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Abstract: The goal of the present work is to develop and test in detail a numerical algorithm for
solving the problem of complex heat transfer in hollow bricks. The finite-difference method is used
to solve the governing equations. The article also provides a detailed description of the procedure for
thickening the computational grid. The flow regime inside the hollow brick is turbulent, which is a
distinctive feature of this work. As a rule, if the size of the cavities in the brick is greater than 20 cm
and the temperature difference in the considered solution region is significant, then the numerical
solution can be obtained in the turbulent approximation. The effect of surface emissivities of internal
walls on the thermal transmission and air flow inside hollow brick is investigated. The distributions
of isolines of the stream function and temperature are obtained. The results report that the emissivity
of interior surfaces significantly affects the heat transfer through hollow bricks.

Keywords: algebraic coordinate transformation; finite-difference method; hollow brick; heat transfer

1. Introduction

Over the past decades, humanity has been striving to improve the energy efficiency of
buildings. This approach will ultimately lead to colossal savings in energy resources. In
this regard, it is necessary to use energy-efficient building materials that have proven their
effectiveness experimentally and through numerical modeling. Hollow bricks (eco-friendly
construction material) are widely utilized in the construction of buildings due to their high
thermal resistance. The air inside the brick has a low coefficient of thermal conductivity.
Controlling the processes of natural convection inside the brick allows us to control the
values of thermal resistance. It is also worth noting that radiative heat transfer also occurs
between the walls inside the brick, which also affects the overall heat transfer.

In recent years, many interesting numerical and experimental articles devoted to the
investigation of convective-radiative heat transfer have been published [1–6]. The authors
used various methods for the numerical solution of problems under consideration: finite-
difference method, lattice Boltzmann method, finite-volume method, finite element method,
and so on. A detailed review of various methods for solving problems of convective-
radiative thermal transmission in enclosures is presented in the work [7]. The authors
showed that taking into account radiation as the main mechanism of energy transfer
is necessary even for a relatively small temperature difference in the solution region.
Singh and Sharif [8] have investigated the mixed convective cooling of a two-dimensional
rectangular cavity with differentially heated side walls. Cold liquid is blown into the cavity
through an inlet in the side wall of the cavity and exits through an outlet in the opposite
side wall. Their findings indicate that maximum cooling effectiveness is achieved if the
inlet is kept near the bottom of the cold wall while the outlet is placed near the top of the
hot wall.
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Numerical analysis of heat transfer processes makes it possible to better understand
the mechanisms of energy transfer and estimate the contributions of convection, conduc-
tion, and radiation. It is worth noting that if the size of the closed region is large or the
temperature difference is significant, then turbulent flows are formed in the closed region.
In this case, it is necessary to simulate turbulent flow regimes. To accurately define the
velocities and temperature variations inside the boundary layer, the mesh is usually thick-
ened near the walls [9–11]. Such thickening can be performed using the theory of functions
of a complex variable.

Over the past decade, several studies have been carried out to investigate heat transfer
processes in hollow building materials. Jamal et al. [12] presented a numerical study of
the thermal behavior of different types of hollow bricks, which are mainly utilized in the
construction of walls in Moroccan buildings. The governing equations in their work are
discretized by the finite volume method. Their findings indicated that one of three types
of hollow bricks can significantly reduce thermal transmission from the outside to the
inside of the building walls and therefore provide adequate thermal comfort. Alhazmy [13]
presented the numerical results of a study on the influence of the location and size of two
baffles on the free convection inside the hollow bricks. The baffles are attached to the
bottom and top sides, dividing the inner area into three parts. It has been shown that long
baffles divide the air flow into three various convective cells and the largest magnification
of thermal resistance is 53% compared to cavities without baffles.

