecting Fibonacci-like Polynomials to Cycles Formed by Generalized
Golden Ratios

When Fibonacci-like polynomials are defined through the entries of the rearranged
Pascal’s triangle, they have no apparent connection to any difference equations like the
one that defines Fibonacci numbers. In order to demonstrate this connection, consider
a parametric generalization of the well-known Fibonacci recursion in the form of the
difference equation:

fn+1 = a fn + b fn−1, f0 = f1 = 1 (4)

where a and b are real numbers. Equation (4) can be explored in terms of the behavior of
the ratios fn+1

fn
as n increases, and also by their dependence on the parameters. Such ratios

are called generalized golden ratios [1]. It was found in ref. [6] that when a2 + 4b < 0, for
certain values of parameters a and b the ratios form cycles of different periods. By exploring
the recursive equation:

gn+1 = a +
b
gn

, g1 = 1 (5)

in which a2 + 4b < 0 the cycles that attracted the ratios gn+1 = fn+1
fn

can be connected to
Fibonacci-like polynomials. For example, in order to find a relation between the parameters
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a and b that enables these ratios to form cycles of period five (alternatively, for the ratios
to be attracted by those cycles), the condition g6 = g1 = 1 was set, resulting in the
relation a4 + 3a2b + b2 = 0, which, under the substitution a2

b = x, is equivalent to the
quadratic equation x2 + 3x + 1 = 0. The left-hand side of this equation is the Fibonacci-like
polynomial P3(x), the coefficients of which are located in the fifth line of the rearranged
Pascal’s triangle. In other words, when the right-hand side of the relation a2

b = x is a root of
the Fibonacci-like polynomial P3(x), the recursive Equation (5) generates cycles of period
five. Furthermore, one can check to see that both roots of P3(x) can be found among the
roots of P8(x) = x4 + 8x3 + 21x2 + 20x + 5—the polynomial resulting from setting in (5)
the condition g11 = g1 = 1. In the context of this paper, the type of questions to be explored
is how one can find the roots of P3(x) among the roots of P8(x). That is, to find the ranks of
the roots of P3(x) on the ordered list of the roots of P8(x). Similarly, in what follows, the
cycles of higher periods and the corresponding explorations will be associated with the
roots of the Fibonacci-like polynomials of higher degrees.

To conclude this section, one can prove that any root of a Fibonacci-like polynomial
belongs to the interval (−4, 0). Indeed, because all coefficients of a Fibonacci-like polyno-
mial are positive numbers, the relationship Pn(x0) = 0 implies x0 < 0. The last equality
implies that there exists a pair of parameters (a0, b0) such that a0

2 + 4b0 < 0 whence b0 < 0.

Therefore, a0
2

b0
+ 4 > 0 or a0

2

b0
> −4. Noting that a0

2

b0
= x0 completes the proof.

3. Ordinality Assignments of the Roots of Fibonacci-like Polynomials

In what follows, the location of a root of a Fibonacci-lime polynomial among its
other roots will be referred to as an ordinality assignment of the root, distinguishing
between the left ordinality assignment (LOA) and the right ordinality assignment (ROA).
For example, on the list x1, x2, x3, x4, x5, x6 we have LOA(x3) = 3 and ROA(x3) = 4.
In general, on the ordered list {xi}n

i=1 we have LOA(xi) = i and ROA(xi) = n − i + 1,
so that LOA(xi) + ROA(xi) = n + 1. The statements about ordinality assignments will be
formulated in the form of technology-motivated conjectures. The development of their
formal proof may be seen as a possible avenue in experimental mathematics research.

By analogy with the pole assignment problem that ref. [7] associated with the stability
of a linear control system, when with the help of a matrix of linear control the eigenvalues of
the full matrix can be made to coincide with a given set of eigenvalues, in what follows, the
problem of ordinality assignments of a root of a Fibonacci-like polynomial, responsible for a
proper p-cycle on the ordered list of the roots of the Fibonacci-like polynomials responsible
for cycles of periods 2kp or kp, will be studied computationally. This study would allow
one to recognize that if Pk(x0) = Pn(x0) = 0 for certain values of k, and n, n > k, then the
ordinality assignments of x0 among the roots of Pn(x) can be formulated in terms of n
and k. The formulation would make it possible, given information about the ordinality
assignment of a root responsible for a p-cycle where p is a prime number among the roots
of a Fibonacci-like polynomial, to determine the polynomial.

