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Abstract: The filled function method is an effective way to solve global optimization problems.
However, its effectiveness is greatly affected by the selection of parameters, and the non-continuous
or non-differentiable properties of the constructed filled function. To overcome the above-mentioned
drawbacks, in this paper, a new parameterless filled function is proposed that is continuous and
differentiable. Theoretical proofs have been made to show the properties of the proposed filled func-
tion. Based on the new filled function, a filled function algorithm is proposed to solve unconstrained
global optimization problems. Experiments are carried out on widely used test problems and an
application of supply chain problems with equality and inequality constraints. The numerical results
show that the proposed filled function is effective.

Keywords: filled function method; global optimization; parameterless filled function; mathematical
programming

1. Introduction

Global optimization is rich in content and widely used subject in mathematics. With
the development of science and information technology, global optimization has been
widely applied to economic models, finance, image processing, machine designing and so
on. Therefore, the theories and methods for global optimization need to be studied deeply.
With the efforts of scholars in this field, various methods have been developed for global
optimization. However, finding the global optimal solution is usually not easy due to the
two properties of the global optimization problems: (1) usually there exists a lot of local
optimal solutions, and (2) optimization algorithms are very easy to be trapped in certain
local optimal solutions and unable to escape. Therefore, one key problem is how to help the
optimization method escapes from local optimal solutions. The filled function method is
specifically designed to solve this problem. Now we will introduce some basic information
about the filled function method.

The filled function method was first proposed by Ge [1] in which he constructed an
auxiliary function named filled function to help the optimization algorithm escape from
local optimal solutions. In the following, we will introduce the original definition of the
filled function proposed by Ge [1] and its related concepts. In this paper, we consider the
following optimization problem:

min F(x)

s.t.x ∈ Ω = [l, u] ={x|l 6 x 6 u, l, u ∈ Rn}

where n is the dimension of the objective function F(x), which is continuous and differ-
entiable. F(x) has a finite number of local optimal solutions x∗1 , x∗2 , . . . , x∗m. Suppose x∗k is
the local optimal solution found by the optimization algorithm in the kth iteration; the
definition of basin B∗k is as follows.
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Definition 1. The basin B∗k of the objective function F(x) at an isolated minimum (local optimal
solution) x∗k refers to the connected domain that contains x∗k , and in this domain, the steepest descent
trajectory of F(x) will converge to x∗k starting from any initial point, but outside the basin, the
steepest descent trajectory of F(x) does not converge to x∗k .

A basin B∗1 at x∗1 is lower (or higher) than basin B∗2 at x∗2 iff

F(x∗1) ≤ (or >)F(x∗2)

A basin is actually an area that contains one local optimal solution. Within this area, the
gradient descent optimization algorithm will converge to the corresponding local optimal
solution no matter what the initial point is. One basin is lower than the other basin if its
corresponding local optimal solution is smaller (better for minimization problems).

Definition 2. A function P(x, x∗1) is called a filled function of F(x) at a local minimum x∗1 if it
satisfies the following properties:

1. x∗1 is a strictly local maximum of P(x, x∗1), and the whole basin B∗1 of F(x) becomes a part of a
hill of P(x, x∗1).

2. P(x, x∗1) has no minima or stable points in any basin of F(x) higher than B∗1 .
3. If F(x) has a lower basin than B∗1 , then there is a point x′ in such a basin that minimizes

P(x, x∗1) on the line through x and x∗1 .

From the definition of the filled function, we can see that the three properties together
ensure the optimization algorithm escapes from one local optimal solution to a better one.
For example, the optimization algorithm is now trapped in a local optimal solution x∗1 and
can not escape. Now we construct a filled function to help escape x∗1 . The first property of
the filled function will make the local optimal solution x∗1 become a local worst solution
of the filled function. In this case, when the filled function P(x, x∗1) is optimized, it will
surely leave the local worst solution; that is, the local optimal solution will escape. Then
the second property of the filled function will ensure that when optimizing P(x, x∗1), it will
not end up at a worse solution than x∗1 because there are no minima or stable points in any
basin higher than B∗1 . Instead, the optimization procedure of P(x, x∗1) will enter a basin that
is better than B∗1 , if such a basin exists. The overall optimization procedure is as follows:
First, it starts from an initial point to optimize the objective function F(x) and find a locally
optimal solution (e.g., x∗1 ). Secondly, a filled function at this point is constructed (e.g.,
P(x, x∗1)) and optimized starting from x∗1 . After the optimization of P(x, x∗1), the algorithm
will enter a better region (basin) ensured by the properties of the filled function. Thirdly,
starting from the new better basin, the algorithm continues to optimize F(x) to find a
better local optimal solution than x∗1 . Then, repeating the above steps, the algorithm will
continuously move from one local optimal solution to better ones till the global optimal
solution is found.

2. Related Work

With optimization algorithms extensively used in various fields, more and more efforts
are devoted to optimization theory. As a deterministic algorithm for optimization, the
filled function method has drawn a lot of attention. The main idea of the filled function
method is to locate a current local optimal solution by any local search algorithm and then
construct an auxiliary function called the filled function at that local optimal solution. The
filled function should have three good properties in order to help it escape from the current
local optimal solutions and enter regions that contain better solutions.

