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Banach space of all p-power summable sequences of complex numbers for p ∈ [1,+∞).

Keywords: symmetric polynomial on a Banach space; continuous polynomial on a Banach space;
algebraic basis; space of p-summable sequences

MSC: 46G25; 47H60; 46B45; 46G20

1. Introduction

For classical results on symmetric polynomials on finite dimensional spaces, we refer
to [1–3]. Symmetric polynomials on infinite dimensional Banach spaces were studied,
firstly, by Nemirovski and Semenov in [4]. In particular, in [4] the authors constructed a
countable algebraic basis (see definition below) of the algebra of symmetric continuous
real-valued polynomials on the real Banach space `p and a finite algebraic basis of the
algebra of symmetric continuous real-valued polynomials on the real Banach space Lp[0, 1],
where 1 ≤ p < +∞.

In [5], these results were generalized to separable sequence real Banach spaces with
symmetric basis (see, e.g., ([6], Definition 3.a.1, p. 113) for the definition of a Banach space
with symmetric basis) and to separable rearrangement invariant function real Banach
spaces (see, e.g., ([7], Definition 2.a.1, p. 117) for the definition of a rearrangement invariant
function Banach space) resp. In [8], it was shown that there are only trivial symmetric con-
tinuous polynomials on the space `∞. Consequently, the results of [5] cannot be generalized
to nonseparable sequence Banach spaces. The most general approach to the studying of
symmetric functions on Banach spaces was introduced in [9–13].

Note that the existence of a finite or countable algebraic basis in some algebra of
symmetric continuous polynomials gives us the opportunity to obtain some information
or, even, to describe spectra of topological algebras of symmetric holomorphic functions,
which contain the algebra of symmetric continuous polynomials as a dense subalgebra. For
example, in [14], the authors constructed an algebraic basis of the algebra of symmetric
continuous complex-valued polynomials on the complex Banach space L∞[0, 1] of complex-
valued Lebesgue measurable essentially bounded functions on [0, 1].

This result gave us the opportunity to describe the spectrum of the Fréchet algebra
Hbs(L∞[0, 1]) of symmetric analytic entire functions, which are bounded on bounded sets
on the complex Banach space L∞[0, 1] (see [14]) and to show that the algebra Hbs(L∞[0, 1])
is isomorphic to the algebra of all analytic functions on the strong dual of the topological
vector space of entire functions on the complex plane C (see [15]).
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In [16,17], there were constructed algebraic bases of algebras of symmetric continuous
polynomials on Cartesian powers of complex Banach spaces Lp[0, 1] and Lp[0,+∞) of all
complex-valued Lebesgue integrable in a power p functions on [0, 1] and [0,+∞) resp.,
where 1 ≤ p < +∞. These results gave us the opportunity to represent Fréchet algebras of
symmetric entire analytic functions of bounded type on these Cartesian powers as Fréchet
algebras of entire analytic functions on their spectra (see [18]).

The spectra of algebras with countable algebraic bases and completions of such alge-
bras also were studied in [19–21]. Symmetric analytic functions of unbounded type were
studied in [22–25]. Applications of symmetric analytic functions to the spectra of linear
operators were introduced in [26].

Symmetric polynomials and symmetric holomorphic functions on spaces `p were
studied by a number of authors [22,27–41] (see also the survey [42]). Symmetric polynomi-
als and symmetric holomorphic functions on Cartesian powers of spaces `p were studied
in [43–47]. In particular, in [46] there was constructed a countable algebraic basis of the
algebra of all symmetric continuous complex-valued polynomials on the Cartesian power
of the complex Banach space `p. This result was generalized to the real case in [47]. In this
work, we generalize the results of the work [46] to the algebra of symmetric continuous
polynomials on the arbitrary Cartesian product `p1 × . . .× `pn .

2. Preliminaries

We denote by N and Z+ the set of all positive integers and the set of all nonnegative
integers resp.

2.1. Polynomials

Let X be a complex Banach space with norm ‖ · ‖X . A function P : X → C is called an
N-homogeneous polynomial if there exist N ∈ N and an N-linear form AP : XN → C such
that P is the restriction of AP to the diagonal, i.e.,

P(x) = AP
(

x, . . . , x︸ ︷︷ ︸
N

)
for all x ∈ X.

A function P : X → C, which can be represented in the form

P = P0 + P1 + . . . + PN , (1)

where P0 is a constant function on X and Pj : X → C is a j-homogeneous polynomial for
every j ∈ {1, . . . , N}, which is called a polynomial of degree at most N.