As the cyclic behavior of the orbits of Equation (5), in which a2 + 4b < 0, depends on
the roots of the Fibonacci-like polynomials, an investigation into patterns formed by the
roots is of a value. First, computing shows that just as the first three (of non-zero degree)
Fibonacci-like polynomials, P1(x) = x + 1, P2(x) = x + 2 and P3(x) = x2 + 3x + 1, do not
have common roots, any other three consecutive Fibonacci-like polynomials do not have
roots in common either. However, even without computing, one can conclude that there
are Fibonacci-like polynomials which do have roots in common. Indeed, because a cycle of
length p can be construed as a cycle the length of which is a multiple of p, the corresponding
Fibonacci-like polynomials have roots in common. Using Maple, one can discover that when
p is an odd number, the largest root of the Fibonacci-like polynomial Pp−2(x) that generates
a p-cycle coincides with the largest root of the Fibonacci-like polynomial P2p−2(x), which
generates a 2p-cycle. However, further period-doubling and period-multiplying computa-
tional investigations result in a polynomial the largest root of which is different from that
of its immediate predecessor. Nonetheless, the roots of the polynomials responsible for
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a p-cycle and a 2p-cycle can be found among the roots of the Fibonacci-like polynomials
responsible for the cycles of periods 2k p (period-doubling) and kp (period-multiplying).
While this is a pretty obvious statement, it is not clear which ordinality, left or right, can
be assigned to the largest/smallest or any other root of the polynomial Pp−2(x) on the
ordered list of the roots of a polynomial responsible for a 2kp-cycle or kp-cycle, k ≥ 2. The
cases of 2kp-cycles and kp-cycles will be considered separately, as the patterns of ordinality
assignments are different for period-doubling and period-multiplying cases. Note that a
cycle of period p is called a proper p-cycle if it cannot be split in several cycles of any period
smaller than p [1]. When p is a prime number, a p-cycle may only be a proper cycle.

4. Exploring the Case of 2kp-Cycles (Period-Doubling) in Fibonacci-like Polynomials
4.1. The Case of the Largest Root of the Polynomial P3(x)

Consider the number x1 = −3+
√

5
2
∼= −0.381966—(an approximation to) the largest

root of the Fibonacci-like polynomial P3(x) = x2 + 3x + 1—which is responsible for a
5-cycle formed by the orbits of the recursive Equation (5). By using Maple, one can discover
the following:

(1) The largest root of a fourth degree Fibonacci-like polynomial P8(x) that forms a trivial
10-cycle from two identical 5-cycles coincides with x1;

(2) The second root from the right on the ordered list of the roots of a ninth degree
Fibonacci-like polynomial P18(x) that forms a trivial 20-cycle from four identical
5-cycles coincides with x1;

(3) The fourth root from the right on the ordered list of the roots of a 19th degree Fibonacci-
like polynomial P38(x) that forms a trivial 40-cycle from eight identical 5-cycles
coincides with x1 (Figure 5);

(4) The eighth root from the right on the ordered list of the roots of a 39th degree Fibonacci-
like polynomial P78(x) that forms a trivial 80-cycle from 16 identical 5-cycles coincides
with x1, and so on.
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Noting that 8 = 5·21 − 2, 18 = 5·22 − 2, 38 = 5·23 − 2, 78 = 5·24 − 2 , the following
inductive generalization can be made:

The ROA of the largest root of a second degree Fibonacci-like polynomial P3(x) is the 2n−1

position from the right on the ordered list of 5·2n−1 − 1 roots of the Fibonacci-like polynomial
P5·2n−2(x), n = 1, 2, 3, . . . .

In other words,

ROA[
−3 +

√
5

2
, P5·2n−2(x)] = 2n−1.

At the same time,

LOA[
−3 +

√
5

2
, P5·2n−2(x)] = 5·2n−1 − 1− 2n−1 + 1 = 2n−1(5− 1) = 2n+1.