The first definition of a filled function was proposed by Ge in ref. [1], in which he
constructed a filled function with two parameters:

P(x, r, ρ) =
1

r + F(x)
exp(−

‖x− x∗1‖2

ρ2 ) (1)
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Experiments show this filled function is effective. However, it has two disadvantages:
first, this filled function has two adjusting parameters r and ρ, the values of the two
parameters need to be adjusted in order to ensure the global optimal solution will not
be missed in the optimization procedure; secondly, since there is an exponent term in
denominator when it gets larger, the function value will become smaller, and thus, the
filled function may locate a fake stable point.

In order to improve the efficiency of the filled function method, a lot of effort has been
made, and new contributions have been achieved. In ref. [2], a filled function with only
one parameter is proposed that also has no exponent term:

H(x) = 1/ ln[1 + f (x)− f (x1)]− a‖x− x1‖2 (2)

However, this filled function H(x) is undefined at f (x)− f (x1) ≤ −1. To overcome
the discontinuous and non-differential disadvantages of filled function, Liu proposed a
class of filled functions that is continuous and differentiable [3]:

C(x, a) = −u[F(x)− F(x1)]wa(‖x− x∗1‖p) (3)

where u and w are two real functions that are twice continuously differentiable in their
domains, satisfying the following conditions:

u(0) = 0 w(0) = 1/a > 0

u′(t) > 0 w′(t) > 0, ∀t ∈ [0, ∞)

lim
t→0

u(t)w′(t)
u′(t)w(t)

= 0

(4)

However, this class of filled function is not easy to construct and still contains two
parameters to adjust. Afterward, new continuous differentiable filled functions were
proposed [4–6], yet these filled functions all have one or two parameters. In order to
improve the parameter-adjusting problem of the filled function, the authors of [7] proposed
a filled function with two parameters and gave a reasonable and effective way to choose
the parameters. In ref. [8], the authors proposed a filled function without any parameter.
This filled function contains no exponent term and is simple in form; however, it is not a
continuous differentiable, which may produce extra local optimal solutions. To overcome
this problem, the authors of [9] proposed a continuously differentiable filled function
without any adjusting parameter:

P(x, x∗k ) = −‖x− x∗k‖
2g(F(x)− F(x∗k ))

g(t) =
{

1 t ≥ 0
− exp(t2) + 2 t < 0

(5)

Afterward, researchers have proposed more continuous differentiable filled functions
without parameters, such as in ref. [10–14]. The authors of [12] proposed a new continuous
differentiable filled function without any parameter or exponent term:

P(x, x∗, f (x)) = cosh(1/(1 + ||x− x∗||2))ψ( f (x)− f (x∗k )) (6)

These parameterless and continuous differentiable filled functions have several advan-
tages. First, more efficient local search algorithms can be applied. Secondly, it is not easy
to produce extra fake local optimal solutions. Thirdly, no parameter adjusting is needed.
Thus this kind of filled function can improve the efficiency of the performance of filled
function methods.

To better enhance the efficiency of filled function methods, a two-stage method with a
stretch function was proposed [15]. After a current local minimum is located in the stage of
optimizing the objective function, a stretch function is used to make this local minimum
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higher. Then a filled function is constructed and optimized in the second stage. However,
this filled function is not continuous, which means classical efficient local search methods
can not be applied to this method.

The authors of [16] proposed a new algorithm based on filled function. First, a multi-
dimensional objective function is transformed into one-dimensional functions, and then,
for each direction, a filled function is constructed to optimize the one-dimensional function.
To overcome the potential failure that only local minimum is found, the authors of [17]
proposed a new filled function method. By combing an adaptive strategy of determining the
initial points and a narrow valley widening strategy, the ability to escape the local minimum
and locate the global minimum is further enhanced. In ref. [18], the authors proposed a
new filled function using a smoothing method to eliminate local optimal solutions. Further,
an adaptive method is used to determine the step length and shallow valleys.

Now the filled function method is not only used in unconstrained optimization prob-
lems but is extended to constrained optimization problems with inequalities, bi-level
programming, nonlinear integer programming and non-smooth constrained problems. The
authors of [19] proposed a continuous differentiable filled function with one parameter to
solve constrained optimization problems. The authors of [20] proposed a single-parameter
filled function and applied it to a supply chain problem, which is a nonlinear programming
problem with equality and inequality constraints. For bi-level programming with inequality
and equality constraints, the authors of [21] first transformed the bi-level programming
problem into a single-layer constrained optimization problem and then constructed the
filled function combing penalty functions.

The authors of [22] first transformed the original problem into an equivalent con-
strained optimization problem and then constructed a filled function to solve it.

For the following type of constrained global optimization P:

g(t) =


min f (x)
s.t.gi(x) ≤ 0, i = 1, 2, . . . , m
x ∈ Zn

(7)

where Zn is an integer set of Rn and S = {x ∈ Zn|gi(x) ≤ 0, i = 1, 2, . . . , m} is bounded.
The authors of [23] proposed a method to transform this constrained problem into a box-
constrained integer programming problem and then constructed a filled function to solve
it. In ref. [24], the authors proposed a parameterless filled function to solve nonlinear
equations with box constraints.

The filled function method is also extended to non-smoothing optimization problems.
The authors of [25,26] proposed a one-parameter filled function based on a new definition
of filled function for a non-smoothing-constrained programming problem.

Based on the idea of filled function, in this paper, a new parameterless filled func-
tion is proposed that is continuous and differentiable. The properties of the new filled
function is proven in section 3. Based on it, a filled function algorithm is also proposed to
handle unconstrained optimization problems. Numerical experiments are carried out, and
comparisons are made in Section 4.

