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Abstract: In this paper, we establish the existence of a nontrivial weak solution to Schrödinger-kirchhoff
type equations with the fractional magnetic field without Ambrosetti and Rabinowitz condition using
mountain pass theorem under a suitable assumption of the external force. Furthermore, we prove
the existence of infinitely many large- or small-energy solutions to this problem with Ambrosetti and
Rabinowitz condition. The strategy of the proof for these results is to approach the problem by applying
the variational methods, that is, the fountain and the dual fountain theorem with Cerami condition.
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1. Introduction

The Schrödinger equation plays the role of Newton’s laws and conservation of energy
in classical mechanics. The linear Schrödinger equation represents one of the main results of
quantum mechanics which is the evolution of a free non-relativistic quantum particle. The
structure of the nonlinear Schrödinger equation is considerably complicated and requires
more sophisticated analysis; see [1]. This equation has been studied extremely according to
the pure or applied mathematical theory, because it stands out as a prototypical system
that has shown to be crucial to model and understand the characteristics of numerous
areas in nonlinear physics. In particular, the significant development of the Bose-Einstein
condensates revived researches regarding the nonlinear waveforms for the nonlinear
Schrödinger equations with external potentials and the related nonlinear partial differential
equations. For further applications and more details we refer the reader to [2–8]. Indeed,
the mathematical model for the remarkable Bose-Einstein condensate with attractive inter-
particle interactions under a magnetic trap is a class of nonlinear Schrödinger equations
with external potentials, which is sometimes called the Gross-Pitaevskii equation [9,10].
In this regard the present paper is motivated by some works (see [11–21]) concerning the
nonlinear Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
(∇+ iA(x))2ψ + W(x)ψ− f (x, |ψ|2)ψ for x ∈ RN , (1)

where h̄ is Planck constant A(x) = (A1(x), A2(x), . . . , AN(x)) : RN → RN is a real vector
(magnetic) potential with magnetic field B = curlA, and W(x) : RN → RN is a scalar
electric potential. Particularly, we are interested in the existence of standing wave solutions,
that is, solutions of type (1) when h̄ is sufficiently small, where E is a real number and u(x)
is a complex-value function which satisfies

− (∇+ iA(x))2u(x) + λV(x)u(x) = λ f (x, |u|2)u, x ∈ RN , (2)

where λ−1 = h̄2

2m and V(x) = W(x) − E. The transition from quantum mechanics to
classical mechanics can be done formally with h̄ approach 0. Thus the existence of solutions
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for h̄ small, semi-classical solutions, has important physical interest. Very recently, authors
in [22] established the Bourgain-Brezis-Mironescu type result which constructs a bridge
between a fractional magnetic operator and the classical theory. Motivated by this paper,
nonlocal fractional problems with magnetic fields has been extensively studied by many
researchers; see [23–29] and the references therein. In this regard, the present paper is
devoted to the existence of solutions for the following Kirchhoff type equation with the
fractional magnetic field

K(|u|ps,A)(−∆)s
p,Au + V(x)|u|p−2u = λ f (x, |u|)u in RN , (3)

where

|u|ps,A =
∫
RN

∫
RN

|u(x)− ei(x−y)·A(
x+y

2 )u(y)|p
|x− y|N+ps dxdy,

where 0 < s < 1 < p < +∞ and the fractional magnetic operator (−∆)s
A is defined as

(−∆)s
p,Aφ(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|φ(x)− ei(x−y)·A(
x+y

2 )φ(y)|p−2(φ(x)− ei(x−y)·A(
x+y

2 )φ(y))
|x− y|N+ps dy, x ∈ RN ,

for all φ ∈ C∞
0 (RN ,C). Here, Bε(x) denotes a ball in RN centered at x ∈ RN and radius ε > 0

and A : RN → RN is the magnetic potential. Also, the nonlinear function f : RN ×R→ R
will be stated later (see Section 2). When p = 2, the fractional Laplacian (−∆)s

p,A is a
fractional Laplacian contains the magnetic field. On the other hand, the standard fractional
Laplacian (−∆)s has been a classical topic for a long time and it is applied in various
research fields, such as social sciences, fractional quantum mechanics, materials science,
continuum mechanics, phase transition phenomena, image process, game theory, and Lévy
process, fractional Sobolev spaces and their corresponding nonlocal equations, see [30–32]
and the references therein.

Kirchhoff in [33] first introduced a model given by the equation

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0
|∂u
∂x
|dx
)∂2u

∂x2 = 0,

which extends the classical D’Alembert’s wave equation by taking into account the changes
in the length of the strings during the vibrations. In this direction, the non-local problem of
Kirchhoff type equations have been investigated in [34–37].

