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Abstract: In this study, first we establish a (p, q)-integral identity involving the second (p, g)-derivative,
and then, we use this result to prove some new midpoint-type inequalities for twice-(p, q)-differentiable
convex functions. It is also shown that the newly established results are the refinements of the compa-
rable results in the literature.
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1. Introduction

In convex functions theory, the Hermite-Hadamard (HH) inequality is very important,
which was discovered by C. Hermite and J. Hadamard independently (see [1] (p. 137)).

T+ 1) 1 7 I1(my) + T(my)
H< ) < nln/n(%)d% < M)+ ) )

2 2

where I1 is a convex function. In the case of concave mappings, the above inequality is
satisfied in reverse order. For more recent refinements of Inequality (1), one can consult [2,3].

On the other hand, several works in the field of g-analysis are being carried out,
beginning with Euler, in order to achieve mastery of the mathematics that drives quantum
computing. The link between physics and mathematics is referred to as g-calculus. It has
a wide range of applications in mathematics, including number theory, combinatorics,
orthogonal polynomials, basic hypergeometric functions, and other disciplines, as well
as mechanics, relativity theory, and quantum theory [4,5]. Quantum calculus also has
many applications in quantum information theory, which is an interdisciplinary area
that encompasses computer science, information theory, philosophy, and cryptography,
among other areas [6,7]. Euler is thought to be the inventor of this significant branch of
mathematics. In Newton’s work on infinite series, he used the g-parameter. Jackson [8,9]
was the first to present the g-calculus, who knew calculus without limits in a methodical
manner. In 1966, Al-Salam [10] introduced a g-analogue of the g-fractional integral and
g-Riemann-Liouville fractional. Since then, the related research has gradually increased.
In particular, in 2013, Tariboon introduced the ~, D;-difference operator and g, -integral
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in [11]. In 2020, Bermudo et al. introduced the notion of the ™D,-derivative and g"2-
integral in [12]. Sadjang generalized to quantum calculus and introduced the notions of
post-quantum calculus or simply (p, g)-calculus in [13]. Soontharanon et al. [14] studied
the concepts of fractional (p, g)-calculus later on. In [15], Tung and Gov gave the post-
quantum variant of the , D;-difference operator and g, -integral. Recently, in 2021, Chu et
al. introduced the notions of the ™ D), ,-derivative and (p, ) ™-integral in [16].

Many integral inequalities have been studied using quantum and post-quantum inte-
grals for various types of functions. For example, in [17-22], the authors used , D;,” D;-
derivatives and g, ,q™2-integrals to prove HH integral inequalities and their left-right
estimates for convex and coordinated convex functions. In [23], Noor et al. presented
a generalized version of quantum integral inequalities. For generalized quasi-convex
functions, Nwaeze et al. proved certain parameterized quantum integral inequalities
in [24]. Khan et al. proved the quantum HH inequality using the Green function in [25].
Budak et al. [26], Ali et al. [27], and Vivas-Cortez et al. [28] developed new quantum Simp-
son and quantum Newton-type inequalities for convex and coordinated convex functions.
For quantum Ostrowski inequalities for convex and coordinated convex functions, one
can consult [29,30]. Kunt et al. [31] generalized the results of [19] and proved HH-type in-
equalities and their left estimates using the ~, D, 4-difference operator and (p, q) x,-integral.
Recently, Latif et al. [32] found the right estimates of the HH-type inequalities proven
by Kunt et al. [31]. To prove Ostrowski’s inequalities, Chu et al. [16] used the concepts
of the ™D, ;-difference operator and (p, q)™-integral. Recently, Vivas-Cortez et al. [33]
generalized the results of [12] and proved the HH-type inequalities and their left estimates
using the ™D, ,-difference operator and (p, q) ™-integral.

Inspired by the ongoing studies, we use the (p, q)-integral to develop some new post-
quantum midpoint-type inequalities for (p, q)-differentiable convex functions. We also
show that the newly developed inequalities are extensions of some previously known
inequalities.