3. A New Parameterless Filled Function and a Filled Function Algorithm

In this section, a new filled function is proposed with the advantages of being parame-
terless, continuous and differentiable. The three properties of the proposed filled function
are described and proven. Based on it, a new filled function method is designed to solve
unconstrained optimization problems.

3.1. A New Parameterless Filled Function and Its Properties

The first definition of the filled function is defined in [1]. However, the third property
of the definition is not so clear, e.g., it is not clear where the point x′ is and where the line
is through x and x∗1 . To make the definition more clear and more strict, some scholars
gave several revised definitions of the filled function [27,28]. In this paper, we will use the
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revised definition from ref. [9] since it is more clear and strict by using the gradient. The
revised definition is as follows.

Definition 3. A function P(x, x∗k ) is called a filled function of F(x) at a local minimum x∗k if it
satisfies the following properties:

1. x∗k is a strictly local maximum of P(x, x∗k ), and the whole basin B∗k of F(x) becomes a part of a
hill of P(x, x∗k ).

2. For any x ∈ Ω1, we have5P(x, x∗k ) 6= 0, where Ω1 = {x ∈ Ω|F(x) ≥ F(x∗k ), x 6= x∗k}.
3. If Ω2 = {x ∈ Ω|F(x) < F(x∗k )} is not empty, then there exists x

′
k ∈ Ω2, such that x

′
k is a

local minimum of P(x, x∗k ).

Now we give a brief explanation of the revised definition of the filled function.
Property 1 is the same as the original definition, which turns the local minimum x∗k of
the objective function into a local maximum of the filled function. In this case, when
optimizing the filled function, it is easy to escape x∗k since it is a local maximum (worst
solution for the minimization problem). Property 2 makes sure the optimization procedure
will not end up with solutions worse than the current local minimum x∗k because there are
no stationary points there. Property 3 means that it is easy for the optimization procedure
to end in a region that contains a better solution than the current local minimum because
in that region, there exists a local minimum. Therefore, the three properties together will
drive the optimization procedure to escape from the current local minimum and enter a
better region that contains a better solution.

Based on Definition 3, we design a new parameterless filled function that is also
continuous and differentiable:

P(x, x∗k ) =
1

1 +
∥∥x− x∗k

∥∥ · g(F(x)− F(x∗k ))

g(t) =
{

1 t ≥ 0
t3 + 1 t < 0

(8)

The new filled function mainly has two advantages. First, it has no parameter to adjust,
which makes it easier to apply to different optimization problems. Secondly, the new filled
function is continuous and differentiable. Note that continuity and differentiability are two
excellent properties of filled function. Compared to filled functions that are not continuous
or differentiable, it is easier to optimize since more choices of algorithms, especially more
efficient algorithms designed for continuous differentiable functions can be used, and it is
also not easy to generate extra local optimal solutions during the optimization. Now, we
will first prove that the new filled function is continuously differentiable and then prove
that it fulfills the three properties of the definition of the filled function.

Since the only point that may cause the filled function P(x, x∗k ) to not be continuously
differentiable is t = 0 in g(t), so if g(t) is continuously differentiable at t = 0, the filled
function P(x, x∗k ) is continuously differentiable.

Since lim
t→0+

g(t) = lim
t→0−

g(t) = 1, the new filled function P(x, x∗k ) is continuous.

Since

g′+(0) = lim
t→0+

g(t)− g(0)
t− 0

= lim
t→0+

1− 1
t

= 0

and

g′−(0) = lim
t→0−

g(t)− g(0)
t− 0

= lim
t→0−

t3 + 1− 1
t

= lim
t→0−

t2 = 0.

Thus, g′+(0) = g′−(0) = 0, so the new filled function P(x, x∗k ) is differentiable. Now
we will prove that P(x, x∗k ) satisfies the three properties of filled function.

Theorem 1. Suppose x∗k is a local minimum of the objective function F(x) and P(x, x∗k ) is the
filled function constructed at x∗k , then x∗k is a strictly local maximum of P(x, x∗k ).
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Proof. Suppose B∗k is the basin containing x∗k (please refer to Definition 1 about basin),
since x∗k is a local minimum of F(x), so ∀x ∈ B∗k , x 6= x∗k , we have F(x) > F(x∗k ). Thus,
F(x)− F(x∗k ) > 0, in this case g(F(x)− F(x∗k )) = 1. According to the construction of the
filled function P(x, x∗k ), we get

P(x, x∗k ) =
1

1 +
∥∥x− x∗k

∥∥ · g(F(x)− F(x∗k )) =
1

1 +
∥∥x− x∗k

∥∥ < 1

P(x∗k , x∗k ) =
1

1 +
∥∥x∗k − x∗k

∥∥ · g(F(x∗k )− F(x∗k )) = g(0) = 1

Thus, P(x, x∗k ) < P(x∗k , x∗k ), which means that x∗k is the strict local maximum of
P(x, x∗k ).

Theorem 2. For any x ∈ Ω1, we have 5P(x, x∗k ) 6= 0, where Ω1 = {x ∈ Ω|F(x) ≥ F(x∗k ),
x 6= x∗k}.

Proof. Since Ω1 = {x ∈ Ω|F(x) ≥ F(x∗k ), x 6= x∗k}, for any x ∈ Ω1, we have F(x) ≥ F(x∗k ),
thus

P(x, x∗k ) =
1

1 +
∥∥x− x∗k

∥∥ · g(F(x)− F(x∗k )) =
1

1 +
∥∥x− x∗k

∥∥
and

5P(x, x∗k ) = −
1

1 +
∥∥x− x∗k

∥∥2 6= 0

This proves Theorem 2.