Two-dimensional thermal transmission by conduction, thermogravitational convec-
tion, and infrared radiation inside honeycomb walls separated by air has been studied by
Boukendil et al. [14]. Airflow was laminar. The vertical external walls are considered to
be isothermal while the top and bottom horizontal surfaces of walls are insulated. Their
findings indicated that the overall heat flux through the wall changes almost linearly de-
pending on the difference between the external and internal temperatures. Moreover, heat
transfer through the investigated double honeycomb walls is highly dependent on the
thermal conductivity of the material from which the hollow bricks are made. Numerical
simulation of thermal radiation, thermogravitational convection, and conduction in double
hollow brick walls with mortar joints has been carried out by Boukendil et al. [15]. The
impact of mortar joint thickness and the emissivity of internal surfaces of bricks on thermal
transmission has been predicted for various temperature differences. They have shown
that utilizing 1 cm thick mortar is a good compromise for estimating the thickness required
to join hollow bricks. Their findings have also indicated that this thickness, together with
the low emissivity of the internal walls, can significantly reduce the energy consumption
of buildings.

Turbulent regimes of thermogravitational convection and surface radiation in a closed
area have been studied numerically by Sharma et al. [16]. The considered solution region
is cooled from the top, left and right walls, and heated from below. The standard k− ε
turbulence model has been used. The problem has been solved in dimensionless form. The
Rayleigh number is varied from 108 to 1012. Correlations are obtained for the Nusselt num-
ber which depends on the Rayleigh number and aspect ratio. They have also investigated
the impact of external heat transfer coefficient and surface emissivities of internal walls on
air flow and thermal transmission. Vivek et al. [17] studied the interaction impacts between
radiation and free convection in inclined rectangular cavities. The two opposite walls of
the cavity heat up differently, while other walls are considered to be adiabatic. The authors
concluded that convection can be suppressed by 50% with a positive slope, while it can be
increased by over 100% with a negative slope for an aspect ratio of 5.

From the above literature survey, it can be concluded that numerical studies of thermal
transmission processes in hollow building materials are relevant. Most of the calculations
have been carried out under laminar conditions, due to the small size of the voids in
the bricks. However, in some situations, the characteristic size of hollow structures can
reach ten or more centimeters. In this case, it is advisable to consider turbulent models
of energy transfer. In this work, all mechanisms of energy transfer will be taken into
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account (convection, surface radiation, and conduction). The main aim of this article is to
investigate the influence of the surface emissivity of internal walls of the brick and to study
the evolution in time of convective structures forming inside the hollow brick.

2. Governing Equations and Numerical Method

The configuration of the hollow brick to be studied is illustrated in Figure 1. Dirichlet
boundary conditions are considered on the right and left walls of the brick (the left wall
heats up, the right one cools). Horizontal external surfaces are thermally insulated. Inside
the brick cavities, there is air, which is considered to be a viscous Newtonian fluid that
satisfies the Boussinesq approximation. Thermal transmission and fluid flow are two-
dimensional and turbulent. The following assumptions are used for heat transfer by
radiation: the medium inside the cavities is diathermic, the internal surfaces of the solid
walls radiate diffusely.
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Figure 1. A schematic of the hollow brick.

The governing equations describing the processes of transfer of heat, mass, and mo-
mentum inside the voids of a hollow brick, as well as in solid walls, are written as follows:
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The value of the parameters Pk, Gk can be found in [10]. For the k− ε turbulence model, the
values of the constants are presented in Table 1.
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Table 1. Parameters of the k− ε turbulence model.

Parameters cµ c1ε c2ε c3ε σk σε Prt

Values 0.09 1.44 1.92 0.8 1.0 1.3 1.0

The problem under consideration has been solved in a dimensionless form. The corresponding
dimensionless variables have the following form.