For example, when n = 3, we have ROA[−3+
√

5
2 , P38(x)] = 4 (in Figure 5,

P38(x) = ∑19
i=0 Ci

2·19+1−ix
19−i and −3+

√
5

2
∼= −0.3819660113) and LOA[−3+

√
5

2 , P38(x)] = 16.
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4.2. The Case of the Largest Root of the Polynomial P5(x)
The same pattern can be observed in the case of the Fibonacci-like polynomials, the

roots of which are responsible for the cycles of periods 3·2n, 7·2n, 9·2n, n = 0, 1, 2. . . . .
For example, the number −0.1980622642, being (an approximation to) the largest root of a
third degree Fibonacci-like polynomial P5(x) = x3 + 5x2 + 6x + 1, responsible for the cycles
of period seven formed by the orbits of recursive Equation (5), can be given the following
ROAs on the ordered lists of the roots of the Fibonacci-like polynomials responsible for the
cycles of periods 14, 28, 56, 112, and so on:

(1) It is the first root from the right on the ordered list of the roots of a 6th degree
Fibonacci-like polynomial P12(x) that is responsible for a trivial cycle of period 14;

(2) It is the second root from the right on the ordered list of the roots of a 13th degree
Fibonacci-like polynomial P26(x) that is responsible for a trivial cycle of period 28;

(3) It is the fourth root from the right on the ordered list of the roots of a 27th de-
gree Fibonacci-like polynomial P54(x) that is responsible for a trivial cycle of period
56 (see Figure 6);

(4) It is the eighth root from the right on the ordered list of the roots of a 55th degree
Fibonacci-like polynomial P110(x) that is responsible for a trivial cycle of period 112,
and so on. Noting that 12 = 7·21 − 2, 26 = 7·22 − 2, 54 = 7·23 − 2, the following
inductive generalization can be made.
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The ROA of the largest root of a third degree Fibonacci-like polynomial P5(x) is the 2n−1

position from the right on the ordered list of 7·2n−1 − 1 roots of the Fibonacci-like polynomial
P7·2n−2(x), n = 1, 2, 3, . . . .

Put another way,

ROA[−0.1980622642, P7·2n−2(x) ] = 2n−1.

At the same time,

LOA[−0.1980622642, P7·2n−2(x) ] = 7·2n−1 − 1− 2n−1 + 1 = 6·2n−1.

For example, when n = 3 we have

ROA[−0.1980622642, P54(x)] = 4 and LOA[−0.1980622642, P54(x)] = 24

(as shown in Figure 6, P54(x) = ∑27
i=0 Ci

2·27+1−ix
27−i).

However, for the cycles of period 4·2n (note: four is the smallest even number pe-
riod with which the generalized golden ratios can oscillate) the situation is different: the
ROAs of the root of the polynomial P2(x) = x + 2 responsible for a 4-cycle are as follows
(see Figure 7):

(1) It is the second root both from the right and the left on the ordered list of the roots of
a third degree Fibonacci-like P6(x) that is responsible for a trivial 8-cycle;
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(2) It is the fourth root both from the right and the left on the ordered list of the roots of a
seventh degree polynomial P14(x) that is responsible for a trivial 16-cycle;

(3) It is the eighth root both from the right and the left on the ordered list of the roots a
15th degree polynomial P30(x) that is responsible for a trivial 32-cycle, and so on.
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The situation just described is consistent with the phenomenon observed for the roots
of the Fibonacci-like polynomials responsible for the cycles of periods 6·2n, n = 0, 1, 2, . . .
already discussed in the context of cycles of periods 3·2n, n = 0, 1, 2, . . . .

4.3. The Case of the Smallest Root of the Polynomial P3(x)
In much the same way, one can find the LOAs for the smallest root of a second degree

Fibonacci-like polynomial P3(x) = x2 + 3x + 1, which is also responsible for a 5-cycle, on
the ordered list of the roots of the Fibonacci-like polynomials responsible for the cycles of
periods 10, 20, 40, 80, and so on. This root, −3−

√
5

2 ≈ −2.618034, coincides with:

(1) The second root from the left on the ordered list of the roots of a fourth degree
Fibonacci-like polynomial P8(x) that forms a trivial 10-cycle from two identical
5-cycles;

(2) The fourth root from the left on the ordered list of the roots of a ninth degree Fibonacci-
like polynomial P18(x) that forms a trivial 20-cycle from four identical 5-cycles;

(3) The eighth root from the left on the ordered list of the roots of a 19th degree Fibonacci-
like polynomial P38(x) that forms a trivial 40-cycle from eight identical 5-cycles
(see Figure 5);

(4) The 16th root from the left on the ordered list of the roots of a 39th degree Fibonacci-
like polynomial P78(x) that forms a trivial 80-cycle from 16 identical 5-cycles, and
so on.