The following is the structure of this paper: Section 2 provides a brief overview of
the fundamentals of g-calculus, as well as other related studies in this field. In Section 3,
we go over the concepts of (p, g)-calculus, as well as some recent research in this field.
The midpoint-type inequalities for twice (p, q)-differentiable functions via (p, q)-integrals
are described in Section 4. The relationship between the findings reported here and
similar findings in the literature is also taken into account. Section 5 concludes with some
recommendations for future research.

2. Quantum Derivatives and Integrals

In this portion, we recall a few known definitions in g-calculus. Throughout the paper,
we use real numbers p and g such that 0 < g < p < 1. Set the following notation (see [5]):
qﬂ

1_
My = Fop=ltata g

n—1

(=s) = (. =I1(1-45)

i=0

The g-Jackson integral of a mapping I1 from zero to 7t was given by Jackson [9], which

is defined as:
Uy

[0 dpe = (1= a)m 3 TG @
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provided that the sum converges absolutely. Moreover, over the interval [7‘[1, 712], he gave
the following integral of a mapping I1:

72H(%) dgre = 721_1(%) dg —711](%) dgs .
s 0 0

Definition 1 ([11]). The q,-derivative of mapping I1 : [y, 2] — R is defined as:

() —TT(gx + (1 —q)m)
(1—9)(> —mm)

For » = 1y, we state , DgI1(711) = lim,, 7, 7, Dgl1(3¢) if it exists and it is finite.

ﬂquH(%) =

, % # 1. ®)

Definition 2 ([12]). The q"2-derivative of mapping I1 : [r11, 72| — R is given as:

_ (gx+ (1 —q)m) —T1(>)
(1—q)(m2 = »)

For » = 1p, we state ™2 DgI1(71p) = lim,, 7, ™ DgI1(5c) if it exists and it is finite.

"2 DgI1(52)

, % F . 4)

Definition 3 ([11]). The qn,-definite integral of mapping I1 : [y, mp] — R on [my, m2] is
defined as:

/H(T) mdgT = (1—q)(¢—mq) i g TG "+ (1 —g")m), 3 € [y, 2] (5)
m n=0

On the other side, the following concept of the g-definite integral was stated by
Bermudo et al. [12]:

Definition 4 ([12]). The q"2-definite integral of mapping I1 : [y, mp] — R on [y, 11o] is
given as:

) s

/H(T) d,t = (1—q)(m— ) Y TG "+ (1 —q")mp), » € [my, ). (6)

o n=0

3. Post-Quantum Derivatives and Integrals

In this section, we review some fundamental notions and notations of (p, q)-calculus.
We set the notation (see [13]):

pA4
(p, q)-power, respectively, and are expressed as (see [13]):

The [n],, !, [ Z }! and (1—s)" are called the (p,q)-factorial, (p,q)-binomial and

n

1], = I[[l[k]m, n>1,[0],,0=1,
|: n :|' _ [n]p,q!
k| (1=K, ', ,!
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and:

|
—

n

(1 =5y, =T[1(r ~4's).

Il
o

Definition 5 ([13]). The (p, q)-derivative of mapping I1 : [rt1, 7] — R is given as:

Dy gT1(3) = (’”(];) P Haz) 4, @)

Definition 6 ([15]). The (p,q) ,,-derivative of mapping I1 : [rr1, 2] — Riis given as:

Dy T1() = P+ _(?fz))(;ri(fl‘)* Q=D)m) o s, ®)

For s« = 11, we state ; Dp g11(711) = lim,, 7 7, Dy ¢I1(5¢) if it exists and it is finite.

Definition 7 ([16]). The (p, q)"?-derivative of mapping 1 : [ry, 715] — R is given as:

™D, () = L% (1 _(‘;)ﬂzg)(—nl;[(pz)—k A=pm) 4o )

For » = 7115, we state 2Dy, ;I1(712) = lim,, 7, ™ D) 411(¢) if it exists and it is finite.