It is known that a polynomial P : X → C is continuous if and only if its norm

‖P‖ = sup
‖x‖X≤1

|P(x)|

is finite. Consequently, if P : X → C is a continuous N-homogeneous polynomial, then
we have

|P(x)| ≤ ‖P‖‖x‖N
X (2)

for every x ∈ X.
For details on polynomials on Banach spaces, we refer the reader to [48] or [49,50].

2.2. Algebraic Combinations and Algebraic Basis

Let functions f , f1, . . . , fm act from T to C, where T is an arbitrary nonempty set. If
there exists a polynomial Q : Cm → C such that

f (x) = Q( f1(x), . . . , fm(x))
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for every x ∈ T, then the function f is called an algebraic combination of functions f1, . . . , fm.
A set { f1, . . . , fm} is called algebraically independent if the fact that

Q( f1(x), . . . , fm(x)) = 0

for all x ∈ T implies that the polynomial Q is identically equal to zero. An infinite set of
functions is called algebraically independent if every finite subset is algebraically indepen-
dent. Note that the algebraic independence implies the uniqueness of the representation in
the form of an algebraic combination.

Let A be an algebra of functions. A subset B of A is called an algebraic basis of A
if each element of A can be uniquely represented as an algebraic combination of some
elements of B.

2.3. Symmetric Polynomials on the Space c00(Cn)

For m ∈ N, let c(m)
00 (Cn) be the space of all sequences x = (x1, . . . , xm, 0, . . .), where

x1, . . . , xm ∈ Cn and 0 = (0, . . . , 0) ∈ Cn. Note that c00(Cn) is isomorphic to (Cn)m. Let
c00(Cn) =

⋃∞
m=1 c(m)

00 (Cn).
A function f : c00(Cn)→ C is called symmetric if

f (x ◦ σ) = f (x)

for every x = (x1, x2, . . .) ∈ c00(Cn) and for every bijection σ : N→ N, where

x ◦ σ =
(

xσ(1), xσ(2), . . .
)

.

For k ∈ Zn
+ \ {(0, n. . ., 0)}, let us define a polynomial Hk : c00(Cn)→ C by

Hk(x) =
∞

∑
j=1

n

∏
s=1
ks>0

(
x(s)j

)ks
, (3)

where
x =

((
x(1)1 , . . . , x(n)1

)
,
(

x(1)2 , . . . , x(n)2

)
, . . .

)
∈ c00(Cn).

Let M be a nonempty finite subset of Zn
+ \ {(0, n. . ., 0)}. Let CM be the vector space of

all functions ξ : M→ C. Elements of the space CM can be considered as |M|-dimensional
complex vectors ξ = (ξk)k∈M, indexed by elements of M, where |M| is the cardinality of M.
Thus, CM is isomorphic to C|M|. The space CM we endow with norm ‖ξ‖∞ = maxk∈M |ξk|,
where ξ = (ξk)k∈M ∈ CM.

For a nonempty finite subset M of Zn
+ \ {(0, n. . ., 0)}, let us define a mapping πM :

c00(Cn)→ CM by
πM(x) = (Hk(x))k∈M, (4)

where x ∈ c00(Cn).

Theorem 1 ([46], Theorem 9). Let P : c00(Cn)→ C be a symmetric N-homogeneous polynomial.
Let MN = {k ∈ Zn

+ : 1 ≤ |k| ≤ N}. There exists a polynomial q : CMN → C such that
P = q ◦ πMN , where the mapping πMN is defined by (4).

We shall use the following lemma.

Lemma 1 ([46], Lemma 11). Let K ⊂ Cm and κ : K → Cm−1 be an orthogonal projection:
κ
(
(x1, x2, . . . , xm)

)
= (x2, . . . , xm). Let K1 = κ(K), int K1 6= ∅ and for every open set U ⊂ K1

a set κ−1(U) is unbounded. If polynomial Q(x1, . . . , xm) is bounded on K, then Q does not depend
on x1.
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3. The Main Result

Let n ∈ N, p1, . . . , pn ∈ [1,+∞) and p = (p1, . . . , pn). We shall consider the Cartesian
power `p1 × . . .× `pn of the complex spaces `p1 , . . . , `pn as the space of all sequences

x = (x1, x2, . . .), (5)

where xj =
(

x(1)j , . . . , x(n)j

)
∈ Cn for j ∈ N, such that the sequence

(
x(s)1 , x(s)2 , . . .

)
belongs

to `ps for every s ∈ {1, . . . , n}. We endow `p1 × . . .× `pn with norm

‖x‖`p1×...×`pn
=

(
n

∑
s=1

∥∥∥(x(s)1 , x(s)2 , . . .
)∥∥∥max p

ps

)1/max p

,

where ‖ · ‖ps is the norm of the space `ps . Note that c00(Cn) is a dense subspace of
`p1 × . . .× `pn .