X = x/L, Y = y/L, U = u/
√

gβ∆TL, τ = t
√

gβ∆T/L,
Θ = (T − Tc)/(Th − Tc), V = v/

√
gβ∆TL, Ψ = ψ/

√
gβ∆TL3,

Ω = ω
√

L/gβ∆T, E = ε/
√

g3β3(∆T)3L, K = k/(gβ∆TL).
(8)

The problem is solved in terms of the vorticity-stream function due to the fact that the determi-
nation of the pressure field is of little interest. Formulas for vorticity as well as stream function are
as follows:

∂V
∂X
− ∂U

∂Y
= Ω,

∂Ψ
∂Y

= U,− ∂Ψ
∂X

= V (9)

As a result of dimensionlessness, characteristic similarity numbers appear in the governing
equations: the Prandtl number and the Rayleigh number. The definition for these dimensionless
parameters is as follows:

Pr =
ν

α f
, Ra =

gβ∆TL3

να f
. (10)

The Rayleigh number is a dimensionless number that determines the behavior of a fluid
under the influence of a temperature gradient. The Prandtl number shows the influence of the
thermophysical properties of the coolant on thermal transmission. In this work, the Prandtl number
is 0.7.

The investigated 2D configuration, shown in Figure 2, is formed by 4 square enclosures of size L
surrounded by solid partitions. The computational grid is refined near the inner surfaces of solid
walls. The formula that allows us to thicken the mesh to the walls is given as follows:

ξ = c + d−c
2

{
1 + tg

[
πκ

d−c

(
x− c+d

2

)]
/tg
[

π
2 κ
]}

,

η = c + d−c
2

{
1 + tg

[
πκ

d−c

(
y− c+d

2

)]
/tg
[

π
2 κ
]}

.
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Formulas of this type are obtained using the theory of functions of a complex variable. Changing
the values of the parameter κ allows us to adjust the level of thickening. The transition from variables
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x and y to variables ξ and η allows one to go from a non-uniform grid to a uniform one. The
derivatives of the first and second order with respect to coordinates are

∂ξ
∂x = πκ

2tg( πκ
2 ) cos2( πκ

2 (2x−1))
, ∂2ξ

∂x2 = (πκ)2

tg( πκ
2 )

sin( πκ
2 (2x−1))

cos3( πκ
2 (2x−1))

,

∂η
∂y = πκ

2tg( πκ
2 ) cos2( πκ

2 (2y−1))
, ∂2η

∂y2 = (πκ)2

tg( πκ
2 )

sin( πκ
2 (2y−1))

cos3( πκ
2 (2y−1))

.
(12)

As mentioned earlier in this work, to describe heat transfer due to radiation, the surface radiation
model is utilized. To determine the dimensionless radiation flux, it is necessary to solve the equations
below by the method of successive over-relaxation.

Qrad,k = Rk −
N
∑

i=1
Fk−iRi,

Rk = (1− ε̃k)
N
∑

i=1
Fk−iRi + ε̃k(1− ζ)4

(
Θk + 0.5 1+ζ

1−ζ

)4
.

(13)

The boundary conditions for this problem are presented in Table 2.

Table 2. Boundary conditions associated with Equations (1)–(5).

Boundaries Conditions

Left external wall Θ = 0.5

Right external wall Θ = −0.5

Top external wall ∂Θ
∂η = 0

Bottom external wall ∂Θ
∂η = 0

Internal surfaces of the solid material and air, parallel to the axis Oξ Ψ = 0, ∂Ψ
∂η = 0, Θw = Θair , λw,air

∂η
∂Y

∂Θw
∂η = ∂η

∂Y
∂Θair

∂η − NradQrad;

Internal surfaces of the solid material and air, parallel to the axis Oη Ψ = 0, ∂Ψ
∂ξ = 0, Θw = Θair , λw,air

∂ξ
∂X

∂Θw
∂ξ = ∂ξ

∂X
∂Θair

∂ξ − NradQrad.

The governing Equations (1)–(5) with corresponding boundary conditions are solved using the
finite-difference method. Different approaches are used to solve parabolic and elliptic equations. For
parabolic equations, the scheme is as follows:

(1) Application of the locally one-dimensional scheme of the Samarskii.
(2) Discretization of diffusion and convective terms.
(3) Solving the resulting system of linear algebraic equations using the Thomas algorithm.