Remark 1. It is clear that if we use p = 1 in (8) and (9), then the equalities (8) and (9) reduce to
(3) and (4), respectively.

Definition 8 ( [13]). The definite (p, q)-integral of mapping I on [0, 72| is stated as:

7T o0 1’1
/O (7) dpgr=(p—q)m2 ) (pm 2) (10)
Moreover, the definite (p, q)-integral of mapping Il on [711, 75| is stated as:
) ) 1
/H(T) dpgT = /H(T) dpqT / T) dpyT .
st 0 0

Definition 9 ([15]). The definite (p,q)x,-integral of mapping I1 : [111, mp| — R on [y, 112] is
stated as:

/%H(T) mdpgT = (p— (P Tx+ (1 — pZH)m). (11)

s —

Definition 10 ([16]). The definite (p, q)™2-integral of mapping I1 : [r1, 5] — R on [, 112] is
stated as:

7T - o qn qi’l qi’l

z n=0

Remark 2. It is evident that if we pick p = 1 in (11) and (12), then the equalities (11) and (12)
change into (5) and (6), respectively.

Remark 3. If we take 11 = 0 and »c = 11 = 1in (11), then we have:

1 0 n n
/ H(T) Odp,qT = (p - q) Z Z+1 H( ZJrl ) :
0 n=0 P P
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Similarly, by taking s = 1y = 0 and 1ty = 1 in (12), then we obtain that:

! 1 4" q"
[ 1 g = (=) ¥ (1= ).
0 n:Op p

Lemma 1 ([33]). We have the following equalities:

T (71-2 _ 7T1)N+1
/ (112 = )" 2dpgie = [ +1]
m pA
) (7_[2 _ 7_[1)06+1
»— T ® d = —]/——
e ) mpae = S -

where x € R — {—1}.

4. Post-Quantum Midpoint-Type Inequalities

In this section, we prove some new midpoint-type inequalities for twice-(p, q)-differentiable
mappings via the (p, q)-integral.
Let us begin with the following lemma.

Lemma 2. Let IT : [ = [my, o] — R be a (p,q)-differentiable function on the interior of I.
Ifm D%WH is continuous and integrable on I, then the following equality holds:

1
5 | Blpa

7o — 7T "
VT | [0 = (a4 p (1= g03,) DRI + (1= 2} 13
’ 0

1
+ / p(1—qt)y, )2 ”2D2 I(trry + (1 —t)mp)dp 4t

1

Llpg
Uy

_ 1 / [1(5¢) 50 — H(W)
Ty — 71 mp,q
p2m+(1—p?)m,

Proof. Consider from Definition 7:

ps (b + (1— t)7my)
(gt + (1 — gt)ma) — TL(ptry + (1 — pt)m)}
(p—q)(m —m)t
pIl(g*tm + (1 — g*t) ) — ([2],,)M(pgtmr + (1 — pgt)m2) + g (p?tm + (1—p t)71r2)
pa(p — q)*(m2 — m )22

= ™Dy, {

From Definition 8, we have:

1
/ p(1—qt)5, D5 T1(trry + (1 — t)712)dp gt
s

[2] P

+ [ PP = (1= paty+ p( = g ,) DT + (1 Oa)dygt
0
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1
— / p(1— gt)3, D2 T1(tmy + (1 — )72 )dp, gt
0

2032 — (1 - pqt)fw) nszmH(tm + (1= t)m)dpgt

1
2lpg
[

1
q(p — 9)*(m2 — m)?
1 2 2
y / qt ] ( pH(g°tmy + (1 — g*t)m) — 2], T1(patrry + (1 — pqt)mma) )dp,qt
0

+qI1(p*tmy + (1 — p?t)m2)

1

2
7 (PP — (1= pgt)?,)