Analogically to the definition of symmetric functions on c00(Cn), a function f :
`p1 × . . .× `pn → C is called symmetric if

f (x ◦ σ) = f (x)

for every x = (x1, x2, . . .) ∈ `p1 × . . .× `pn and for every bijection σ : N→ N, where

x ◦ σ =
(

xσ(1), xσ(2), . . .
)

.

Let k = (k1, . . . , kn) ∈ Zn
+ \ {(0, n. . ., 0)} be such that k1/p1 + . . . + kn/pn ≥ 1. Let us

define a polynomial Hp,k : `p1 × . . .× `pn → C by

Hp,k(x) =
∞

∑
j=1

n

∏
s=1
ks>0

(
x(s)j

)ks
. (6)

Note that the polynomial Hp,k is symmetric. Let us show that Hp,k is well-defined
and continuous.

Lemma 2. Let k ∈ Zn
+ \ {(0, n. . ., 0)} be such that k1/p1 + . . . + kn/pn ≥ 1. Let z(1), . . . , z(n) ∈

C be such that
∣∣∣z(1)∣∣∣ ≤ 1, . . . ,

∣∣∣z(n)∣∣∣ ≤ 1. Then,

∣∣∣z(1)∣∣∣k1 · · · · ·
∣∣∣z(n)∣∣∣kn

≤
∣∣∣z(1)∣∣∣p1

+ . . . +
∣∣∣z(n)∣∣∣pn

.

Proof. Note that∣∣∣z(1)∣∣∣k1
· · · · ·

∣∣∣z(n)∣∣∣kn
≤
(∣∣∣z(1)∣∣∣p1

)k1/p1
· · · · ·

(∣∣∣z(n)∣∣∣pn
)kn/pn

≤
(

max
1≤s≤n

∣∣∣z(s)∣∣∣ps
)k1/p1+...+kn/pn

.

Since max1≤s≤n

∣∣∣z(s)∣∣∣ps
≤ 1, taking into account the inequality k1/p1 + . . . + kn/pn ≥ 1,

(
max

1≤s≤n

∣∣∣z(s)∣∣∣ps
)k1/p1+...+kn/pn

≤ max
1≤s≤n

∣∣∣z(s)∣∣∣ps
.

Note that
max

1≤s≤n

∣∣∣z(s)∣∣∣ps
≤
∣∣∣z(1)∣∣∣p1

+ . . . +
∣∣∣z(n)∣∣∣pn

.

Thus, ∣∣∣z(1)∣∣∣k1
· · · · ·

∣∣∣z(n)∣∣∣kn
≤
∣∣∣z(1)∣∣∣p1

+ . . . +
∣∣∣z(n)∣∣∣pn

.

This completes the proof.
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Proposition 1. The polynomial Hp,k, defined by (6), is well-defined and ‖Hp,k‖ ≤ n.

Proof. Let us show that Hp,k is well-defined. Let x ∈ `p1 × . . .× `pn be of the form (5).

Since the series ∑∞
j=1

∣∣∣x(1)j

∣∣∣p1
, . . . , ∑∞

j=1

∣∣∣x(n)j

∣∣∣pn
are convergent, it follows that there exists

M ∈ N such that
∣∣∣x(1)j

∣∣∣ ≤ 1, . . . ,
∣∣∣x(n)j

∣∣∣ ≤ 1 for every j ≥ M. Therefore, for j ≥ M, taking
into account the inequality k1/p1 + . . . + kn/pn ≥ 1, by Lemma 2,∣∣∣x(1)j

∣∣∣k1 · · · · ·
∣∣∣x(n)j

∣∣∣kn
≤
∣∣∣x(1)j

∣∣∣p1
+ . . . +

∣∣∣x(n)j

∣∣∣pn
.

Consequently,

∞

∑
j=M

∣∣∣x(1)j

∣∣∣k1 · · · · ·
∣∣∣x(n)j

∣∣∣kn
≤

∞

∑
j=1

(∣∣∣x(1)j

∣∣∣p1
+ . . . +

∣∣∣x(n)j

∣∣∣pn)
=
∥∥∥(x(1)1 , x(1)2 , . . .

)∥∥∥p1

p1
+ . . . +

∥∥∥(x(n)1 , x(n)2 , . . .
)∥∥∥pn

pn
< ∞.

Therefore, the series ∑∞
j=1 ∏n

s=1

(
x(s)j

)ks
is absolutely convergent. Thus, Hp,k is well-

defined.
Let us show that ‖Hp,k‖ ≤ n. Let x ∈ `p1 × . . .× `pn be such that ‖x‖`p1×...×`pn

≤ 1.