When solving elliptic equations, they are discretized before the method of successive over-
relaxation is used to solve systems of linear algebraic equations.

Consider the method for solving the Poisson equation for the stream function.

d2ξ

dX2
∂Ψ
∂ξ

+

(
dξ

dX

)2 ∂2Ψ
∂ξ2 +

d2η

dY2
∂Ψ
∂η

+

(
dη

dY

)2 ∂2Ψ
∂η2 = −Ω. (14)

To approximate second-order derivatives in elliptic equations, the central differences are used.
As a result, we obtain the following discrete equation:

d2ξi
dXi

2

Ψk
i+1,j−Ψk+1

i−1,j
2hξ

+
(

dξi
dXi

)2 Ψk
i+1,j−2Ψk+1

i,j +Ψk+1
i−1,j

h2
ξ

+
d2ηj

dYj
2

Ψk
i,j+1−Ψk+1

i,j−1
2hη

+

+
(

dηj
dYj

)2 Ψk
i,j+1−2Ψk+1

i,j +Ψk+1
i,j−1

h2
η

= −Ωi,j,
(15)

where k is the iteration number.
Let’s introduce the notation:

dξi
dXi

= a,
d2ξi
dXi

2 = b,
dηj

dYj
= c,

d2ηj

dYj
2 = d. (16)
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Next, the system of algebraic linear equations is solved by the method of successive over-relaxation:

_
Ψ

k+1

i,j =
h2

η hξ b
(

Ψk
i+1,j−Ψk+1

i−1,j

)
4(c2h2

ξ+a2h2
η)

+
h2

η

(
Ψk

i+1,j+Ψk+1
i−1,j

)
2(c2h2

ξ+a2h2
η)

+
h2

ξ hη d
(

Ψk
i,j+1−Ψk+1

i,j−1

)
4(c2h2

ξ+a2h2
η)

+

+
h2

ξ

(
Ψk

i,j+1+Ψk+1
i,j−1

)
2(c2h2

ξ+a2h2
η)

+
h2

ξ h2
η Ωi,j

2(c2h2
ξ+a2h2

η)
,

Ψk+1
i,j = Ψk

i,j + v

(
_
Ψ

k+1

i,j −Ψk
i,j

)
,

(17)

where hξ , hη are grid steps by coordinates ξ and η, respectively.
The relaxation parameter v has been chosen empirically from the results of many numerical

calculations. It should be noted that at each time step, it is required to carry out calculations for Ψ to
complete the convergence of the iterative process. The convergence condition is given as follows:

max
i,j

∣∣∣Ψk+1
i,j −Ψk

i,j

∣∣∣ < ε̂. (18)

where ε̂ determines the required accuracy of calculations. Detailed analysis of the effect of mesh size
was also carried out. Three different meshes of 60 × 60, 120 × 120, and 180 × 180 are used to validate
the mesh independence. The average convective and radiative Nusselt numbers at the right bottom
vertical wall and fluid flow rate at Ra = 0.5 × 108, ε̃ = 0.8 are presented in Table 3. As a result of the
analysis, a non-uniform 120 × 120 mesh was chosen for the solution.

Table 3. Mesh independence analysis.