N 1 / (r*q
pa(p — q)*(m2 — m)? , t2

(Pﬂ(qztﬂﬁ(l 7°t)72) — 2], (pgtrm + (1 = pqt) m2) )d ,
+qI1(p*tm + (1 — p°t)ma) P4

1 1
T -0 m-m)p (11 * pb)'

We calculate the integrals I; and I, by using the Definition 10. Let us consider:

1
_ / qf A=qt)pq < pIL(g*tm + (1 - g*t)m2) — (2], TL(pgtmy + (1 — pqt) ) )d ;
/ +Hll(p*tm + (1 - p*t)m2) P

ad n (1—¢ Z+1)§q n n
= (p—9) ) pZ+1 4 {p (qz PZ“ m+(1—q pZH)ﬂz)
n=0

pZ(n+l)

—[2], 11 (Pq pZ+1 m+ (1= pg— g ,M )

+qll (p pZH m+(1-p pZH )”2)]

~ (1 —‘1%>%,q n+2 n+2
e I ()
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ad (1 qqn—l)%q n n
(p—a)|p = H(,,Z 7t (1=
n= n—1
p
n—1
= (1=q%5)bq (g "
Ry & (-

n—2
s (1 qqnfl )2, n n
(r—a)|p = MH( T+ (1 -1
n=0 Zn,l p
-2
1-9i5)3, (1—qq71)3
—P+H(Pﬂ1 +(1-p)m) - PTP'
pT
© (1-90:0)3 n :
—2l, 2 4 p,qn( Z—l +(1- Z—l)nz)
n=0 qp,, p p
(1—q97")3,
+[2]pq qil pqn(pﬂl+(1fp)772)
o (1-0-57)3, 7 gn ;
) ;; H( Zflﬂ1+(1_ Zl)”2>
n=0 pn+] p P
n—2
© (1 q%)%q n n
(PQ){PE = H(Zﬂﬁ(l— 1
n=0 n—1
p
n—1
0 (1 —qq 5 )%717 n n
_[z]pqzo qnfl H(ptr]11+(1_ n 1)7-[2)
n= pn
o (1=0-50)%0 7 an n
—l—qz ;i, H<Zl7rl+(1— nl)n2>
n=0 pn+1 p

I(gm + (1—q)m)

1-q%)2, (1—qlr 2,  (1-g.0)
n , m)p,q n+1/p,q
X p qn—z - [2] r4q qn—pl + q qf;

pnfl pn pn+1

o0 qn qi’l n
(p =) (p =972y & an“( i (-
gqp—-9?2,, 7 .
P—— I1(5¢)™2dp,q¢

p2r+(1-p2)m

Now, consider:
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Gy (g2t 1— g%t

/ (P*qt? — Pqt)pq) (_ P (q (1 )7T2) )d t
P

0

[Z}p,qn(pqtnl + (1 - Pqt)TQ)
+qI1(p*tmy + (1 — p?t)m2)

n 2 n

(r—q) & g <p2q3<[2]pZP”“> - (1= pq[z]pZW)%ﬂ,q)

2]pq P! ( g )2
[z]p/qu—l

2 q" 2 q"
X <pH (q [Z]p,qanrl m+(1-gq [z]p,qurl )7'[2)
q" q"
_[z]p,qn (Pq [2]11 qpn+1 T+ (1 —Pq [Z}p qanrl )7T2)>

2 2 q"
a1 m+(1-p 200"+ )”2)

(p—9q) i <P2q3 (sz )2 _ [2] ( —Pq [2]pq;n+l );q)

qn—i-l qn+1
-2 Il ——m + (1 — —— )7 )
Hp'q ([Z]Mp" 1 [Z]Mp’l) 2
q" q" )>
gl ———m + (1 — ——)7
I ([2];7,#’"1 1+ [Z]p,qpnfl) ?