Then,
∣∣∣x(1)j

∣∣∣ ≤ 1, . . . ,
∣∣∣x(n)j

∣∣∣ ≤ 1 for every j ∈ N. Therefore, for every j ∈ N, by Lemma 2,

∣∣∣x(1)j

∣∣∣k1 · · · · ·
∣∣∣x(n)j

∣∣∣kn
≤
∣∣∣x(1)j

∣∣∣p1
+ . . . +

∣∣∣x(n)j

∣∣∣pn
.

Consequently,

|Hp,k(x)| ≤
∞

∑
j=1

∣∣∣x(1)j

∣∣∣k1 · · · · ·
∣∣∣x(n)j

∣∣∣kn
≤

∞

∑
j=1

(∣∣∣x(1)j

∣∣∣p1
+ . . . +

∣∣∣x(n)j

∣∣∣pn)
=
∥∥∥(x(1)1 , x(1)2 , . . .

)∥∥∥p1

p1
+ . . . +

∥∥∥(x(n)1 , x(n)2 , . . .
)∥∥∥pn

pn

≤ ‖x‖p1
`p1×...×`pn

+ . . . + ‖x‖pn
`p1×...×`pn

≤ n.

Thus, ‖Hp,k‖ ≤ n. This completes the proof.

For arbitrary x = (x1, . . . , xm, 0, . . .), y = (y1, . . . , ys, 0, . . .) ∈ c00(Cn), we set

x⊕ y = (x1, . . . , xm, y1, . . . , ys, 0, . . .).

For x(1), . . . , x(r) ∈ c00(Cn), let

r⊕
j=1

x(j) = x(1) ⊕ . . .⊕ x(r).

Note that ∥∥∥∥ r⊕
j=1

x(j)
∥∥∥∥max p

`p1×...×`pn

=
r

∑
j=1

∥∥∥x(j)
∥∥∥max p

`p1×...×`pn
. (7)

Note that for every k ∈ Zn
+ \ {(0, n. . ., 0)},

Hk

( r⊕
j=1

x(j)
)
=

r

∑
j=1

Hk

(
x(j)
)

. (8)
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For every m ∈ N and j ∈ {1, . . . , m}, we set

γmj =
1

m1/m exp(2πij/m). (9)

We set γ01 = 0. For l = (l1, . . . , ln) ∈ Zn
+ \ {(0, n. . ., 0)}, let

al =
l̂1⊕

j1=1

. . .
l̂n⊕

jn=1

(
(γl1 j1 , . . . , γln jn), (0, . . . , 0), . . .

)
, (10)

where l̂j = max{1, lj} for j ∈ {1, . . . , n}.
Let us define a partial order on Zn

+ \ {(0, n. . ., 0)} in the following way. For k, l ∈
Zn
+ \ {(0, n. . ., 0)}, we set k � l if and only if there exists m ∈ Zn

+ such that ks = msls for
every s ∈ {1, . . . , n}. We write k � l, if k � l and k 6= l.

By ([46], Proposition 3), for every k, l ∈ Zn
+ \ {(0, n. . ., 0)},

Hk(al) =


n
∏

s=1
ks>0

1
lks/ls−1
s

n
∏

s=1
ks=0

l̂s, if k � l

0, otherwise

, (11)

where by the definition, the product of an empty set of multipliers is equal to 1. In particular,

Hk(ak) = 1. (12)

For (λ1, . . . , λn) ∈ Cn and x =
((

x(1)1 , . . . , x(n)1

)
,
(

x(1)2 , . . . , x(n)2

)
, . . .

)
∈ c00(Cn), let

(λ1, . . . , λn)� x =
((

λ1x(1)1 , . . . , λnx(n)1

)
,
(

λ1x(1)2 , . . . , λnx(n)2

)
, . . .

)
.

It can be easily verified that

Hk((λ1, . . . , λn)� x) = Hk(x)
n

∏
s=1
ks>0

λks
s , (13)

where k ∈ Zn
+ \ {(0, n. . ., 0)}. Note that

‖(λ1, . . . , λn)� x‖max p
`p1×...×`pn

=
n

∑
s=1

∥∥∥(λsx(s)1 , λsx(s)2 , . . .
)∥∥∥max p

ps

=
n

∑
s=1
|λs|max p

∥∥∥(x(s)1 , x(s)2 , . . .
)∥∥∥max p

ps
≤

n

∑
s=1
|λs|max p

∥∥∥(x(s)1 , x(s)2 , . . .
)∥∥∥max p

1

≤
n

∑
s=1
|λs|max p‖x‖max p

`1× n...×`1
= ‖x‖max p

`1× n...×`1

n

∑
s=1
|λs|max p

≤ ‖x‖max p
`1× n...×`1

n max
s∈{1...,n}

|λs|max p = n‖x‖max p
`1× n...×`1

(
max

s∈{1...,n}
|λs|

)max p
. (14)

For k = (k1, . . . , kn) ∈ Zn
+ let V(k) =

{
s ∈ {1, . . . , n} : ks 6= 0

}
and ν(k) = |V(k)|.