From the above four statements the following inductive generalization can be made:
The LOA of the smallest root of a second degree Fibonacci-like polynomial P3(x) is the 2n

position from the left on the ordered list of 5·2n−1 − 1 roots of the Fibonacci-like polynomial
P5·2n−2(x) , n = 1, 2, 3, . . . .

The same pattern can be observed in the case of the Fibonacci-like polynomials, the
roots of which are responsible for the cycles of periods 3·2n, 7·2n, 9·2n, n = 0, 1, 2. . . . .
For example, the number −3.2469796, being (an approximation to) the smallest root of a
third degree Fibonacci-like polynomial P5(x), the roots of which are responsible for the
cycles of period seven, coincides with:

(1) The second root from the left on the ordered list of the roots of a sixth degree Fibonacci-
like polynomial P12(x) responsible for a trivial cycle of period 14 constructed out of
two 7-cycles;
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(2) The fourth root from the left on the ordered list of the roots of a 13th degree Fibonacci-
like polynomial P26(x) responsible for a trivial cycle of period 28 constructed out of
four 7-cycles;

(3) The eighth root from the left on the ordered list of the roots of a 27th degree Fibonacci-
like polynomial P54(x) responsible for a trivial cycle of period 56 constructed out of
eight 7-cycles (see Figure 6);

(4) The 16th root from the left on the ordered list of the roots of a 55th degree Fibonacci-
like polynomial P110(x) responsible for a trivial cycle of period 112 constructed out of
16 7-cycles, and so on.

Remark 1. In the case of the cycle of period 3·20 = 3 generated by x = −1, the single root of the
Fibonacci-like polynomial P1(x) = x + 1, the LOAs of this root are defined by doubling, respectively,
its corresponding ROAs.

5. Generalization in the Case of Period Doubling Cycles

In general, the following technology-motivated conjecture can be made.

Conjecture 1. The ROA of the largest root of the Fibonacci-like polynomial Pk−2(x) of degree k−1
2 ,

where k is an odd number greater than one, is the 2n−1 position from the right on the ordered list of
k·2n−1 − 1 roots x1 < x2 < . . . < xk·2n−1−1 of the Fibonacci-like polynomial Pk·2n−2(x). At the
same time, its LOA is equal to k·2n−1 − 1− 2n−1 + 1 = 2n−1(k− 1).

For example, when k = 7 and n = 3 we have (see Figure 8) for the largest root of the
polynomial P5(x) = x3 + 5x2 + 6x + 1, and we have:

ROA(−0.1980622642) = 4 and LOA(−0.1980622642) = 24

on the ordered list of 27 roots x1 < x2 < x3 < x4 < . . . < x27 of the polynomial P54(x). This
is consistent with the relation ROA(xi) + LOA(xi) = 27 + 1, i = 1, 2, 3, . . . , 27.
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Conjecture 2. The LOA of the smallest root of the Fibonacci-like polynomial Pk−2(x) of degree
k−1

2 , where k is an odd number greater than one, is the 2n position from the left on the ordered list of
k·2n−1 − 1 roots x1 < x2 < . . . < xk·2n−1−1 of the Fibonacci-like polynomial Pk·2n−2(x). At the
same time, its ROA is equal to k·2n−1 − 1− 2n−1 + 1 = 2n−1(k− 1).

For example, when k = 7 and n = 3 (Figure 8) for the smallest root of the Fibonacci-like
polynomial P5(x) = x3 + 5x2 + 6x + 1, we have:

ROA(−3.24697964) = 8 and LOA(−3.24697964) = 20



Axioms 2022, 11, 48 9 of 11

on the ordered list of 27 roots x1 < x2 < x3 < x4 < . . . < x27 of the polynomial P54(x).

Remark 2. One can use Conjecture 1 to determine a Fibonacci-like polynomial Pm(x) from
information about the ROA(x̂) and LOA(x̂) among the roots of this polynomial, where x̂ is a root
of a Fibonacci-like polynomial Pl(x), l < m, responsible for a non-trivial (i.e., a proper) cycle of
period l + 2. Indeed, let x̂ be the largest root of the Fibonacci-like polynomial Pk−2(x) of degree k−1

2
responsible for a proper k-cycle, where k is an odd number greater than one. If ROA(x̂) = 2n−1 and
LOA(x̂) = 2n−1(k− 1) among the roots of a Fibonacci-like polynomial Pm(x), then m = k·2n − 2
and x̂ is responsible for the cycle of period k·2n.