Theorem 3. If Ω2 = {x ∈ Ω|F(x) < F(x∗k )} is not empty, then there exists x
′
k ∈ Ω2, such that

x
′
k is a local minimum of P(x, x∗k ).

Proof. Since Ω2 is not empty, then F(x) must have a minimum in Ω2.
Since P(x, x∗k ) is continuous and differentiable on Rn, it must have a minimum, say x

′
k

at Ω2. Because P(x, x∗k ) is differentiable at x
′
k, then this minimum x

′
k must be a stationary

point, that is, ∇P(x
′
k, x∗k ) = 0.

Since Ω2 is not empty, then there exists a point z ∈ Ω2 such that P(z, x∗k ) < 0. Thus
P(x

′
k, x∗k ) ≤ P(z, x∗k ) < 0 and x

′
k 6= x∗k . Therefore, we know that x

′
k 6∈ Ω1 (according to the

definition of Ω1 from Theorem 2); therefore, x
′
k ∈ Ω2.

3.2. A Filled Function Algorithm to Solve Unconstrained Optimization Problems

Based on the proposed filled function, we design a filled function algorithm to solve
unconstrained optimization problems. The steps of the algorithm are as follows.

1. Initialization. Randomly generate 10 points in the feasible region and choose the
point with the best function value as the initial point x0. Then, set bestX = x0,
bestVal = F(x0) to record the best solution and its corresponding function value, we
set ε = e− 10 as the stopping criteria and k = 1 as the iteration counter.

2. Optimize the objective function F(x). Starting from the initial point x0, we use the
BFGS Quasi-Newton Method as the local search method to optimize the objective
function to locate a local optimal point x∗k . The main steps of the BFGS method are
shown in Algorithm 1.
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3. Construct the filled function at x∗k :

P(x, x∗k ) =
1

1 +
∥∥x− x∗k

∥∥ · g(F(x)− F(x∗k ))

g(t) =
{

1 t ≥ 0
t3 + 1 t < 0

(9)

4. Optimize the filled function P(x, x∗k ). Set x∗k + 0.1 as the initial point, and use the BFGS
Quasi-Newton Method local search method to optimize the filled function P(x, x∗k ) to
obtain a local minimum point x

′
k of P(x, x∗k ). It is known from property 3 of the filled

function that point x
′
k must lie in a lower basin than x∗k .

5. Set the point x
′
k+0.1 as the initial point, and continue to optimize the objective function

F(x) to obtain a new local minimum point x∗k+1 of F(x).
6. Determine whether F(x∗k+1)− bestVal is less than −ε. If satisfied, update bestX by

x∗k+1 and bestVal by F(x∗k+1), let k = k + 1. Go to step 2, otherwise, bestX is the global
optimum and the algorithm terminates.

Algorithm 1 Main steps of the BFGS Quasi-Newton Method

1: Given an initial value x0 and an accuracy threshold ε, set D0 = I, k := 0.
2: Determine the direction of the search: dk = −Dk · gk.
3: set Sk = λkdk, Xk+1 := Xk + Sk, and λk = argmin f (Xk + λdk), λ ∈ R.
4: if ‖gk+1‖ < ε,then, the algorithm ends.
5: Calculate yk = gk+1 − gk.

6: Calculate Dk+1 = (I − SkyT
k

yT
k Sk

)Dk(I − ykST
k

yT
k Sk

) +
SkST

k
yT

k Sk
.

7: let k := k + 1, go to Step 2

In the following, we use an example to demonstrate the optimization procedure of
the filled function algorithm. Figure 1 shows the objective function f (x) = x + 10 sin(5x) +
7 cos(4x) with the search region [−2, 2]. From Figure 1, we can see that f (x) has three
basins B∗1 , B∗2 and B∗3 in the search region, where B∗3 is the lowest basin that contains the
global optimal solution. Suppose the optimization procedure starts from x0; using the BFGS
local search method we can obtain a local minimal solution x∗1 of the objective function f (x).

Figure 1. Illustration of steps 1 and 2 of the filled function algorithm.



Axioms 2022, 11, 746 8 of 18

To escape from this local minimum x∗1 , we construct the filled function P(x, x∗1) at x∗1 ,
as shown in Figure 2.

From Figure 2, we can see that x∗1 is a strictly local maximum (maximal point) of
P(x, x∗1), which is guaranteed by the definition of the filled function. Therefore, a local
search of P(x, x∗1), starting from point x∗1 + 0.1, can easily escape from this point and yield
a local minima x′1 of P(x, x∗1). Next, using x1(x1 = x′1 + 0.1) as the initial point to optimize
the objective function f (x), we can obtain another local minimal solution x∗2 that is better
than x∗1 . At this time, the first iteration is completed.

Figure 2. Illustration of steps 3 to step 5 of the filled function algorithm.

To escape from the local minimum x∗2 , we repeat the above steps to construct the filled
function P(x, x∗2) at x∗2 , as shown in Figure 3.