) iv(ﬁf(p‘ﬁl)z—[z] (1 Pﬂ/[z]pq';m);)

[2}%‘1 n=0 pzil
qn+2 qn+2
XH([Z]p anH (1= [Z]MPnH )7'(2)
n 2 n 2
2.3(_4 2 q
i 12],,4 (P P () -3, (1- qu)w)
n=0 pZil

- qn+1 (1 anrl ) >
x T+ S S
[2]pqp" ! 2]pqp" 2

7 2 n 2
GG RO,

n pn+1

0
q q" )]
XII| ——m + (1 — —— 7
([z]p,qpnl 1+ [Z]WJF’"*]) 2

w—9)|y p<p2q3(Z"1)2‘[2]§,q(1—zﬂqmz,:;1);)
2

2] A | n=0 q

q" q"
n( —1 1—- 1
. ([Z]rﬂ,ql’nl Tt [z]p,qpnfl )7‘(2)
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ﬁ
pfl
p p >
<11 m+ (1= )7
([Z]W 1+ [2]%»1) ?
12 )2
P<P2‘73(‘7 ") —[2]%q(1_”‘7[g]w)pq>
_ =
q q
xI1 m+ (11— 7T>
([z]pq 1+ [Z]M) ?
2 3\ _ 1y
] [Z]Pq(p q ( P" ) [2];7‘7( pq[ ]Pqp )pq)
— Z qn—l
n=0 n
p
q" q"
xIT m+ (11— 7'()
([Z]MP” 7t [2117#1’"71) :
1\2 '\?
2]y (P20 (071 = 20 (1~ pah) )
+ q—l
p p )
xT1 m+ (1= )
([2]p,q 1+ [2]M) ?
N 2
0 4<P2173(pz+1> mm( P [Z]pqp"“) q)
+-3£% q"
pn+1
a T
xT1 71 + 1-—
R2lpqpr T ( [Z]nqpn_l) ’

n

UL 1) (L G IO P L.
[2lp.q WEJH([Z}MP"_l (1 2]pqp" 1 )7T2>

rJ(chf (Z%)z —23,(1- pqmjl,jl);)
2

X
7"
pnfl
2.3( 7" 1\ _ o2 1y
[2]P‘1<p 1 ( P ) [2}”"7(1 pq[z]wpn>m)
- qn—l
pn
no\2 n 2
2 3( 4 __ ]2 e
q<P q (P”“) 12]5.4 (1 pq [2];7@7"”“)17#)
+ n
q
pn+l
+(P—q)n< p nl+(1_P)n2>
2] 2]5,q 2]p.9
2 3(9°2 2* 2 g :
X | — q—2
F
2 “132
+[2],,q<1ﬂ2q3(4 ") Pﬁa(“""ﬂq%)pq)
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_p<p2q3(q - [Z]M(l—pq[]]);)H( ;

=

(;[72} )[ pa(p — 9)[2l5, (H 4 (1= m’;ﬂm)]

_ __P
pa(p —q) H<[2 m+ (1 Z]M)nz)

I + 12

(
o]

q(p —q)?(rma — m)?

‘7
I1(s2)™2d
q(p — q)*(ma — m)? 7T2_7T1 () p 3¢
prr+(1-p?)my

~a(p = 0P 2hat1 (Gl + (- g |

Ipa

T

2]y 1 / H(%)nzdw%_n<

2
Ty — 7T ) — 71
(72 ) prr+(1-p2)m

_P __r
2,0 T+ (1 )7T2>

Thus, the proof is complete. [

Remark 4. In Lemma 2, if we set p = 1, then we obtain the following identity:

2
(2 — ) /q3t2 T2DII(ty 4 (1 — t)7mp) dyt
0

+ /(1—qt)§ mDRM(ty + (1 — 1)) dyt

1

ap

Uy
1 T + g7
= 11 T2d —II{ —— 1.
™ 7117! ) ( 2], )

This was proven by Ali et al. in [18] (Lemma 5).

