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Abstract: The major goal of the current article is to create new formulas and connections between
several well-known polynomials and the Euler polynomials. These formulas are developed using
some of these polynomials’ well-known fundamental characteristics as well as those of the Euler
polynomials. In terms of the Euler polynomials, new formulas for the derivatives of various symmet-
ric and non-symmetric polynomials, including the well-known classical orthogonal polynomials, are
given. This leads to the deduction of several new connection formulas between various polynomials
and the Euler polynomials. As an important application, new closed forms for the definite integrals
for the product of various symmetric and non-symmetric polynomials with the Euler polynomials
are established based on the newly derived connection formulas.

Keywords: Euler polynomials; special polynomials; hypergeometric functions; definite integrals;
connection formulas

1. Introduction

Numerous problems in various fields, such as approximation theory and theoretical
physics, depend on special functions. Considerable research has been conducted on sev-
eral well-known polynomial sequences and the numbers that they are associated with.
Therefore, from both theoretical and practical aspects, it is interesting to investigate various
special functions. Among the essential special functions are the well-known Hermite,
Laguerre, and Jacobi polynomials. These classical orthogonal polynomials were exten-
sively studied by many authors, both theoretically and practically; see, for example, [1–4].
The Jacobi polynomials include six special polynomials. Four of these polynomials are
symmetric: the ultraspherical, Legendre, and the first and second kinds of Chebyshev
polynomials. The polynomials, namely, the third- and fourth-kind Chebyshev polyno-
mials, are two celebrated non-symmetric classes of Jacobi polynomials. All six classes of
Jacobi polynomials have their parts in approximation theory and numerical analysis; see,
for example, [5–7]. Other types of polynomials were also studied by many authors. For
example, the Lucas and Fibonacci sequences, as well as their extensions and modified
polynomials, were investigated by many authors. The authors in [8,9] studied certain
kinds of generalized Fibonacci and generalized Lucas polynomials and their corresponding
numbers. Furthermore, they employed them to find reduction formulas for some even and
odd radicals. New identities of Horadam sequences of integers with four parameters were
introduced by the authors in [10]. In [11], certain Appel polynomials are treated using a
matrix technique. To handle bivariate Appell polynomials, matrix calculus was used in [12].
Classical and quantum orthogonal polynomials are extensively studied in [13].

Euler polynomials and Euler numbers have been the subject of numerous contempo-
rary and older investigations. For example, the author in [14] developed some relations
between the Bernoulli and Euler polynomials. Some properties on the integral of the prod-
uct of several Euler polynomials are presented in [15]. In [16], the authors discussed the
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decomposition of the linear combinations of Euler polynomials with odd degrees. In [17],
the authors found some identities for Euler and Bernoulli polynomials and their zeros.
Other identities for the product of two Bernoulli and Euler polynomials were obtained
in [18]. New types of Euler polynomials and numbers are developed in [19]. For some other
classes relating to Euler polynomials, one can refer, for example, to [20,21]. From a practical
point of view, Euler polynomials were utilized to treat different types of differential and
integral equations. For example, in [22], certain fractional-order delay integro-differential
equations were numerically treated using an operational matrix of derivatives based on the
utilization of fractional-order Euler polynomials. In [23], a numerical scheme utilizing Euler
wavelets was derived to handle the fractional order pantograph Volterra delay-integro-
differential equation. Two-dimensional Volterra integral equations of the fractional order
were treated using two-dimensional Euler polynomials in [24].

The various formulas of special functions are important from both theoretical and
practical perspectives. For example, the expressions for the high-order derivatives of
different polynomials in terms of their original ones can be used to obtain some spectral
solutions to different differential equations. For example, in [25], new expressions for
the third- and fourth-kinds of Chebyshev polynomials were established and utilized for
solving specific even-order BVPs. Some other expressions for the high-order derivatives
were utilized in [26] for treating linear and non-linear BVPs of even order. The author
in [27] found new derivative formulas for the sixth-kind Chebyshev polynomials and used
them to provide a numerical solution to the non-linear Burgers’ equation in one dimension.
Additionally, among the important formulas concerned with special functions are the
connection and linearization formulas. These formulas are useful in some applications (see,
for example, [28]).

This paper aims to find some new formulas concerning the Euler polynomials. To be
more precise, the objectives of the current paper can be listed in the following items:

• Developing new expressions for the high-order derivatives of different symmetric and
non-symmetric polynomials in terms of Euler polynomials.