Remark 3. A different pattern can be observed for the ordinality assignments of the roots of
the Fibonacci-like polynomial P22(x) = x11 + 22x10 + 210x9 + . . . + 12 that occupy the first
position, both from the left and from the right, thereby generating proper 24-cycles. The roots are
(approximately) −3.931851653 and −0.06814834742. Their ROAs and LOAs stay the same as the
cycle’s length doubles: the second positions for a 48-cycle, the fourth positions for a 96-cycle, the
eighth position for a 192-cycle, and so on.

6. The Case of kp-Cycles (Period-Multiplying) in Fibonacci-like Polynomials

As one moves from a 3-cycle defined by the polynomial P1(x) = x + 1 to a 6-cycle
defined by the polynomial P4(x) = x2 + 4x + 1, then to a 9-cycle defined by the poly-
nomial P7(x) = x4 + 7x3 + 15x2 + 10x + 1, then to a 12-cycle defined by the polynomial
P10(x) = x5 + 10x4 + 36x3 + 56x2 + 35x + 6, and so on, the following ordinality assign-
ments of the root x = −1 on the ordered lists of the roots of the polynomials P3n+1(x),
n = 0, 1, 2, . . . , can be observed (Figure 9):

(1) When n = 0, the number −1 is the first from the right and the first from the left;
(2) When n = 1, the number −1 is the first from the right and the second from the left;
(3) When n = 2, the number −1 is the second from the right and the third from the left;
(4) When n = 3, the number −1 is the second from the right and the fourth from the left;
(5) When n = 4, the number −1 is the third from the right and the fifth from the left;
(6) When n = 5, the number −1 is the third from the right and the sixth from the left.
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In other words, the LOAs and ROAs of the root of the polynomial P1(x) = x + 1 on
the ordered list of 2n + 1−

⌈ n
2
⌉

roots of the polynomial P3n+1(x) are equal, respectively, to
n + 1 and

⌊ n
2
⌋
+ 1. Here dxe is the smallest integer greater than or equal to x and bxc is the

largest integer smaller than or equal to x. Note that n + 1 +
⌊ n

2
⌋
+ 1 = 2n−

⌈ n
2
⌉
+ 2 from

where it follows that
⌊ n

2
⌋
+

⌈ n
2
⌉
= n.

Consider the Fibonacci-like polynomial P3(x) = x2 + 3x + 1, the roots of which are
responsible for the cycles of period five. The polynomial P3(x) has two real roots, the
smaller one is x̂ ≈ −2.618033989. Using Maple (Figure 10), the following LOA(x̂) and
ROA(x̂) can be computed for the roots of the polynomials responsible for the cycles of
period 5k, k ≥ 1. These assignments are presented in Table 1.
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Table 1. The LOAs and ROAs for the smallest root of P3(x).

F-L pol. P3(x) P8(x) P13(x) P18(x) P23(x) P28(x) P33(x) P38(x) P43(x)

Pol. deg. 2 4 7 9 12 14 17 19 22

LOA(x̂) 1 2 3 4 5 6 7 8 9

ROA(x̂) 2 3 5 6 8 9 11 12 14

Conjecture 3. Let x̂ be the largest root of the Fibonacci-like polynomial Pk−2(x) of degree k−1
2

where k > 1 is an odd number. If ROA(x̂) = 2n−1 and LOA(x̂) = 2n(k− 1) among the roots of a
Fibonacci-like polynomial Pm(x), then m = k·2n − 2 and x̂ forms a cycle of period k·2n.

7. Conclusions

This paper introduced the notion of the left and right ordinality assignments of
the roots of a Fibonacci-like polynomial responsible for the cycle of period p among the
roots of the Fibonacci-like polynomials of periods 2k p (period-doubling) and kp (period-
multiplying). The results regarding the bi-lateral ordinality assignments were purely
computational. The ordinality assignments of the largest and the smallest roots of the
Fibonacci-like polynomials of degrees two and three on the ordered lists of the Fibonacci-
like polynomials of higher degrees were considered. All computations have been carried
out in the contexts of Maple and Wolfram Alpha. It was suggested that the computational
character of the results of this paper can be the first step towards exploring the concept of
the bi-lateral ordinality assignments of the roots of the Fibonacci-like polynomials using the
methods of experimental mathematics, where computational experiments open a window
to the formal presentation of the results.
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