Theorem 1. Suppose that the assumptions of Lemma 2 hold. If |"2D,, ;11| is convex on |11, 115],
then we have the inequality:

U]

! / T1(5¢)2d,, 43¢ — 1 <p”[12]+ ”77T2> (14)

Tl — 71 4
p2r+(1-p2)

(2 — 7T1)2 5 )
= W[&(p’q)\”%ﬂﬂ(m)l+®z(p,q)|”2Dp,qn(n2)@,

where:
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Blpal4lpq (1 —2p)([2]54 — 1) +4[2]
pal*lpg P 7. q14lp.q
©2(p,q)
2(p, =
121548104414
(P12 + 12021y — P12)pg 8] — 9141
[2]2 4[3]p,[4]p,q
Proof. By taking the modulus of (13), we have:
1 7
T oty eom
T — 7 [Z}p,q
pPm+(1-p?)m
ﬁ
pa
Ty — 7T
< BT [ GRRR (g p(1 - a03) PRI + (1= 1) [dyt
’ 0
1
+ / p(1 = 03[ 2D2 1ty + (1~ 6)72) [dpgt .
T
Now, by using the convexity of |™2Dy, 4I1|, we have:
1 7 +
[I(5)2d, 5 —11| P92 15
Ttp — 71 / ( ) P < [z]p,q ( )
prm+(1-p?)m
2lpa
_ (o-m)? / (PP — (1= pat)} o+ p(1— qt)3 )™ D3 T1(my)| i
VI +(PPP — (1= pgt)5 . + p(1—qt)5 ) (1 = 1)[2D5 T1(mp)| )P

1

+ [ (P =03t D3 1] + p(1 = )3, (1 = D3 T1(mo) )t |.
1

Blpa

Now, we compute the integrals appearing on the right side of (15) using Lemma 1. We

have:

‘ —

S
<

A

(PPt — (1 — pat); . + p(1 — qt)3 tdp gt

o

S
N
=

[2]p,4[4]p,4(P? — p) + Pg°
(2]3,4[4]p.9 '

(P = )t + pge ) dp gt =

I
F

S
N
3

(PP — (1= pat)y .+ p(1—qt)5 ) (1 — B)dp gt

L O~

= / P + pg — (p? = p)t + (p* = p) ) dpat
0

(16)

(17)
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_qu[3]p,q +pp 2]p,q[4]pq — (p* - P)([Z]%,q = 1)[2]p,4[3]p,q[4]p.q
[215,481p.q[4lp.q '

1
/ p(1—qt)3 sty gt (18)
1

2lpg
p [3]1711([2 ?),qfl)*pq[z}%,q[él]lﬂq([z]pq 1)
_ +12(2]p,0[8]pg[4lpa([215,, — 1
215,418 p.4[41p.0 '
1
/ }7 qt v, q - t)dp,qt (19)

1
P/ (=P + (pa+ a2 +4°)2 = (pa+p+ )t +p)dpgt
L

(12135 = 1) Blog + (p3 + 2+ )2lpal4lpa (123, - 1)
pwm+qnbwl[h4mw 1) + p[28, 3lpa]p (12]pg — 1)
2134 Blpalalng

Thus, we obtain the required inequality (14) by using the calculated integrals (16)—(19)
in(15). O

Remark 5. In Theorem 1, if we set p = 1, then we obtain the following inequality:

T
1 - _ 7T + 4710
Ty — 7'517{“(%) i H< 2] ) |

q

S a2 o) |
qt-iqt=q

+ (—q — 20 +4q" + 30 + q6) ’ ™2 D2T1(71) H
This was proven by Ali et al. [18] (Theorem 3).