Figure 3. Illustration of the filled function algorithm in the second iteration.
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Similarly, P(x, x∗2) peaks at point x∗2 , which makes it easy to escape from this point. We
continue to optimize P(x, x∗2) to obtain a local minimal point x′2. Then, using x2 = x′2 + 0.1
as the initial point to optimize the objective function f (x), a new better local optimal
solution x∗3 is obtained. Now, the second iteration is completed. We continue the above
procedure to optimize the objective function and filled function alternately to escape from
the current local optimal solution to a better one till the global optimal solution is located.

From the above optimization procedure, we can clearly see that the proposed method
can easily and continuously escape from a current local optimal solution to obtain a
better one till the global optimal solution is located. This is a good way to overcome
the disadvantage of premature convergence of optimization algorithms. Moreover, the
proposed method also has three other advantages. First, since the proposed filled function
is parameterless; the algorithm has no adjustable parameters to tune for different problems.
Secondly, since the new filled function is continuous and differentiable, the proposed
algorithm is less apt to produce an extra local minimum while more choices of local
search methods, especially the efficient gradient-based ones, can be applied to make the
optimization more efficient and effective. Thirdly, once the filled function is designed and
constructed, it is easy to implement and apply to different optimization problems.

There are mainly two disadvantages of the filled function method. First, it is not easy
to design a good filled function and each time when a local optimal solution is found,
the filled function has to be constructed. Secondly, the filled function method becomes
less effective when the dimensionality of the problem is large. More research is needed to
extend the scope of the filled function method.

4. Numerical Experiments

The proposed filled function algorithm is implemented in Matlab 2021 and tested on
wildly used test problems. Comparisons are made with a state-of-the-art filled function
algorithm [18], another continuous differentiable filled function algorithm [5] and Ge’s
filled function algorithm [1]. The test problems used in this paper are listed as follows.
Test case 1. (The rastrigin function)

min F(x) = x2
1 + x2

2 − cos 18x1 − cos 18x2

s.t. − 3 < x1 < 3,−3 < x2 < 3

The global minimum solution is x∗ = (0, 0)T , and the corresponding function value is
F(x∗) = −2.
Test case 2. (Two-dimensional function)

min F(x) = [1− 2x2 + c sin(4πx2)− x1]
2 + [x2 − 0.5 sin(2πx1)]

2

s.t. 0 < x1 < 10,−10 < x2 < 0

where c = 0.05, 0.2, 0.5. The global minimum solution is x∗ = (1, 0)T , and the corresponding
function value is F(x∗) = 0 for all values of c.
Test case 3. (Three-hump back camel function)

min F(x) = 2x2
1 − 1.05x4

1 +
1
6

x6
1 − x1x2 + x2

2

s.t. − 3 < x1 < 3,−3 < x2 < 3

The global minimum solution is x∗ = (0, 0)T , and the corresponding function value is
F(x∗) = 0.
Test case 4. (Six-hump back camel function)

min F(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 − x1x2 − 4x2

2 + 4x4
2

s.t. − 3 < x1 < 3,−3 < x2 < 3
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The global minimum solution is x∗ = (±0.0898,±0.7127)T , and the corresponding
function value is F(x∗) = −1.0316.
Test case 5. (Treccani function)

min F(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

s.t. − 3 < x1 < 3,−3 < x2 < 3

The global minimum solution is x∗ = (−2, 0)T and x∗ = (0, 0)T , and the corresponding
function value is F(x∗) = 0.
Test case 6. ( Two-dimensional Shubert function)

min F(x) =

{
5

∑
i=1

i cos[(i + 1)x1 + i]

}{
5

∑
i=1

i cos[(i + 1)x2 + i]

}
s.t. 0 < x1 < 10, 0 < x2 < 10

There are multiple local minimum solutions in the feasible region, and the global minimum
function value is F(x∗) = −186.7309.
Test case 7. ( n-dimensional function)

min F(x) =
π

n
[10 sin2(πx1) + g(x) + (xn − 1)2]

s.t.− 10 < xi < 10, i = 1, 2, . . . . . . , n

where

g(x) =
n−1

∑
i=1

[(xi − 1)2(1 + 10 sin2(πxi+1))]

The global minimum solution is x∗ = (1, 1, . . . , 1)T , and the corresponding function value
is F(x∗) = 0 for all values of n.

First, all results obtained by the new filled function algorithm are listed in Tables 1–14.
Further, the comparisons are made with another continuous differentiable filled function
algorithm, CDFA in [5]. In these tables, we use the following notations:

x∗k : the local minimum of the objective function in the kth iteration.
f ∗k : the function value of the objective function at x∗k .
k : the iteration counter.
Ff : the total function evaluations of the objective function and the filled function.
CDFA: the filled function algorithm proposed in [5].
FFFA: the filled function algorithm proposed in [18].

Table 1. Results of Problem 1.

Ours CDFA

k x∗k f∗k x∗k f∗k
1 (−0.7168,−0.0344)T −1.2439 / /
2 (−0.6938, 0.0000)T −1.5156 / /
3 (−0.7815× 10−7,−0.0179× 10−7)T −2.0000 / /
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Table 2. Results of Problem 2 (c = 0.2).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (8.8344,−3.3354)T 9.4093 (5.7221,−1.8806)T 2.5070
2 (1.8784,−0.3458)T 1.9805× 10−15 (3.7387,−1.2649)T 0.6165
3 (1.5909,−0.2703)T 2.8126× 10−9

Table 3. Results of Problem 2 (c = 0.5).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (3.9733,−1.7709)T 3.3347 (0.0420,−0.0948)T 0.5175
2 (1.4513, 0)T 0.2264 (1.0000,0)T 5.7949× 10−16

3 (1.0000, 0)T 0

Table 4. Results of Problem 2 (c = 0.05).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (4.0604,−2.1833)T 7.2212 (8.7299,−3.2965)T 9.0733
2 (1.8513,−0.4021)T 1.1414× 10−12 (7.7280,−0.4022)T 6.5031
3 (1.8513,−0.4021)T 4.3885× 10−11

Table 5. Results of Problem 3.