Now in order to confirm the existence of solutions to the nonlinear elliptic equations,
the following Ambrosetti and Rabinowitz condition ((AR)-condition) given in [38] has been
widely used;

(AR) There exists ζ > p such that

0 < ζF(x, τ) ≤ f (x, τ)τ2, for x ∈ RN and τ > 0,

where F(x, τ) =
∫ τ

0 f (x, s)sds.

It is well known that (AR)-condition is essential to ensure the compactness condition
of the Euler-Lagrange functional which plays a key role in applying the critical point theory.
However, this condition is too restrictive and gets rid of many nonlinearities. Thus many
researchers have tried to drop the (AR)-condition in the elliptic problem of nonlocal type
(see e.g., [20,39–42]). In this respect, we are to prove the existence of a nontrivial solution
for problem (3) without (AR)-condition using the mountain pass theorem with Cerami
condition under a suitable assumption of the nonlinearity of f . Furthermore, we present
the existence of infinitely many large- or small-energy solutions to our problem without
(AR)-condition. Especially, following in ([43] Remark 1.8), there are many examples which
are not fulfilling the condition on f in a elliptic problem. Thus, inspired by these examples,
we investigate the existence and multiplicity of weak solutions to the fractional p-Laplacian
Equation (3) with the external magnetic potential. The strategy of the proof for these results
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is to approach the problem by applying the variational methods, namely, the fountain
and the dual fountain theorem with Cerami condition. As far as we are aware, none have
reported such multiplicity results for our problem with the external magnetic field.

This present paper is organized as follows. in Section 2, we state some basic results
to deal with this type equation with the fractional magnetic field and review well known
facts for the fractional Sobolev space. And under certain assumptions of f , we establish the
existence of a weak solution of problem (3) using mountain pass theorem.

2. Preliminaries

Let the potential function V ∈ C(RN ,R) be continuous and bounded from below.
Assume that

(V) V ∈ L1
loc(R

N), ess infx∈RN V(x) > 0 and lim|x|→∞ V(x) = +∞.

Let Lp
V(R

N) denote the real valued Lebesgue space with V(x)|u|p ∈ L1(RN), equipped
with the norm

||u||pp,V =
∫
RN

V(x)|u|p dx.

The fractional Sobolev spaceHs
V(RN) is then defined as for s ∈ (0, 1) and p ∈ (1,+∞)

Hs
V(RN) =

{
u ∈ Lp

V(R
N) :

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dxdy < +∞

}
.

The spaceHs
V(RN) is endowed with the norm

||u||pHs
V(RN)

:=
(
||u||pp,V + [u]ps

)
with [u]ps :=

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dxdy.

For further details on the fractional Sobolev spaces we refer the reader to [44] and the
references therein. We recall the embedding theorem; see e.g., [45].

Lemma 1. Let (V) hold and s ∈ (0, 1), p ∈ (1,+∞) and let p∗s be the fractional critical Sobolev
exponent, that is

p∗s :=

{ Np
N−sp if sp < N,

+∞ if sp ≥ N.

Then, the embedding Hs
V(RN) → Lγ(RN) is continuous for any γ ∈ [p, p∗s ] and moreover, the

embeddingHs
V(RN) ↪→ Lγ(RN) is compact for any γ ∈ [p, p∗s ).

Let Lp
V(R

N ,C) be the Lebesgue space of functions u : RN → C with V(x)|u|p ∈
L1(RN). DefineHs

A,V(R
N ,C) as the closure of C∞

c (RN ,C) with respect to the norm

||u||ps,A = (||u||pp,V + |u|ps,A),

where the magnetic Gagliardo seminorm is given by

|u|ps,A =
∫
RN

∫
RN

|u(x)− ei(x−y)·A(
x+y

2 )u(y)|p
|x− y|N+ps dxdy.

In fact, arguing as in ([46] Proposition 2.1), we can easily show that it is a reflexive
and separable Banach space as the similar arguments in ([45,47] Appendix). The following
Lemmas 2 and 3 can be shown by applying as a general exponent p instead of p = 2 the
same argument in ([39] Lemmas 3.4 and 3.5).

Lemma 2. If (V) holds and r ∈ [p, p∗s ], then the embedding

Hs
A,V(R

N ,C) ↪→ Lr(RN ,C)
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is continuous. Furthermore, for any compact subset Γ ⊂ RN and r ∈ [1, p∗s ), then the embedding

Hs
A,V(R

N ,C) ↪→ Hs
V(Γ,C) ↪→ Lr(Γ,C)

is continuous and the latter is compact, whereHs
V(Γ,C) is endowed with the following norm:

‖u‖p
s,V =

( ∫
Γ

V(x)|u|p dx +
∫

Γ

∫
Γ

|u(x)− u(y)|p
|x− y|N+ps dxdy

)
.

Lemma 3. Under the assumption (V), for all bounded sequence {un} inHs
A,V(R

N ,C) the sequence
{|un|} admits a subsequence converging strongly to some u in Lr(RN) for all r ∈ [p, p∗s ).