Theorem 2. Suppose that the assumptions of Lemma 2 hold. If |"2Dy, 4I1|", ¥ > 1 is convex on
[711, 712], then we have the inequality:

T

1 / T1(3¢)™d, g5¢ — TT Pt qm
Ttp — 711 [z]p,q
p2m+(1-p2)m

(7[2 - nl)Z 1-1 5 ) 1
= T2y ©; "(p.q) (®3(r),q)|”2Dp,qH(nl)|r n @4(p,q)|”2Dp’qH(7T2)|r)

1
r

1- T r 7T V%
40} () (Os(p ) D3 IIm)I + Ou(p, ) D 11(m2)F) |,
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where:

[z]p,q [‘Hm(i’z -p)+ P‘73

©Os(p.a) = 2
os(pg) = —PTBlatPe Cloaldlps — (2 = p) (255 ~ D lpalBlaldlpg
WP, 2084 Blpa g '
Pa°13]p.q [22]%q [)] [19‘]7[ ]([ ][ ]M([Z)B/q_l)
B +7(2]p,48]p.a[4]pa([2]5,4 — 1
Os(p.q) = [2]3,4(3]p,q 4l p.qg ,

—* (1218 = 1) Blpa + (P + 2% + ) 2] pal4lpg (213 1)
B 1pal3lpa4lpa (1254 = 1) + pI213,418)pa4]pa (12150 — 1)

Os(p.q) = p [2]%,11[3]%“4];% ’
12];,4131,4 (P> = P) +pa
O, (p, _ palpg )
7(p,q) 2F, 8,
Ou(na) - P (Rha=1)  Pa(1-2,) (2 —1)
' [3]p,q [2} :;)J,q [z]i,q [2 I

Proof. By taking the modulus of (13) and applying the power mean inequality, we have:

T

L / T1(3¢)™dy p3c — 11 pm + 472
7Ty — 701 P [2}
pr+(1-p2)m A

1

Qg
Ty — 7T
- (2[2];;511) / (P08 = (1= pat)y + p(1 = b)) 2Dy T1(Em + (1= £)702) | dp gt
’ 0
1
+ / P Qt v 7r2]j2 (tﬂ.’l + (l - t)”Z)‘dp,qt
o)
1 1_%
( ) 2lpq
Ty — 7T
= Z[qul / (@’ = (1= pat)ye + p(1— a1y )dpqt
’ 0

S

.
D2 Tt + (1 - t)nz)) dy gt

(PP — (1= pat)5 .+ p(1—qt)},)

—_
|
==
<=

1

1
+ / p(1—qt); dp gt / p(1—qt)5,
_1

1
2lpq 2lpg

mp2 TI(tm + (1 - t)n2)’rdp,qt

Applying the convexity of |2D, ,I1|", r > 1, we have:
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T

1 ) _ pnl +q7T2
P—— / I1(5¢)™2dp,q ¢ H(m

P2+ (1-p2)m A
-
(- || ]
Tlp — 7T
< S (P2 — (1= pat)2 .+ p(1— qt)3 )yt
2lp,q
! 0

_1 %
[Z]g,q

X / (Pt —(1- Pqt)%;,q +p(1- qt)%:,q) [£72Dp g TI(7t1) [ + (1 = £) "2 DpgT1(72) ") dp gt
0

1
-7

1
+ / p(1—qt); 4dp gt
_1

1
x| [ p(1= a0, (7D )l + (1= ) 2Dy 1)) dp gt

1

1 . A7
= %{97 (Prﬂl)(@3(PIQ)|H2D,29,17H(7T1)| +@4(P1q)|ﬂ2D;za,qH(7T2)|>
1
(p,2) (O(p ™Dy T1m) + O, ) =D 112} ) .
Thus, the proof is complete. [J

Remark 6. In Theorem 2, if we set p = 1, then Theorem 2 becomes Theorem 5 in [18].