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (−0.2565,−0.4722)T 0.2289 (−1.7476,−0.8738)T 0.2986
2 (−0.4064× 10−7,−0.3367× 10−7)T 3.0680× 10−15 (−0.0000,−0.0000)T 4.0157× 10−10

Table 6. Results of Problem 4.

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (0.1021, 0.5426)T −0.8448 (−1.6071, 0.5687)T 2.1043
2 (0.0898, 0.7127)T −1.0316 (0.0898, 0.7127)T −1.0316

Table 7. Another results of Problem 4.

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (0.2434,−0.7892)T −0.5178 (1.6071,−0.5687)T 2.1043
2 (−0.0898,−0.7127)T −1.0316 (−0.0898,−0.7127)T −1.0316
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Table 8. Results of Problem 5.

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (−0.9200,−1.0954)T 2.1871 (−1.0000, 0)T 1.0000
2 (−0.7800× 10−8,−0.3252× 10−8)T 2.5397× 10−16 (−0.0000,−0.0000)T 2.4048× 10−17

Table 9. Results of Problem 6.

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (1.2424, 7.2516)T −6.0455 (2.0467, 2.0467)T 0
2 (5.4829, 3.7723)T −52.0504 (3.2800, 4.8581)T −46.511
3 (5.4892, 4.8581)T −186.7309 (4.2760, 4.8581)T −79.411
4 (5.4892, 4.8581)T −186.7309

Table 10. Results of Problem 7 (n = 2).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (−0.9500,−0.0717)T 11.1395 / /
2 (1.0000, 1.0000)T 7.7954× 10−14 / /

Table 11. Results of Problem 7 (n = 3).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (−0.5665,−4.3568,−2.8414)T 147.6024 / /
2 (1.9900, 1.0000, 1.0000)T 1.0367 / /
3 (1.0000, 1.0000, 1.0000)T 1.2257× 10−13 / /

Table 12. Results of Problem 7 (n = 5).

Ours CDFA

k x∗k f ∗k x∗k f ∗k
1 (4.5092, 4.9506,−0.8846,−3.0831, 5.4416)T 165.8637 / /
2 (1.9900, 1.0000, 1.0000, 1.0000, 1.0000)T 0.6220 / /
3 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 8.6588× 10−12 / /

Table 13. Results of Problem 7 (n = 7).

Ours CDFA

k x∗k f ∗k x∗k f ∗k

1 (2.1849, 9.6164,−1.8296, 0.5062,
0.1504, 4.9519,−5.0729)T 359.2339 (1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000)T 2.3538× 10−13

2 (1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000)T 8.2241× 10−13

Tables 1–14 show the numerical results of the test problems in different test criteria
(different parameters and different dimensions) obtained by the proposed filled function



Axioms 2022, 11, 746 13 of 18

algorithm. In these tables, k means the iterations for the filled function algorithm to locate
the global minimum solution x∗, F(x∗) is the corresponding function value and n is the
dimension of the test problem.

From the numerical results, we can see that the proposed filled function algorithm can
locate all the global minima solutions successfully (some with a precision error of less than
10−10) and within small iterations.

Table 14. Results of Problem 7 (n = 10).

Ours CDFA

k x∗k f∗k x∗k f∗k

1 (6.2612, 7.8479, 2.3710, 0.8488,
8.7385, 0.0580, 0.4644, 7.5710,

7.2606, 2.2505)T

359.2339 (0.0101, 0.0103, 0.0103, 0.0104,
0.0103, 0.0102, 1.0000, 6.0000,

6.0000, 6.0000)T

2.6653

2 (1.0013, 0.5326,−0.9803, 1.0066,
1.0152, 0.9937, 0.5966, 1.0802,

0.9954,−0.1773)T

1.8292 (1.1615, 1.1651, 0.4418, 0.9258,
0.9638,−0.4809, 0.9926, 6.0000,

6.0000, 6.0000)T

2.4443

3 (1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000)T

1.5113 × 10−13 (1.9900, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 6.0000,

6.0000, 6.0000)T

0.4443

4 (1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000)T

0

For these test problems, we also listed the results of another continuous differentiable
filled function algorithm, CDFA [5]. Since CDFA just carried out parts of the test problems,
we use slashes ( / ) to indicate the missed values. From the comparison, we can see that for
problem 2 (c = 0.2), we use one less iteration to locate a minimum solution with six orders
of magnitude higher accuracy than CDFA. For problem 2 (c = 0.5), although we use one
more iteration than CDFA, we successfully located the global minimum 0. For problem 2
(c = 0.05), we use one less iteration and obtain a better result than CDFA. For problem 3 we
locate a better result (five orders of magnitude higher accuracy) than CDFA with the same
iterations. For problems 5 and 7 (n = 7), our algorithm use one more iteration than CDFA.
For problem 6 we use one less iteration to locate the global minimum than CDFA. For
problem 7 (n = 10), although we use one less iteration, CDFA located the global minimum 0
while we get 1.51× 10−13. From the above analysis, we can achieve the comparison results
that our algorithm has four wins (problem 2 with c = 0.2, c = 0.05, and problems 3 and
6), two losses (problems 5 and 7 with n = 7), and three ties (problem 2 with c = 0.5, and
problems 4 and 7 with n = 10) out of the overall ten test problems. Therefore, we come to
the conclusion that the proposed filled function algorithm is more effective than CDFA.