For our problem, we suppose that K : R+
0 → R+

0 satisfies the following conditions:

(K1) K ∈ C(R+
0 ) satisfies infτ∈R+ K(τ) ≥ a > 0, where a > 0 is a constant.

(K2) There is a positive constant θ ∈ [1, N
N−ps ) such that θK(τ) = θ

∫ τ
0 K(η)dη ≥ K(τ)τ for

any τ ≥ 0.

A typical example for K is given by K(τ) = b0 + b1τm with m > 0, b0 > 0, and b1 ≥ 0.
Now we assume that for 1 < pθ < q < p∗s and p ∈ (1,+∞),

(F1) f : RN ×R+ → R satisfies the Carathéodory condition.
(F2) f ∈ C(RN ×R+,R), and there exist constants c1, c2 > 0 such that

| f (x, τ)| ≤ c1τp−2 + c2τq−2, for all (x, τ) ∈ RN ×R+, q ∈ (pθ, p∗s ).

(F3) f (x, τ) = o(τp−1) as τ → 0 for x ∈ RN uniformly.

(F4) limτ→∞
F(x,τ)

τpθ = ∞ uniformly for almost all x ∈ RN , where the number θ is given in
(K2), and F(x, τ) =

∫ τ
0 f (x, η)η dη.

(F5) There exist µ > p and r > 0 such that

f (x, τ)τ2 − µF(x, τ) ≥ −$τp − β(x) for all x ∈ RN and τ ≥ r,

where $ ≥ 0 and β ∈ L1(RN) ∩ L∞(RN) with β(x) ≥ 0.

The Euler functional corresponding to the problem (3) is Jλ : Hs
A,V(R

N ,C) → R
defined as follows

Jλ(u) =
1
p
(K(|u|ps,A) + ||u||

p
p,V)− λ

∫
RN

F(x, |u|) dx.

The functional Jλ is Fréchet differentiable onHs
A,V(R

N ,C),

〈J ′λ(z), v〉 = R

(
K(|u|ps,A)

∫
RN

∫
RN

|u(x)− E(x, y)u(y)|p−2(u(x)− E(x, y)u(y)) · [v(x)− E(x, y)v(y)]
|x− y|N+ps dxdy

+
∫
RN

V(x)|u|p−2uv̄ dx− λ
∫
RN

f (x, |u|)uv̄ dx
)

for any u, v ∈ Hs
A,V(R

N ,C), where E(x, y) := ei(x−y)·A(
x+y

2 ) and v̄ denotes complex con-
jugation of v ∈ C. Hereafter, 〈·, ·〉 denotes the duality pairing between (Hs

A,V(R
N ,C))′

and Hs
A,V(R

N ,C). Following in [39], we observe that the critical points of Jλ are exactly
the weak solutions of (1.1) and the functional Jλ is weakly lower semi-continuous in
Hs
A,V(R

N ,C).
The following result is to show that the energy functional Jλ fulfills the geometric

conditions.
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Lemma 4. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F4)
hold. Then the geometric conditions in the mountain pass theorem hold, i.e.,

(1) u = 0 is a strict local minimum for Jλ.
(2) Jλ is unbounded from below onHs

A,V(R
N ,C).

Proof. According to (F2) and (F3), for any ε > 0, we can choose a positive constant denoted
C(ε) such that

| f (x, τ)τ| ≤ ετp−1 + C(ε)τq−1, for all (x, τ) ∈ RN ×R+. (4)

Assume that ||u||s,A < 1. Owing to (K1), (K2) and (4), one has

Jλ(u) =
1
p
(K(|u|ps,A) + ||u||

p
p,V)− λ

∫
RN

F(x, |u|)dx

≥ min{1, aθ−1}
p

||u||ps,A −
λε

p
||u||pLp(RN)

− λC(ε)
q
||u||qLq(RN)

≥ min{1, aθ−1}
p

||u||ps,A −
λεC

p
||u||ps,A −

λCC(ε)
q
||u||qs,A

for some constant C. Choose ε > 0 so small that 0 < λεC < min{1,aθ−1}
2p . Then

Jλ(u) ≥
min{1, aθ−1}

2p
||u||ps,A − C(λ, ε)C||u||qs,A.

Since q > p, there is R > 0 small sufficiently and δ > 0 such that Jλ(u) ≥ δ > 0 when
||u||s,A = R. Therefore u = 0 is a strict local minimum for Jλ.