Grid Size Nuconv Nurad

60 × 60 6.54 6.46

120 × 120 8.63 6.61

180 × 180 8.71 6.67

The developed solution method has been tested in detail on a variety of heat transfer problems
in closed areas. Figure 3 show the temperature fields and isolines of stream functions for the case
of convective-radiative thermal transmission in a closed, differentially heated region. The results
obtained are in good agreement with the results from the work of Wang et al. [18]. Figure 4 show a
comparison of the profiles temperature and horizontal velocity from the work of Wang et al. [18].
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To verify the developed program code, a comparison with the experimental work of Ampofo
and Karayiannis [19] has also been carried out. Figure 5 shows the temperature and vertical velocity
profiles at Rayleigh number Ra = 1.58 × 109. It should be noted that the agreement is very good.
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3. Results
In real practical situations, the dimensions of voids and wall thicknesses in the hollow brick are

constant. Therefore, the real thermal state of the investigated object is determined by the temperature
difference, the thermal conductivity coefficients of the medium and walls, as well as the surface
emissivities of the inner surfaces of the solid walls. The influence of the latter parameter on thermal
transmission and air flow, according to the author of the work, has not been sufficiently studied. In
this connection, the main aim of this work is to study the effect of the surface emissivity of internal
walls of the brick on the distribution of integral and local parameters. In the present section, the
numerical results have been reported for Ra = 0.5 × 108, ζ = 0.92, Pr = 0.7, Nrad = 112.2, τ = 10,000,
and ε̃ = 0− 0.8.

The study of the evolution in time of thermal and hydrodynamic structures is extremely
important. The development in time of the temperature fields and isolines of the stream function
helps to better understand the processes of convective vortices formation in voids and to trace the
time of penetration of the temperature wave from the outside. Figure 6 shows two-dimensional
temperature fields at ε̃ = 0 for different values of the dimensionless time τ. At the initial time,
conduction is the governing mechanism of heat transfer. Heat penetrates the hollow brick through
the side walls. Further, convective flows arise in voids due to the temperature difference.
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The velocity and temperature fields at τ = 10,000, ε̃ = 0 are shown in Figure 7. Isotherm
stratification is observed in the central part of each void due to differential heating (cooling) of the
solution region. A thermal boundary layer forms along the internal vertical walls. It should be noted
that the average temperature in the upper left void is higher than in the lower left. This is primarily
due to the mechanisms of natural convection and heat conduction due to the transfer of energy from
the lower void to the upper one. This can be seen if you look at the position of the isotherm Θ = 0.3
in Figure 7a. The movement of air masses occurs in the same directions for each space in a hollow
brick, i.e., the clockwise motion can be found. This is due to the geometry of the solution region, as
well as heating and cooling of the external left and right walls.

The total thermal transmission across the internal vertical walls is characterized by Nusselt
number. The average convective and radiative Nusselt numbers show a contribution of free convec-
tion and radiation in total thermal transmission. For example, the convective and radiative Nusselt
numbers on the lower left vertical wall are calculated as:

Nuconv =
1

0.45

∫ 0.55

0.1

∣∣∣∣ ∂ξ

∂X
∂Θ
∂ξ

∣∣∣∣
X=0.1

dη, Nurad =
Nrad
0.45

∫ 0.55

0.1
|Qrad|

X=0.1
dη. (19)

Average Nusselt numbers have been defined at four boundaries (see Figure 8).
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Figure 8. The four boundaries at which the Nusselt number is defined.

In Figure 9, variations of average radiative Nusselt number at the lower left vertical wall are
shown. It can be seen that with an increase in the emissivity of surfaces, the average radiative Nusselt
number increases significantly. At τ = 10,000, Nurad is increased to 37% with the changing of surface
emissivity from 0.6 to 0.8.

Table 4 presents variations of average convective Nusselt number Nuconv, maximum absolute
magnitude of the stream function |Ψ|max, and average radiative Nusselt number Nurad. It can be
seen that with an increase in the values of the emissivity of surfaces, a characteristic decrease in
the intensity of convective thermal transmission is observed. This also leads to a decrease in the
maximum values of the stream function. It should be noted that at high values of ε̃, the contribution
of radiative heat transfer to the total heat transfer is significant. Therefore, when simulating the
processes of heat and mass transfer in hollow building elements, it is necessary to take into account
the radiation between the inner surfaces.