Comparisons are also made with a state-of-the-art filled function algorithm, FFFA [18]
and Ge’s filled function [1]. The comparison results are listed in Table 15, where No. is
the number of test problems and n is the dimension, Ff refers to the total number of
function evaluations consumed to obtain the optimal solutions (minimum solutions for
minimization problems).

Since all three filled function algorithms can find the global minimum solutions,
we compare their efficiency by the total number of iterations and function evaluations
consumed by each algorithm. From Table 15, we can see that for all test problems, our
algorithm is much better than Ge’s algorithm. As for the comparison with FFFA, we can
see that for test problems 1, 3 and 4, although our algorithm takes one more iteration
to get the optimal solution, we use much fewer function evaluations. For problems 2, 5
and 6, our algorithm uses fewer iterations and fewer function evaluations than that of
FFFA. For problem 7, we can see that for dimension n = 2, our algorithm uses fewer
iterations but more function evaluations than FFFA, for n = 3 and n = 7, our algorithm
uses more function evaluations than that of FFFA, but for n = 5 and n = 10, our algorithm



Axioms 2022, 11, 746 14 of 18

performs much better than that of FFFA. We can see that for n = 5 our algorithm uses three
fewer iterations and only uses 2287 function evaluations, while FFFA uses 12,681 function
evaluations; for n = 10, our algorithm only uses 12,795 function evaluations (which is
nearly half of that of FFFA’s 20,044) to get the global optimal solution. Overall, we come to
the conclusion that the filled function algorithm proposed in this paper is more efficient
than FFFA. From the numerical results and comparison with the other three filled function
algorithms, we come to the conclusion that the new filled function algorithm is effective
and efficient for solving unconstrained global optimization problems.

Table 15. The overall comparisons.

No. n Ours FFFA Ge’s Filled Function

k Ff k Ff k Ff

1 2 3 553 2 1255 4 21,276
2 2(c = 0.2) 2 392 3 1997 15 27,500

2(c = 0.5) 3 470 4 1400 34 54,505
2(c = 0.05) 2 493 4 3888 35 38,424

3 2 2 378 1 1789 32 92,498
4 2 2 277 1 1792 44 35,171
5 2 2 259 4 2089 14 15,759
6 2 2 484 4 3576 20 103,988
7 2 2 463 3 294 22 107,899

3 3 962 3 510 6 248,407
5 2 2287 5 12,681 16 1,229,860
7 2 2590 2 811 21 1,443,686

10 5 12,795 3 20,044 16 1,829,898

5. An Application of the Filled Function Algorithm

In this section, the proposed filled function algorithm is applied to the supply chain
problem. Supply chain problems can be divided into three types, namely manufacturer’s
core supply chain, supplier core supply chain and seller core supply chain. In this paper, we
mainly consider the manufacturer’s core supply chain. For the manufacturer’s core supply
chain, there are multiple suppliers, multiple shippers, multiple generalized transportation
methods, multiple sellers and one manufacturer. In this supply chain, the manufacturer
uses different raw materials to produce various products that are sold by multiple sellers.
The optimization objective of the supply chain is to minimize the total transportation cost.

We suppose there is a supply chain with a manufacturer as the core, one supplier and
one kind of raw material required for production. The unit raw material cost of this kind of
raw material supplied by the supplier is 2000 USD/t, the maximum supply is 5000 t, and all
shippers can deliver it. The manufacturer produces only one product and requires 1.2 t of
raw material per ton of product. There are two shippers, both of which can provide services
of two generalized modes of transport. There are three sellers, and the order quantity of
each seller must be strictly satisfied. The manufacturer initially has no inventory products,
the production cost per unit product is 1000 USD, and the maximum production capacity
is 4500 t. The relevant unit costs are shown in Tables 16–18.
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Table 16. Unit transportation cost and maximum transportation capacity of shippers.

Shippers Shipper 1 Shipper 2

Mode of
Transportation

Unit Cost
(USD/ton)

Max Capacity
(ton)

Unit Cost
(USD/ton)

Max Capacity
(ton)

Generalized transportion
methood 1

Seller 1 220
1000

200
1500Seller 2 250 220

Seller 3 210 210

Generalized transportion
methood 2

Seller 1 180
1200

200
1000Seller 2 200 210

Seller 3 210 220

Table 17. Sales capacity and unit sales cost.

Seller 1 Seller 2 Seller 3

unit product cost of sales
(USD/ton) 80 90 85

Product Demand
(ton) 1000 1200 800

Table 18. Unit cost and maximum transportation capacity of shippers.

Shippers Shipper 1 Shipper 2

Mode of
Transportation

Unit Cost
(USD/ton)

Max Capacity
(ton)

Unit Cost
(USD/ton)

Max Capacity
(ton)

Generalized transportion
methood 1 supplier 1 180 2000 190 2500

Generalized transportion
methood 2 supplier 2 210 2200 220 2000

The optimization model used here is:

min ZC = (216β1111 + 252β1121 + 228β1211 + 264β1221)×Q+

3700x1111 + 3740x1112 + 3695x1113 + 3660x1121 + 3690x1122 + 3695x1123+

3680x1211 + 3710x1212 + 3695x1213 + 3680x1221 + 3700x1222 + 3705x1223.