Next we prove the condition (2). By the condition (F4), for any C̃ > 0, we can choose a
constant δ > 0 such that

F(x, τ) ≥ C̃τpθ (5)

for τ > δ and for almost all x ∈ RN . Under the assumption (K2), we note that for all ξ ≥ 1,

K(ξ) ≤ K(1)(1 + ξθ). (6)

Relations (5) and (6) with Lemma 3 imply that for v ∈ Hs
A,V(R

N ,C)

Jλ(tv) =
1
p
(K(|tv|ps,A) + ||tv||

p
p,V)− λ

∫
RN

F(x, |tv|)dx

≤ 1
p

(
K(1)(1 + |tv|pθ

s,A) + ||tv||
p
p,V

)
− λC̃

∫
{|tv|>δ}

|tv|pθ dx

≤ 1
p

(
2K(1)tpθ |v|pθ

s,A) + tpθ ||v||pp,V

)
− λtpθC̃

∫
{|tv|>δ}

|v|pθ dx

= tpθ
( 1

p

(
2K(1)||v||pθ

s,A + ||v||pp,V

)
− λC̃

∫
{|tv|>δ}

|v|pθ dx
)

for t > 0. If C̃ is large sufficiently, then we deduce that Jλ(tv)→ −∞ as t→ ∞. Hence the
functional Jλ is unbounded from below. The proof is completed.

First of all, we introduce the Cerami condition, which was initially provided by
Cerami [48].

Definition 1. Let the functional Ψ be C1 and c ∈ R. If any sequence {un} satisfying

Ψ(un)→ c and (1 + ||un||)||Ψ′(un)|| → 0
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possesses a convergent subsequence, we say that Ψ fulfils Cerami condition ((C)c-condition in short)
at the level c.

Definition 2. A function u ∈ Hs
A,V(R

N ,C) is called weak solution of problem (3) if u satisfies

R
(

K(|u|ps,A)
∫
RN

∫
RN

|u(x)− E(x, y)u(y)|p−2(u(x)− E(x, y)u(y)) · [φ(x)− E(x, y)φ(y)]
|x− y|N+ps dxdy

+
∫
RN

V(x)|u|p−2uφ̄ dx
)
= R

(
λ
∫

Ω
f (x, |u(x)|)uφ̄ dx

)
for all φ ∈ Hs

A,V(R
N ,C).

The following lemma plays a crucial role in establishing the existence of a nontrivial
weak solution to the given problem.

Lemma 5. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2), (F1)–(F2), and
(F4)–(F5) hold. Then the functional Jλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence inHs
A,V(R

N ,C), that is,

Jλ(un)→ c and ||J ′λ(un)||s,A
′ (1 + ||un||s,A)→ 0 as n→ ∞,

which means
c = Jλ(un) + o(1) and

〈
J ′λ(un), un

〉
= o(1), (7)

where o(1) → 0 as n → ∞. If {un} is bounded in Hs
A,V(R

N ,C), it follows from the
analogous argument as in the proof of Lemma 4.2 in [39] that sequence {un} converges
strongly to u inHs

A,V(R
N ,C). Hence, it suffices to ensure that the sequence {un} is bounded

inHs
A,V(R

N ,C). We argue by contradiction. Assume that the sequence {un} is unbounded
inHs

A,V(R
N ,C). So then we may assume that

||un||s,A → ∞, as n→ ∞.

Due to the condition (7), we have that

c = Jλ(un) + o(1) =
1
p
(K(|un|ps,A) + ||un||pp,V)− λ

∫
RN

F(x, |un|) dx + o(1). (8)

Since ||un||s,A → ∞ as n→ ∞, we assert by (8) that∫
RN

F(x, un) dx ≥ 1
pλ

(K(|un|ps,A) + ||un||pp,V)−
c
λ
+

o(1)
λ

≥ 1
pλ

min{1, aθ−1}||un||ps,A −
c
λ
+

o(1)
λ
→ ∞ as n→ ∞. (9)

Define a sequence {ωn} by ωn = un/||un||s,A. Then it is immediate that {ωn} ⊂ Hs
A,V(R

N ,C)
and ||ωn||s,A = 1. Hence, up to a subsequence, still denoted by {ωn}, we obtain ωn ⇀ ω in
Hs

A,V(R
N ,C) as n→ ∞, we have

ωn(x)→ ω(x) for a.e. x ∈ RN and |ωn| → |ω| in Lr(RN) as n→ ∞ (10)

for p ≤ r < p∗s . Set Σ =
{

x ∈ RN : ω(x) 6= 0
}

. By the convergence (10), we know that

|un| = |wn|||un||s,A → ∞ as n→ ∞
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for all x ∈ Σ. Then it follows from (K2) and (F3) that for all x ∈ Σ,

lim
n→∞

F(x, |un|)
K(|un|ps,A) + ||un||pp,V

≥ lim
n→∞

F(x, |un|)
K(1)(1 + |un|pθ

s,A) + ||un||pp,V

≥ lim
n→∞

F(x, |un|)
2K(1)||un||pθ

s,A + ||un||pθ
p,V

≥ lim
n→∞

F(x, |un|)
(2K(1) + 1)||un||pθ

s,A

≥ lim
n→∞

F(x, |un|)
(2K(1) + 1)|un|pθ

|wn|pθ

= ∞, (11)