Lemma 3. Let k, l ∈ Zn
+ \ {(0, n. . ., 0)} be such that l � k. If ks = 0 for some s ∈ {1, . . . , n},

then ls = 0. Consequently, V(l) ⊂ V(k).

Proof. Since l � k, there exists m ∈ Zn
+ such that ls = msks for every s ∈ {1, . . . , n}.

Consequently, if ks = 0, then ls = 0.
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If s ∈ V(l), then ls > 0. Therefore, ks cannot be equal to zero. Consequently, s ∈ V(k).
Thus, V(l) ⊂ V(k). This completes the proof.

Lemma 4. Let k, l ∈ Zn
+ \ {(0, n. . ., 0)} be such that l � k and ν(l) ≥ ν(k). Then,

n

∑
s=1

ls
ps
≥ 1

max p
+

n

∑
s=1

ks

ps
.

Proof. By Lemma 3, V(l) ⊂ V(k). On the other hand, ν(l) ≥ ν(k), i.e., |V(l)| ≥ |V(k)|.
Therefore, V(l) = V(k). Consequently, ls = 0 if and only if ks = 0.

Since l � k, there exists m ∈ Zn
+ such that ls = msks for every s ∈ {1, . . . , n}. Since

ls = 0 if and only if ks = 0, it follows that ms > 0 for every s ∈ {1, . . . , n} such that ks > 0.
Since l 6= k, there exists s′ ∈ {1, . . . , n} such that ms′ ≥ 2. Consequently,

n

∑
s=1

ls
ps
−

n

∑
s=1

ks

ps
=

n

∑
s=1

msks

ps
−

n

∑
s=1

ks

ps
=

n

∑
s=1

(ms − 1)ks

ps
≥ ms′ − 1

ps′
≥ 1

ps′
≥ 1

max p
.

This completes the proof.

For N ∈ N and J ∈ {1, . . . , n}, let

M(J)
N =

{
l ∈ Zn

+ \ {(0, n. . ., 0)} : l1/p1 + . . . + ln/pn < 1, |l| ≤ N and ν(l) ≥ J
}

∪ {l ∈ Zn
+ \ {(0, n. . ., 0)} : l1/p1 + . . . + ln/pn ≥ 1 and |l| ≤ N}. (15)

Note that ([46], Theorem 6) implies the following theorem.

Theorem 2. Let M be a finite non-empty subset of Zn
+ \ {(0, n. . ., 0)}. Then,

(i) there exists m ∈ N such that, for every ξ = (ξk)k∈M ∈ CM there exists xξ ∈ c(m)
00 (Cn) such

that πM(xξ) = ξ; and
(ii) there exists a constant ρM > 0 such that if ‖ξ‖∞ < 1, then ‖xξ‖`1× n...×`1

< ρM.

By Theorem 2, for M = M(1)
N , there exists ρ = ρM > 0 such that πM(V′ρ) contains the

open unit ball of the space CM with the norm ‖ · ‖∞, where

V′ρ =
{

x ∈ c00(Cn) : ‖x‖`1× n...×`1
< ρ

}
.

Let
Vρ =

{
x ∈ c00(Cn) : ‖x‖`p1×...×`pn

< ρ
}

. (16)

Since ‖x‖`p1×...×`pn
≤ ‖x‖`1× n...×`1

for every x ∈ c00(Cn), it follows that Vρ ⊃ V′ρ.
Consequently, πM(Vρ) also contains the open unit ball of the space CM.

Proposition 2. For J ∈ {1, . . . , n}, let q
(
(ξl)l∈M(J)

N

)
be a polynomial on CM(J)

N . If q is bounded

on π
M(J)

N
(Vρ), then q does not depend on ξk, where k ∈ M(J)

N is such that ν(k) = J and k1/p1 +

. . . + kn/pn < 1.