Theorem 3. Suppose that the assumptions of Lemma 2 hold. If |™2D, ,I1|", r > 1 is convex on
[711, 7T2], then we have the inequality:

Uy

1
Tl — 701
p2ri+(1-p2)m

2 2 v D2 TI(m)| (2> —1
o — 7 1 2D2 ()| 1Dy, ()| ( 213,
< (110 — 111) ®5(p,q)( P n ( % )

I1(5¢)dp g — 11 pm + 4
' 2],,4

1
r

s 254 g
rol |”2D§,qn(n1)!([2];q—1)+|”2D,%,qH(7T2)r([zji,q—z[z]i,qﬂq)
[Z}p,q [2]17#

1,1 _
where < + 5 =1,

1
®(p,q) = /0 (PP — (1 - pgt)3, + p(1— qt)3 ) dp gt
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and:

Ou(p,q) = | r’(1—aqt)pdpat.

—

2

P

X

Proof. By taking the modulus of (13) and applying Holder’s inequality, we have

T

1 g | P4
p—— / I1(5¢)™dp,q ¢ H(

e [Z}pﬂ
q
< (m[z_]p:l) | (P08 = (= pat2 g+ p(1=at)) 2D} It + (1 = 7o) |dt
! 0
1
b [ P =gt DR + (1 - )|yt
B
m s
= (”2[2];:1 /(pq = (1= pgt)y +p(1=qt)0) dpgt
0

<

(7

1
r
1 1

.
+ / po(1 = qt)5dpat / "D}t + (1= )702) | dpgt
1 Pira

,
™Dy (b + (1 - t)ﬂrz)‘ dp ot

@ =

\ary

Applying the convexity of |2D, ;I1|", r > 1, we have:

Uy

1 . B p7T + g2
F——— / I1(5¢)™dp,q¢ — 11 (

2
p2r+(1-p?)m, [ ]p,q

1
R S s
2lp.q

Jlh — 7T
< (2[2],,,71 / (PP — (1= pat); .+ p(1— qt); 1) °dp gt
g 0

Plpa

(172 Dy g X1(711)|" 4 (1 = £) 2Dy 4 T1(712) || dp gt

o

1

S

1=

1 1
+ / P (1 — gty % dp gt / [H72 Dy T1(7r1)[" + (1 — ) 2Dy T1(2) | ot
Plra e
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- 1
2 ¥

Rl PO 0 T O e G ¥

2pg |7 2 213

A rAa
) 2 3 2 ¥

% |7T2D%J,qn(7r1)|r([2]p,q_1> |7T2D%J,qn(7r2)|r([2]p,q_2[2]p,q+1)

+®10(Pr‘7) [2]3 + [2]3
12z rA

Thus, the proof is complete.
Remark 7. In Theorem 3, if we set p = 1, then Theorem 3 becomes Theorem 4 in [18].

5. Concluding Remarks

In this work, we established some new midpoint-type (p, q)-integral inequalities for
twice-(p, q)-differentiable convex functions. In the last twenty-five years, quantum calculus
(or g-calculus) has served as a link between mechanics and physics. Physicists make up
the majority of scientists who utilize g-calculus today. Many scientists, in fact, employ
g-calculus as a mathematical model in their studies. In the theory of quantum gravity, g
can be thought of as a parameter connected to the exponential of the cosmological constant.
Quantum gravity can be divided into two types:

(i) There is no gravity when q = 1, which is the situation of classical quantum mechanics;
(i) When g # 0, we have quantum mechanics, in which the energy density of the vacuum
is non-zero.

Other areas of study in physics and related fields where g-calculus is being employed
include: (1) the g-Coulomb problem and the g-hydrogen atom; (2) quantum hydrodynam-
ics; (3) the Wess—Zumino model; (4) string theory; (5) Electroweak interaction; (6) Knot
theory; (7) quantum cardiodynamics; (8) special relativity; (9) Newtonian quantum grav-
ity; (10) quantum field theory; (11) elementary particle physics and chemical physics;
(12) molecular and nuclear spectroscopy; (13) general relativity.

For several other applications of g-calculus in physics, one can read [4]. A good book
on “Quantum Gravity” [34] is recommended for those interested in these topics. The fact
that fluid dynamics resemble quantum physics is no coincidence. In truth, quantum
physics and classical physics can both reflect various parts of the same physical process;
for example, see [35].
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