where the inequality K(η) ≤ K(1)(1 + ηθ) is used for all η ∈ R+
0 because if 0 ≤ η < 1,

then K(η) =
∫ η

0 K(s) ds ≤ K(1), and if η > 1, then K(η) ≤ K(1)ηθ . Thus we obtain
that |Σ| = 0, where | · | is the Lebesgue measure in RN . Indeed, assume that |Σ| 6= 0.
Taking account into (F4) we can choose τ0 > 1 such that F(x, τ) > τpθ for all x ∈ RN and
τ0 < τ. By means of (F1) and (F2), we derive that there is M > 0 such that |F(x, τ)| ≤ M
for all (x, τ) ∈ RN × (0, τ0]. Hence there is a M0 ∈ R such that F(x, τ) ≥ M0 for all
(x, τ) ∈ RN ×R+, and thus

F(x, |un|)−M0

K(|un|ps,A) + ||un||pp,V
≥ 0, (12)

for all x ∈ RN and for all n ∈ N. In accordance with (9), (11), (12) and the Fatou lemma, we
infer that

1
λ
= lim inf

n→∞

∫
RN F(x, |un|) dx

λ
∫
RN F(x, |un|) dx + c− o(1)

≥ lim inf
n→∞

∫
RN

2F(x, |un|)
K(|un|ps,A) + ||un||pp,V

dx

= lim inf
n→∞

∫
Σ

2F(x, |un|)
K(|un|ps,A) + ||un||pp,V

dx− lim sup
n→∞

∫
Σ

2M0

K(|un|ps,A) + ||un||pp,V
dx

= lim inf
n→∞

∫
Σ

2(F(x, |un|)−M0)

K(|un|ps,A) + ||un||pp,V
dx

≥
∫

Σ
lim inf

n→∞

2(F(x, |un|)−M0)

K(|un|ps,A) + ||un||pp,V
dx

=
∫

Σ
lim inf

n→∞

2F(x, |un|)
K(|un|ps,A) + ||un||pp,V

dx−
∫

Σ
lim sup

n→∞

2M0

K(|un|ps,A) + ||un||pp,V
dx = ∞,

which is a contradiction. This means ω(x) = 0 for almost all x ∈ RN .
Notice that V(x)→ +∞ as |x| → ∞, then( 1

pθ
− 1

µ

)
||un||pp,V − C8

∫
|un |≤r

(|un|p + |un|q) dx

≥ 1
2

( 1
pθ
− 1

µ

)
||un||pp,V −M0,
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whereM0 is a positive constant. Combining this with (F2) and (F5), one has

c + 1 ≥ Jλ(un)−
1
µ

〈
J ′λ(un), un

〉
≥ 1

p
(K(|un|ps,A)−

1
µ
(K(|un|ps,A)|un|ps,A +

( 1
p
− 1

µ

)
||un||pp,V

+ λ
∫
RN

(
1
µ

f (x, |un|)|un|2 − F(x, |un|)
)

dx

≥ 1
p
(K(|un|ps,A)−

1
µ
(K(|un|ps,A)|un|ps,A +

( 1
pθ
− 1

µ

)
||un||pp,V

+ λ
∫
|un |>r

(
1
µ

f (x, |un|)|un|2 − F(x, |un|)
)

dx− C8

∫
|un |≤r

(|un|p + |un|q) dx

≥ 1
pθ

(K(|un|ps,A)|un|ps,A −
1
µ
(K(|un|ps,A)|un|ps,A +

1
2

( 1
pθ
− 1

µ

)
||un||pp,V

− λ

µ

∫
RN

(
$|un|p + β(x)

)
dx−M0

≥
(

1
pθ
− 1

µ

)
min

{
a,

1
2

}
||un||ps,A −

λ$

µ
||un||pLp(RN)

− λ

µ
||β||L1(RN) −M0,

which implies

1 ≤ λ$

µ
(

1
pθ −

1
µ

)
min

{
a, 1

2

} lim sup
n→∞

||ωn||pLp(RN)

=
λ$

µ
(

1
pθ −

1
µ

)
min

{
a, 1

2

} ||ω||pLp(RN)
. (13)

Hence, it follows from (13) that ω 6= 0. Thus, we can conclude a contradiction. Therefore,
{un} is bounded inHs

A,V(R
N ,C). This complete the proof.

Using Lemma 5, we prove the existence of a nontrivial weak solution to our problem.

Theorem 1. Under the same assumptions of Lemma 5, the problem (3) has a nontrivial weak
solution for all λ > 0.

Proof. Note that Jλ(0) = 0. By Lemma 4, the mountain pass geometric conditions are
satisfied. From Lemma 5, Jλ fulfils the (C)c-condition for any λ > 0. Subsequently,
problem (3) admits a nontrivial weak solution for any λ > 0 by Lemmas 4 and 5.