Proof. Let k ∈ Zn
+ be such that ν(k) = J and k1/p1 + . . . + kn/pn < 1. Let K = π

M(J)
N
(Vρ),

K1 = π
M(J)

N \{k}
(Vρ) and κ : K → K1 be an orthogonal projection, defined by

κ : (ξl)l∈M(J)
N
7→ (ξl)l∈M(J)

N \{k}
.
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Let us show that, for every ball

B(u, r) =
{

ξ ∈ CM(J)
N \{k} : ‖ξ − u‖∞ < r

}
with center u = (ul)l∈M(J)

N \{k}
∈ CM(J)

N \{k} and radius r > 0 such that B(u, r) ⊂ π
M(J)

N \{k}
(Vρ),

a set κ−1(B(u, r)) is unbounded. Since u ∈ π
M(J)

N \{k}
(Vρ), there exists xu ∈ Vρ such that

π
M(J)

N \{k}
(xu) = u. For m ∈ N, we set

xm =
m⊕

j=1

(h(j, k1), . . . , h(j, kn))� ak,

where ak is defined by (10) and

h(j, s) =
(

1
j

) 1
wps

,

for j ∈ N and s ∈ {1, . . . , n}, where

w =
k1

p1
+ . . . +

kn

pn
.

Since 0 < w < 1, it follows that 1/w > 1. Consequently, the value ζ(1/w) is finite,
where ζ(·) is the Riemann zeta function. Choose ε such that

0 < ε < min
{

1,
ρ− ‖xu‖`p1×...×`pn

‖ak‖`1× n...×`1
(nζ(1/w))1/ max p ,

rn−1
(

max
{
‖ak‖`p1×...×`pn

, ‖ak‖N
`p1×...×`pn

})−1
(

ζ

(
min

{
1
w

, 1 +
1

w max p

}))−1}
.

Let xm,ε = (εxm)⊕ xu. Let us show that xm,ε ∈ Vρ. By (7),

‖xm‖max p
`p1×...×`pn

=
m

∑
j=1
‖(h(j, 1), . . . , h(j, n))� ak‖

max p
`p1×...×`pn

.

By (14),

‖(h(j, 1), . . . , h(j, n))� ak‖
max p
`p1×...×`pn

≤ n‖ak‖
max p
`1× n...×`1

(
max

s∈{1...,n}
|h(j, s)|

)max p
.

Note that

max
s∈{1...,n}

|h(j, s)| = max
s∈{1...,n}

(
1
j

) 1
wps

=

(
1
j

) 1
w max p

.

Therefore,

‖(h(j, 1), . . . , h(j, n))� ak‖
max p
`p1×...×`pn

≤ n‖ak‖
max p
`1× n...×`1

(
1
j

) 1
w

.

Consequently,
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‖xm‖max p
`p1×...×`pn

≤ n‖ak‖
max p
`1× n...×`1

m

∑
j=1

(
1
j

) 1
w

< n‖ak‖
max p
`1× n...×`1

∞

∑
j=1

(
1
j

) 1
w
= n‖ak‖

max p
`1× n...×`1

ζ(1/w).

Therefore,
‖xm‖`p1×...×`pn

< ‖ak‖`1× n...×`1
(nζ(1/w))1/ max p.

By the triangle inequality,

‖xm,ε‖`p1×...×`pn
≤ ε‖xm‖`p1×...×`pn

+ ‖xu‖`p1×...×`pn

< ε‖ak‖`1× n...×`1
(nζ(1/w))1/ max p + ‖xu‖`p1×...×`pn

.

Since ε <
ρ−‖xu‖`p1×...×`pn

‖ak‖`1×n...×`1
(nζ(1/w))1/ max p , it follows that ‖xm,ε‖`p1×...×`pn

< ρ. Hence, xm,ε ∈ Vρ.

Note that, for arbitrary l ∈ Zn
+ \ {(0, n. . ., 0)}, by (8),

Hl(xm) =
m

∑
j=1

Hl
(
(h(j, 1), . . . , h(j, n))� ak

)
.

By (13),

Hl
(
(h(j, 1), . . . , h(j, n))� ak

)
= Hl(ak)

n

∏
s=1

h(j, s)ls

= Hl(ak)
n

∏
s=1

(
1
j

) ls
wps

= Hl(ak)

(
1
j

)∑n
s=1 ls/(wps)

= Hl(ak)

(
1
j

) 1
w ∑n

s=1 ls/ps

.

Therefore,

Hl(xm) = Hl(ak)
m

∑
j=1

(
1
j

) 1
w ∑n

s=1 ls/ps

.

Consequently, taking into account (8), we have

Hl(xm,ε) = ε|l|Hl(xm) + Hl(xu) = ε|l|Hl(ak)
m

∑
j=1

(
1
j

) 1
w ∑n

s=1 ls/ps

+ Hl(xu). (17)

Let us show that π
M(J)

N \{k}
(xm,ε) ∈ B(u, r). For l ∈ M(J)

N \ {k} such that l 6� k, by (11),

Hl(ak) = 0, therefore, by (17),
Hl(xm,ε) = ul .