• Deducing connection formulas between different polynomials and Euler polynomials.
• Presenting an application to the derived connection formulas. Several new definite in-

tegral formulas of the product of different symmetric and non-symmetric polynomials
with the Euler polynomials in closed forms.

The paper is organized as follows. Section 2 introduces an overview of Euler poly-
nomials. In addition, some properties of some celebrated symmetric and non-symmetric
polynomials are presented in this section. Section 3 develops new expressions for the
derivatives of symmetric and non-symmetric polynomials as combinations of Euler poly-
nomials. Section 4 is interested in deducing connection formulas between symmetric and
non-symmetric polynomials with the Euler polynomials. In Section 5, an application to the
connection formulas presented in Section 4 is displayed. More precisely, some new definite
integral formulas of the product of different symmetric and non-symmetric polynomials
with the Euler polynomials are given. Finally, Section 6 reports some conclusions.

2. Preliminaries and Some Essential Formulas

This section is interested in presenting an overview of the Euler polynomials and
their related numbers. Furthermore, we introduce some properties of symmetric and
non-symmetric polynomials. In addition, an account of some classes of polynomials that
will be connected with Euler polynomials is given.

2.1. An Account of Euler Polynomials

The classical Euler polynomials Em(x) can be defined with the aid of the generating
function [29]

2 ex z

ez + 1
=

∞

∑
m=0

Em(x)
zm

m!
, |z| < π.
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The corresponding Euler number is given by

Em = 2m Em

(
1
2

)
.

This is the inversion formula of Euler polynomials:

xm =
1
2

m

∑
k=0

ck

(
m

m− k

)
Em−k(x), m ≥ 0, (1)

where ck is defined as

ck =

{
2, k = 0,
1, k > 0.

Additionally, among the famous identities of the polynomials Em(x) are the following
identities [29]:

d
dx

Em(x) =m Em−1(x),∫ b

a
Em(x) dx =

Em+1(b)− Em+1(a)
m + 1

.

2.2. An Overview on Symmetric and Non-Symmetric Polynomials

Let us consider, respectively, the two classes of symmetric and non-symmetric polyno-
mials, {Pi(x)}i≥0 and {Qi(x)}i≥0. We can express these polynomials as:

Pi(x) =
b i

2c
∑

m=0
Am,i xi−2m, (2)

Qi(x) =
i

∑
m=0

Bm,i xi−m, (3)

where the symbol bzc denotes the well-known floor function.
We give some of the celebrated symmetric and non-symmetric polynomials. We first

refer to the classical normalized Jacobi polynomials V(λ,δ)
m (x). These polynomials can be

written in a hypergeometric form as [30]

V(λ,δ)
m (x) = 2F1

(
−m, m + λ + δ + 1

λ + 1

∣∣∣∣1− x
2

)
.

Jacobi polynomials include six important classes of polynomials. The ultraspherical,
Legendre, and first-and second-kind Chebyshev polynomials are symmetric Jacobi polyno-
mials, so they can be expressed as in (2), while the two celebrated third- and fourth-kind
Chebyshev polynomials are particular polynomials of the non-symmetric Jacobi polynomi-
als, so they can be expressed as in (3). In addition, we have the following identities [31]:

Tm(x) = V(− 1
2 ,− 1

2 )
m (x), Um(x) = (m + 1)V( 1

2 , 1
2 )

m (x),

Vm(x) = V(− 1
2 , 1

2 )
m (x), Wm(x) = (2m + 1)V( 1

2 ,− 1
2 )

m (x),

Pm(x) = V(0,0)
m (x), G(δ)

m (x) = V(δ− 1
2 ,δ− 1

2 )
m (x),

where the first-, second-, third-, and fourth kinds of Chebyshev polynomials are, respec-
tively, denoted by the symbols Tm(x), Um(x), Vm(x), and Wm(x). Additionally, the polyno-
mials Pn(x) and G(δ)

n (x) denote the Legendre and ultraspherical polynomials, respectively.



Axioms 2022, 11, 743 4 of 22

The helpful books by Andrews et al. [32] and Mason and Handscomb [33] are both
excellent resources for in-depth surveys of Jacobi polynomials and their celebrated classes.

Additionally, among the non-symmetric Jacobi polynomials are the shifted Jacobi
polynomials on [0, 1]. These polynomials are defined as

Ṽ(λ,δ)
m (x) = V(λ,δ)

m (2x− 1).