Next, applying the fountain theorem in ([49] Theorem 3.6), we indicate infinitely many
weak solutions for problem (3). To do this, we refer to the following lemma.

Lemma 6 ([49]). Let E be a reflexive and separable Banach space. Then there exist {en} ⊆ E and
{ f ∗n} ⊆ E∗ such that

E = span{en : n = 1, 2, · · · }, E∗ = span{ f ∗n : n = 1, 2, · · · },

and

〈
f ∗i , ej

〉
=

{
1 if i = j

0 if i 6= j.

Let us denote En = span{en}, Yk =
⊕k

n=1 En, and Zk =
⊕∞

n=k En. In order to obtain
the existence result, we use the following Fountain theorem.



Axioms 2022, 11, 38 9 of 14

Lemma 7 ([49,50]). Let E be a real Banach space, I ∈ C1(E,R) satisfies the (C)c-condition for
any c > 0 and I is even. If for each sufficiently large k ∈ N, there exist $k > σk > 0 such that the
following conditions hold:

(1) βk := inf{I(u) : z ∈ Zk, ||u||E = σk} → ∞ as k→ ∞;
(2) αk := max{I(u) : u ∈ Yk, ||u||E = $k} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence
{un} ⊂ E such that I ′(un) = 0 and I(un)→ +∞ as n→ +∞.

Theorem 2. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F4)
hold. Then for any λ > 0, problem (3) has an unbounded sequence of nontrivial weak solutions
{un} inHs

A,V(R
N ,C) such that Jλ(un)→ ∞ as n→ ∞.

Proof. The proof follows the lines of that of Lemma 3.2 in [51]. To apply Lemma 7, let us
denote E := Hs

A,V(R
N ,C) and I := Jλ. Plainly, Jλ is an even functional and ensures the

(C)c-condition. It suffices to show that there exist $k > σk > 0 with the conditions (1) and
(2) in Lemma 7. Let us denote

ςk = sup
||u||s,A=1,z∈Zk

||z||Lq(RN).

Then, it is obvious to verify that ςk → 0 as k→ ∞. For any z ∈ Zk, assume that ||u||s,A > 1.

Choose ε > 0 so small that 0 < λεC < min{1,aθ−1}
2p . Then it follows from (4) that

Jλ(u) =
1
p
(K([u]ps,A) + ||u||

p
p,V)− λ

∫
RN

F(x, |u|)dx

≥ min{1, aθ−1}
p

||u||ps,A − λ
∫
RN

F(x, |u|)dx

≥ min{1, aθ−1}
p

||u||ps,A −
λε

p
||u||pLp(RN)

− λC(ε)
q
||u||qLq(RN)

≥ min{1, aθ−1}
2p

||u||ps,A − λC(ε)ςq
k||u||

q
s,A

=
(min{1, aθ−1}

2p
− λC(ε)ςq

k||u||
q−p
s,A

)
||u||ps,A (14)

Choose σk =
[

2pλC(ε)
min{1,aθ−1} ς

q
k

] 1
p−q . Since p < q, p ∈ (1,+∞) and ςk → 0 as k → ∞, we infer

σk → ∞ as k→ ∞. Hence, if u ∈ Zk and ||u||s,A = σk, then we deduce that

Jλ(u) ≥
min{1, aθ−1}

2p
σ

p
k → ∞ as k→ ∞,

which implies (1).
Now we prove condition (2). To do this, we claim that Jλ(u)→ −∞ as ||u||s,A → ∞

for all u ∈ Yk. Let us assume that this is false for some k. Then we can choose a sequence
{un} inHs

A,V(R
N ,C) such that

||un||s,A → ∞ as n→ ∞ and Jλ(un) ≥ −M.

Let ωn = un/||un||s,A. Then it is obvious that ||ωn||s,A = 1. Since dimYk < ∞, there is
ω ∈ Yk \ {0} such that up to a subsequence,

||ωn −ω||s,A → 0 and ωn(x)→ ω(x)
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for almost all x ∈ RN as n→ ∞. Thus we have (14) that,

1
p
+

M
K(|un|ps,A) + ||un||pp,V

≥ 1
p
− Jλ(un)

K(|un|ps,A) + ||un||pp,V

= λ
∫
RN

F(x, |un|)
K(|un|ps,A) + ||un||pp,V

dx

≥ λ
∫
{ωn(x) 6=0}

F(x, |un|)
(2K(1) + 1)||un||pθ

s,A

dx. (15)

If we follow the analogous argument as in the proof of Lemma 5, we derive by (12), (15),
(F4) and Fatou’s lemma that