Let l ∈ M(J)
N \ {k} be such that l � k. Consider the case l1/p1 + . . . + ln/pn ≥ 1 and

|l| ≤ N. Since l1/p1 + . . . + ln/pn ≥ 1, it follows that

1
w

n

∑
s=1

ls
ps
≥ 1

w
.

Consider the case l1/p1 + . . . + ln/pn < 1, |l| ≤ N and ν(l) ≥ J. Since ν(k) = J, it
follows that ν(l) ≥ ν(k). By Lemma 4, since l � k and ν(l) ≥ ν(k),

1
w

n

∑
s=1

ls
ps
≥ 1 +

1
w max p

.
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Thus, for l ∈ M(J)
N \ {k} such that l � k, we have

n

∑
s=1

ls
ps
≥ min

{
1
w

, 1 +
1

w max p

}
. (18)

By (17), taking into account the equality Hl(xu) = ul , we have

|Hl(xm,ε)− ul | ≤ ε|l||Hl(ak)|
m

∑
j=1

(
1
j

) 1
w ∑n

s=1 ls/ps

.

Since ε < 1, it follows that ε|l| ≤ ε. By (2), taking into account the inequality ‖Hl‖ ≤ n,
we have |Hl(ak)| ≤ n‖ak‖

|l|
`p1×...×`pn

. Since 1 ≤ |l| ≤ N, for every b > 0, we have b|l| ≤
max

{
b, bN}. Therefore,

‖ak‖
|l|
`p1×...×`pn

≤ max
{
‖ak‖`p1×...×`pn

, ‖ak‖N
`p1×...×`pn

}
.

Thus,
|Hl(ak)| ≤ n max

{
‖ak‖`p1×...×`pn

, ‖ak‖N
`p1×...×`pn

}
.

By (18),

m

∑
j=1

(
1
j

) 1
w ∑n

s=1 ls/ps

≤
m

∑
j=1

(
1
j

)min
{

1
w ,1+ 1

w max p

}
< ζ

(
min

{
1
w

, 1 +
1

w max p

})
.

Hence,

|Hl(xm,ε)− ul | < εn max
{
‖ak‖`p1×...×`pn

, ‖ak‖N
`p1×...×`pn

}
ζ

(
min

{
1
w

, 1 +
1

w max p

})
.

Since

ε < r
(

n max
{
‖ak‖`p1×...×`pn

, ‖ak‖N
`p1×...×`pn

}
ζ

(
min

{
1
w

, 1 +
1

w max p

}))−1
,

it follows that |Hl(xm,ε)− ul | < r, therefore, π
M(J)

N \{k}
(xm,ε) ∈ B(u, r).

By (12), Hk(ak) = 1, therefore, by (17),

Hk(xm,ε) = ε|k|
m

∑
j=1

1
j
+ Hk(xu)→ ∞

as m → +∞. Hence, κ−1(B(u, r)) is unbounded. By Lemma 1, q does not depend on ξk.
This completes the proof.

Theorem 3. Let P : `p1 × . . .× `pn → C be an N-homogeneous symmetric continuous polyno-
mial. If N < min p, then P ≡ 0. Otherwise, there exists the polynomial q̂ : CMp,N → C such that
P = q̂ ◦ π

(p)
Mp,N

, where

Mp,N =
{

k ∈ Zn
+ \ {(0, n. . ., 0)} : k1/p1 + . . . + kn/pn ≥ 1 and |k| ≤ N

}
and π

(p)
Mp,N

: `p1 × . . .× `pn → CMp,N is defined by π
(p)
Mp,N

(x) = (Hp,k(x))k∈Mp,N .
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Proof. Let P̃ be the restriction of P to c00(Cn). Note that P̃ is a symmetric N-homogeneous
polynomial. By Theorem 1, there exists a unique polynomial q : CMN → C such that

P̃ = q ◦ πMN . (19)

Since P is continuous, P is bounded on Vρ, defined by (16). Consequently, P̃ is bounded

on Vρ. Therefore, q is bounded on πMN (Vρ). Note that MN = M(1)
N , where M(1)

N is defined
by (15).

Let us prove that q does not depend on arguments ξk such that k1/p1 + . . .+ kn/pn < 1

by induction on ν(k). By Proposition 2, for J = 1, we have that q
(
(ξk)k∈MN

)
does not

depend on arguments ξk such that ν(k) = 1 and k1/p1 + . . . + kn/pn < 1. Suppose the

statement holds for ν(k) ∈ {1, . . . , J − 1}, where J ∈ {2, . . . , n}, i.e., q
(
(ξk)k∈MN

)
does not

depend on arguments ξk such that 1 ≤ ν(k) ≤ J − 1 and k1/p1 + . . . + kn/pn < 1. Then,

the restriction of q to CM(J)
N , by Proposition 2, does not depend on ξk such that ν(k) = J and

k1/p1 + . . .+ kn/pn < 1. Hence, q does not depend on ξk such that k1/p1 + . . .+ kn/pn < 1.
Consider the case N < min p. In this case, k1/p1 + . . . + kn/pn < 1 for every k ∈ MN .