Figure 10 shows a comparison of local parameters (isolines of stream function and isotherms)
depending on the emissivity of internal surfaces ε̃. It can be seen that the hydrodynamic structure
of the flow has changed insignificantly. The change in isotherms near solid inner walls is difficult
to assess visually. However, detailed calculations show that the temperature field changes with
increasing emissivity of the surfaces. This is due to the fact that thermal radiation is perceived by
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the internal walls, the temperature of which increases due to such contact, which, as a result, is
reflected in the intensity of movement of the medium near these walls. This fact leads to a change
in hydrodynamic and thermal parameters of the entire brick (due to the mechanism of convective
heat transfer).
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4. Conclusions
The numerical analysis of heat transfer by conduction, free convection, and surface radiation

through the hollow brick has been conducted. A mathematical model based on the finite-difference
approach was developed to investigate the impact of radiation on the total heat transfer. The system
of dimensionless governing equations has been solved in “vorticity-stream function” formulation. To
thicken the computational grid to the walls, a special algebraic transformation of coordinates was
used. As a result of numerical calculations, the distribution of integral (Nusselt numbers) and local
(isotherms and streamlines) parameters has been obtained. A characteristic decrease in the intensity
of convective heat transfer with an increase in the emissivity of the inner surfaces of solid walls
was shown. Average radiative Nusselt number increased up to 37% with the changing of surface
emissivity from 0.6 to 0.8. The use of hollow bricks with a low emissivity of internal surfaces will
significantly reduce the energy consumption of buildings.
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tributed to the investigation and data analysis. I.V.M. wrote the manuscript. All authors contributed
to the writing of the final manuscript. All authors have read and agreed to the published version of
the manuscript.
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Nomenclature

Fk–i view factor from k-th element to the i-th
element of an enclosure

L void size (m)
g acceleration of gravity (m/s2)
h̃ heat-transfer coefficient (W/m2 K)
k dimensional turbulence kinetic energy (m2/s2)
h thickness of walls (m)
K dimensionless turbulent kinetic energy
Gk dimensionless generation/destruction of buoyancy turbulent

kinetic energy
E dimensionless dissipation rate of turbulent kinetic energy
l height of the heater (m)
Ra = gβ(Th − Tc)L3/ναair Rayleigh number
Nucon average convective Nusselt number
Nrad = σT4

h L/[λair(Th − Tc)] radiation number
Pr = ν/αair Prandtl number
Nurad average radiative Nusselt number
Pk dimensionless shearing production
Prt = νt/αt turbulent Prandtl number
Rk dimensionless radiosity of the k-th element of an enclosure
Qrad dimensionless net radiative heat flux
Th temperature on the left wall (K)
t dimensional time (s)
Tc temperature on the right wall (K)
T dimensional temperature (K)
Θf dimensionless temperature of fluid
Θ dimensionless temperature
u,v dimensional velocity components along X and Y axis (m/s)
Θw dimensionless temperature of wall
X, Y dimensionless Cartesian coordinates
U, V dimensionless velocity components along X and Y axis
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Greek symbols
ε dimensional dissipation rate of turbulent kinetic energy (m2/s3)
ζ = Tc/Th temperature parameter
β coefficient of volumetric thermal expansion (1/K)
αair air thermal diffusivity (m2/s)
αw thermal diffusivity of the wall material (m2/s)
αi,j = αi/αj the thermal diffusivity ratio
ε̃ surface emissivity of wall surfaces
λair air thermal conductivity (W/m K)
λw thermal conductivity of the wall material (W/m K)
λi,j = λi/λj the thermal conductivity ratio
ν kinematic viscosity (m2/s)
ψ dimensional stream function (m2/s)
ω dimensional vorticity (s−1)
νt turbulent viscosity (m2/s)
Ψ dimensionless stream function
ξ, η new dimensionless independent variables
Ω dimensionless vorticity
τ dimensionless time
σ Stefan–Boltzmann constant (W/m2 K4)
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