1
pλ
≥ lim inf

n→∞

∫
{ωn(x) 6=0}

F(x, |un|)
(2K(1) + 1)||un||pθ

s,A

dx− lim sup
n→∞

∫
{ωn(x) 6=0}

M0

(2K(1) + 1)||un||pθ
s,A

dx

= lim inf
n→∞

∫
{ωn(x) 6=0}

F(x, |un|)−M0

(2K(1) + 1)||un||pθ
s,A

dx ≥
∫
{ωn(x) 6=0}

lim inf
n→∞

F(x, |un|)−M0

(2K(1) + 1)||un||pθ
s,A

dx

=
∫
{ωn(x) 6=0}

lim inf
n→∞

F(x, |un|)
(2K(1) + 1)||un||pθ

s,A

dx−
∫
{ωn(x) 6=0}

lim sup
n→∞

M0

(2K(1) + 1)||un||pθ
s,A

dx

≥ 1
2K(1) + 1

∫
{ωn(x) 6=0}

lim inf
n→∞

(
F(x, |un|)
|un|pθ

|ωn|pθ

)
dx = ∞,

where M0 was given in the proof of Lemma 5. This is impossible. Thus, Jλ(u)→ −∞ as
||u||s,A → ∞ for all u ∈ Yk. Choose $k > σk > 0 large sufficiently and let ||u||s,A = $k, we
finally obtain

ak = max{Jλ(u) : u ∈ Yk, ||u||s,A = $k} ≤ 0.

This completes the proof.

Definition 3. Let E be a real separable and reflexive Banach space. We say that I satisfies
the (C)∗c -condition (with respect to Yn) if any sequence {un}n∈N ⊂ E for which un ∈ Yn,
for any n ∈ N,

I(un)→ c and ||(I|Yn)
′(un)||E∗(1 + ||un||E)→ 0 as n→ ∞,

contains a subsequence converging to a critical point of E.

Lemma 8 (Dual Fountain Theorem ([52] Theorem 3.11)). Assume that E is a real Banach
space, I ∈ C1(E,R) is an even functional. If there is k0 > 0 so that, for each k ≥ k0, there are
$k > σk > 0 such that

(A1) inf{I(u) : u ∈ Zk, ||u||E = $k} ≥ 0.
(A2) βk := max{I(u) : u ∈ Yk, ||u||E = σk} < 0.
(A3) γk := inf{I(u) : u ∈ Zk, ||u||E ≤ $k} → 0 as k→ ∞.
(A4) I satisfies the (C)∗c -condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

Lemma 9. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F5)
hold. Then the functional Jλ satisfies the (C)∗c -condition.

Proof. The proof is carried out by the analogous argument as in [51].

With the help of Lemmas 8 and 9 we are ready to demonstrate our second assertion.
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Theorem 3. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F5)
hold. Then the problem (3) has a sequence of nontrivial weak solutions {un} inHs

A,V(R
N ,C) such

that Jλ(un)→ 0 as n→ ∞ for any λ > 0.

Proof. Invoking Lemma 9, we get that Jλ is even and satisfies the (C)∗c -condition for all
c ∈ R. Now it remains to show that conditions (A1), (A2) and (A3) of Lemma 8 are satisfied.

(A1): Let us denote

θ1,k = sup
||u||s,A=1,u∈Zk

||u||Lp(RN), θ2,k = sup
||u||s,A=1,u∈Zk

||u||Lq(RN).

Then, it is immediate to verify that θ1,k → 0 and θ2,k → 0 as k→ ∞. Set ϑk = max{θ1,k, θ2,k}.
Then it follows that

Jλ(u) =
1
p
(K(|u|ps,A) + ||u||

p
p,V)− λ

∫
RN

F(x, |u|)dx

≥ min{1, aθ−1}
p

||u||ps,A −
λc1

p
||u||pLp(RN)

− λc2

q
||u||qLq(RN)

≥ min{1, aθ−1}
p

||u||ps,A −
λc1

p
θ

p
1,k||u||

p
s,A −

λc2

q
θ

q
2,k||u||

q
s,A

≥ min{1, aθ−1}
p

||u||ps,A − λ

(
c1

p
+

c2

q

)
ϑ

p
k ||u||

q
s,A

for sufficiently large k and ||u||s,A ≥ 1. Choose

$k =

[
2pλ

min{1, aθ−1}

(
c1

p
+

c2

q

)
ϑ

p
k

] 1
p−2q

.

Let u ∈ Zk with ||u||s,A = $k > 1 for k large enough. Then, there exists k0 ∈ N such that

Jλ(u) ≥
min{1, aθ−1}

p
||u||ps,A − λ

(
c1

p
+

c2

q

)
ϑ

p
k ||u||

2q
s,A

=
min{1, aθ−1}

2p
$

p
k ≥ 0

for all k ∈ N with k ≥ k0, because

lim
k→∞

min{1, aθ−1}
2p

$
p
k = ∞.

Therefore,
inf{Jλ(u) : u ∈ Zk, ||u||s,A = $k} ≥ 0.