The constraints are:

Q ≤ 4500

x1111 + x1112 + x1113 ≤ 1000

x1121 + x1122 + x1123 ≤ 1200

x1211 + x1212 + x1213 ≤ 1500

x1221 + x1222 + x1223 ≤ 1000

x1111 + x1121 + x1211 + x1221 = 1000

x1112 + x1122 + x1212 + x1222 = 1200

x1113 + x1123 + x1213 + x1223 = 800

1.2×Q ≤ 5000

1.2× β1111 ×Q ≤ 2000

1.2× β1121 ×Q ≤ 2200

1.2× β1211 ×Q ≤ 2500

1.2× β1221 ×Q ≤ 2000

β1111 + β1121 + β1211 + β1221 = 1



Axioms 2022, 11, 746 16 of 18

where:

Q = x1111 + x1112 + x1113 + x1121 + x1122 + x1123+

x1211 + x1212 + x1213 + x1221 + x1222 + x1223.

where xijnk are non-negative integers, k = 1, 2, 3; j = 1, 2; n = 1, 2; β1jnl are non-negative
numbers. The symbols used in the model are explained as follows:
ZC: Total supply chain cost;
xijnk: The number of i-th product delivered to the k-th seller use the n-th generalized
transportation method by the j-th transporter;
βijnk: The ratio of j-th transporter using the n-th generalized transportation method from
the l-th supplier to the r-th raw material to the manufacturer’s demand for the kind of
raw material.

It can be seen from the model that the objective function is nonlinear, and the con-
straints of suppliers and the transportation of raw materials are also nonlinear, so the model
is a nonlinear mixed integer programming model.

We applied the proposed filled function algorithm to this supply chain model to
optimize the total transportation cost. We used MATLAB2021b programming on a 64-bit
Windows 10, Intel(R) Core(TM) i5-9400F CPU@2.90 GHz memory personal computer to
calculate it, we executed 20 independent runs, and the results are listed in Table 19.

Table 19. The optimization results.

x1113 x1121 x1122 x1213 x1222 β1111 β1211 ZC(million)

800 1000 200 0 1000 0.556 0.444 1171.8
423 1000 200 377 1000 0.556 0.444 1171.8
300 1000 200 500 1000 0.556 0.444 1171.8
17 1000 200 783 1000 0.556 0.444 1171.8
2 1000 200 798 1000 0.556 0.444 1171.8

Table 19 shows the optimization results of nonzero variables (the values of other
variables are all 0). We can see that this supply chain has multiple optimal solutions. By
careful observation, we can see that when x1121, x1122, x1222, β1111 and β1211 are fixed to the
values shown in Table 19, and x1113 and x1213 satisfy the following conditions:

x1113 + x1213 = 800.

Therefore, the minimum transportation cost of this example is USD 1171.8 million. In
this case, x1122 = 200 means that the manufacturer in this supply chain should arrange
shipper 1 to deliver 200 t of the product to the second seller using the second generalized
mode of transportation. β1211 = 0.444 means that the manufacturer should let shipper 2
complete 44.4 percent of the transportation task using generalized transportation method 2.

We compare our results with the results from ref. [20], the proposed filled function
algorithm in this paper finds multiple optimal solutions and takes less computational time.
From Table 19, we can see that our algorithm successfully finds five optimal solutions while
the algorithm in [20] only finds single optimal solution x∗ = (0, 0, 800, 0, 1000, 200, 0, 0, 0,
0, 1000, 0), β∗ = (0.556, 0, 0.444, 0). Moreover, the average running time of our algorithm
is 1106 s, while the running time of [20] is 5128 seconds. Therefore, we can come to the
conclusion that the filled function algorithm in this paper is more effective and efficient.

6. Conclusions

In this paper, we design a new filled function method to solve unconstrained global
optimization problems. The new filled function has two advantages. First, it has no
adjustable parameters to tune for different optimization problems; Secondly, the new filled
function is continuous and differentiable, which are very good properties. These good
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properties mean the filled function is less apt to produce extra fake local minimum during
the optimization; further, more choices of local search methods, especially some efficient
gradient-based ones, can be applied to make the optimization more efficient and effective.
The proposed filled function algorithm is tested on widely used benchmark problems and
is also applied to a supply chain problem. Numerical experiments show the algorithm is
effective and efficient. However, we also notice that the filled function algorithm become
less effective with high dimensional optimization problems. The reason may lie in two
aspects: First, the search space grows exponentially with the increase in the distention, and
secondly, the local search method is not efficient enough for high dimensional problems.
The time complexity of the proposed filled function algorithm is dependent on the local
search method adopted. Since the filled function designed in this paper has the advantage of
continuous and differentiable, the efficient gradient-based algorithm BFGS Quasi-Newton
Method can be used in the proposed model. BFGS is well known for its fast super-linear
convergence speed, although its time complexity is O(n2). This may be one of the reasons
that when the optimization problem grows, its performance degrades. The proposed
algorithm mainly helps the optimization process to repeatedly escape from local optimal
solutions to better ones to locate the global optimal solution. In this process, a different
local search method can be used. In our future work, we will continue to work on this issue
and design new and better local search methods to make the filled function algorithm more
efficient and perform better on higher dimensional problems.
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