Consequently, q is constant. Therefore, taking into account (19), P̃ is constant. Since P̃ is an
N-homogeneous polynomial, where N > 0, it follows that P̃ is identically equal to zero. By
the continuity of P, taking into account that P̃ is the restriction of P to the dense subspace
c00(Cn) of the space `p1 × . . .× `pn , the polynomial P is identically equal to zero.

Consider the case N ≥ min p. In this case, Mp,N 6= ∅. Since q does not depend on ξk
such that k ∈ MN \Mp,N , the equality (19) implies the following equality:

P̃ = q̂ ◦ πMp,N , (20)

where q̂ is the restriction of q to CMp,N , which is the subspace of CMN . Let us show
that P = q̂ ◦ π

(p)
Mp,N

. Let x ∈ `p1 × . . .× `pn . Since c00(Cn) is dense in `p1 × . . .× `pn ,

there exists the sequence {xm}∞
m=1 ⊂ c00(Cn), which is convergent to x. Since Hp,k is

continuous and Hk is the restriction of Hp,k, it follows that limm→∞ Hk(xm) = Hp,k(x)

for every k ∈ Mp,N . Therefore, limm→∞ πMp,N (xm) = π
(p)
Mp,N

(x). Since q̂ is the poly-
nomial on a finite dimensional space, it follows that q̂ is continuous. Consequently,

limm→∞

(
q̂ ◦ πMp,N

)
(xm) =

(
q̂ ◦ π

M(p)
p,N

)
(x). On the other hand, since P is continuous,

taking into account (20), we have

lim
m→∞

(
q̂ ◦ πMp,N

)
(xm) = lim

m→∞
P̃(xm) = lim

m→∞
P(xm) = P(x).

Therefore, P(x) =
(

q̂ ◦ π
M(p)

p,N

)
(x). Thus, P = q̂ ◦π

M(p)
p,N

. This completes the proof.

Proposition 3. The set of polynomials{
Hp,k : k ∈ Zn

+ \ {(0, n. . ., 0)} such that k1/p1 + . . . + kn/pn ≥ 1
}

(21)

is algebraically independent.

Proof. By ([46], Theorem 10), the set of polynomials{
H(1, n...,1),k : k ∈ Zn

+ \ {(0, n. . ., 0)}
}

is an algebraic basis of the algebra of all symmetric continuous complex-valued polynomials
on `1× n. . . ×`1. Consequently, this set of polynomials is algebraically independent. Since
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every subset of an algebraically independent set is algebraically independent, the set
of polynomials{

H(1, n...,1),k : k ∈ Zn
+ \ {(0, n. . ., 0)} such that k1/p1 + . . . + kn/pn ≥ 1

}
is algebraically independent. Since H(1, n...,1),k is the restriction of Hp,k for every k ∈
Zn
+ \ {(0, n. . ., 0)} such that k1/p1 + . . . + kn/pn ≥ 1, it follows that the set (21) is alge-

braically independent. This completes the proof.

Theorem 4. The set of polynomials (21) is an algebraic basis of the algebra of all symmetric
continuous complex-valued polynomials on `p1 × . . .× `pn .

Proof. Let P : `p1 × . . .× `pn → C be a symmetric continuous complex-valued polynomial
of degree at most N, where N ∈ Z+. Then,

P = P0 + P1 + . . . + PN ,

where P0 ∈ C and Pj is a j-homogeneous polynomial for every j ∈ {1, . . . , N}. By the
Cauchy Integral Formula for holomorphic functions on Banach spaces (see, e.g., ([48],
Corollary 7.3, p. 47)),

Pj(x) =
1

2πi

∫
|t|=r

P(tx)
tj+1 dt

for every j ∈ {1, . . . , N}, x ∈ `p1 × . . .× `pn and r > 0, where t ∈ C. Consequently, Pj is
symmetric and continuous for every j ∈ {1, . . . , N}. Therefore, by Theorem 3, Pj can be
represented as an algebraic combination of elements of the set (21) for every j ∈ {1, . . . , N}.

Consequently, P can be represented as an algebraic combination of elements of the
set (21). Since, by Proposition 3, the set (21) is algebraically independent, the above-
mentioned representation of P as an algebraic combination of elements of (21) is unique.
Thus, every symmetric continuous complex-valued polynomial on `p1 × . . .× `pn can be
uniquely represented as an algebraic combination of elements of the set (21). This completes
the proof.
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