(A2): Observe that || · ||Lp(RN), || · ||Lpθ(RN) and || · ||s,A are equivalent on Yk. Then there
exist positive constants ς1,k and ς2,k such that

||u||Lp(RN) ≤ ς1,k||u||s,A and ||u||s,A ≤ ς2,k||u||Lpθ(RN)

for any u ∈ Yk. From (F2)–(F4), for anyM > 0 there are positive constants C7(M) such that

F(x, τ) ≥Mς
pθ
2,kτpθ − C7(M)τp
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for almost all (x, τ) ∈ RN ×R+. Since K(η) ≤ K(1)(1 + ηθ) for all η ∈ R+
0 , it follows that

Jλ(u) =
1
p
(K(|u|ps,A) + ||u||

p
p,V)− λ

∫
RN

F(x, |u|)dx

≤ 1
p

(
K(1)(1 + |u|pθ

s,A) + ||u||
p
p,V

)
− λMς

pθ
2,k

∫
RN

upθdx + λC7(M)
∫
RN
|u|pdx

≤ 1
p

(
2K(1)||u||pθ

s,A + ||u||pθ
s,A

)
− λMς

pθ
2,k

∫
RN

upθdx + λC7(M)
∫
RN
|u|pdx

≤ 1
p
(2K(1) + 1)||u||pθ

s,A − λM||u||pθ
s,A + λC7(M)ς

p
1,k||u||

p
s,A

for any u ∈ Yk with ||u||s,A ≥ 1. Let f (τ) = 1
p (2K(1) + 1)τpθ − λMτpθ + λC7(M)ς

p
1,kτp.

IfM is large thoroughly, then limτ→∞ f (τ) = −∞, and thus there is τ0 ∈ (1, ∞) such that
f (τ) < 0 for all τ ∈ [τ0, ∞). Hence Jλ(u) < 0 for all u ∈ Yk with ||u||s,A = τ0. Choosing
σk = τ0 for all k ∈ N, one has

βk := max{Jλ(u) : u ∈ Yk, ||u||s,A = σk} < 0.

If necessary, we can change k0 to a large value, so that $k > σk > 0 for all k ≥ k0.
(A3): Because Yk ∩ Zk 6= φ and 0 < σk < $k, we have γk ≤ βk < 0 for all k ≥ k0. For

any u ∈ Zk with ||u||s,A = 1 and 0 < τ < $k, one has

Jλ(τu) ≥ min{1, aθ−1}
p

||τu||ps,A −
λc1

p
||τu||pLp(RN)

− λc2

q
||τu||qLq(RN)

≥ −λc1

p
τp||u||pLp(RN)

− λc2

q
τq||u||qLq(RN)

≥ −λc1

p
$

p
k ϑ

p
k −

λc2

q
$

q
kϑ

q
k

for large enough k. Hence, it follows from the definition of $k that

γk ≥ −
λc1

p
$

p
k ϑ

p
k −

λc2

q
$

q
kϑ

q
k

= −λc1

p

[
2pλ

min{1, aθ−1}

(
c1

p
+

c2

q

)] p
p−2q

ϑ
(p−q)p

p−2q
k − λc2

q

[
2pλ

min{1, aθ−1}

(
c1

p
+

c2

q

)] q
p−2q

ϑ
(p−q)q
p−2q

k .

Because p < q and ϑk → 0 as k→ ∞, we derive that limk→∞ γk = 0.
Hence all conditions of Lemma 8 are required. Consequently, we assert that problem (3)

has a sequence of nontrivial weak solutions {un} inHs
A,P(R

N ,C) such that Jλ(un)→ 0 as
n→ ∞ for any λ > 0.

3. Conclusions

In this paper, we investigate the existence and multiplicity of weak solutions to the
fractional p-Laplacian Equation (3) with the external magnetic potential. The strategy of the
proof for these results is to approach the problem variationally by applying the variational
methods, namely, the fountain and the dual fountain theorem with Cerami condition.
As far as we are aware, the present paper is the first attempt to study the multiplicity
of nontrivial weak solutions to Schrödinger-Kirchhoff-type problems with the external
magnetic potential in these circumstances. We point out that with a similar analysis, our
main consequences continue to hold when (−∆)s

p,Av in (3) is changed into any non-local
integro-differential operator LM, defined as follows;

LMv(x) = 2
∫
RN
|v(x)− ei(x−y)·A(

x+y
2 )v(y)|p−2(v(x)− ei(x−y)·A(

x+y
2 )v(y))M(x− y)dy for all x ∈ RN , (16)
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where M : RN \ {0} → (0,+∞) is a kernel function satisfying properties that

(M1) mM ∈ L1(RN), where m(x) = min{|x|p, 1};
(M2) there exists θ > 0, such that M(x) ≥ θ|x|−(N+ps) for all x ∈ RN \ {0};
(K3) M(x) = M(−x) for all x ∈ RN \ {0}.
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