We comment here that all six shifted special polynomials of the shifted Jacobi polyno-
mials are non-symmetric. The power form representation of Ṽ(λ,δ)

m (x) is given by [34]:

Ṽ(λ,δ)
m (x) =

m! Γ(1 + λ)

Γ(1 + m + λ)

m

∑
r=0

(−1)r (1 + δ)m (1 + λ + δ)2m−r

(m− r)! r! (1 + δ)m−r (1 + λ + δ)m
xm−r. (4)

Note that the symbol (z)` in Formula (4) represents the Pochhammer function defined as:

(z)` =
Γ(z + `)

Γ(z)
.

Among the important symmetric polynomials are the Fibonacci and Lucas polynomials
and their generalizations and modifications (see, [35]). Recently, Abd-Elhameed et al.
in [9] studied two polynomials generalizing Fibonacci and Lucas polynomials. These
polynomials may be constructed with the aid of the following two recursive formulas:

FA,B
k (x) = A x FA,B

k−1(x) + B FA,B
k−2(x), FA,B

0 (x) = 1, FA,B
1 (x) = A x, k ≥ 2, (5)

and

LR,S
k (x) = R x LR,S

k−1(x) + S LR,S
k−2(x), LR,S

0 (x) = 2, LR,S
1 (x) = R x, k ≥ 2. (6)

It is to be noted that several celebrated classes of polynomials can be obtained as
special cases of the two generalized classes of FA,B

k (x) and LR,S
k (x) (see, [9]). For example,

the Fibonacci polynomials Fk+1(x) and Lucas polynomials Lk(x) can be considered as
special cases of FA,B

k (x) and LR,S
k (x). In fact, we have:

Fk+1(x) = F1,1
k (x), Lk(x) = L1,1

k (x).

Furthermore, the power form representations of the generalized polynomials FA,B
i (x)

and LR,S
i (x) are, respectively, given as follows [9]:

FA,B
i (x) =

b i
2c

∑
m=0

(i−m
m ) Bm Ai−2m xi−2m, i ≥ 0, (7)

LR,S
i (x) = i

b i
2c

∑
m=0

Sm Ri−2m (i−m
m )

i−m
xi−2m, i ≥ 1.

3. New Expressions for the Derivatives of Some Celebrated Polynomials in Terms of
Euler Polynomials

This section is devoted to developing new expressions for the high-order derivatives
of some symmetric and non-symmetric polynomials in terms of Euler polynomials.

3.1. Derivative Expressions for Some Symmetric Polynomials

In this section, we give the derivatives of some symmetric polynomials in terms of
the Euler polynomials. To be more precise, the derivatives of the generalized Fibonacci
polynomials that are defined in (5), the generalized Lucas polynomials that are defined
in (6), the ultraspherical polynomials, and the Hermite polynomials will be expressed in
terms of the Euler polynomials.
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Theorem 1. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the
generalized Fibonacci polynomials FA,B

n defined in (5) have the following expansion in terms
of Euler polynomials:

D`FA,B
n (x) =An

b n−`
2 c

∑
r=0

A−2r Br (n− r)! (2r)! + n! r!
2 r! (2r)! (−`+ n− 2r)! 2F1

(
−r,−r + 1

2
−n

∣∣∣∣− 4B
A2

)
En−`−2r(x)

+n!
b 1

2 (n−`−1)c
∑
r=0

2F1

(
−r,−r− 1

2
−n

∣∣∣∣− 4B
A2

)
2 (2r + 1)! (−`+ n− 2r− 1)!

En−`−2r−1(x)

.

(8)

Proof. The power-form representation of the polynomials FA,B
n (x) in (7) allows one to write

D`FA,B
n (x) =

b n−`
2 c

∑
m=0

An−2mBm(1− 2m + n)m(1− `− 2m + n)`
m!

xn−2m−`.

Inserting the inversion formula of the Euler polynomials (1) yields the following
relation:

D`FA,B
n (x) =

b n−`
2 c

∑
m=0

An−2mBm(1− 2m + n)m(1− `− 2m + n)`
2m!

×

n−2m−`
∑
s=0

cs

(
−`− 2m + n
−`− 2m + n− s

)
En−2m−s−`(x).

After some algebraic computations, the last formula can be rewritten in the form

D`FA,B
n (x) =

b n−`
2 c

∑
r=0

1
2 (n− 2r− `)!

r

∑
s=0

c2r−2s An−2s Bs (n− s)!
s! (2r− 2s)!

En−`−2r(x)

+
b 1

2 (n−`−1)c
∑
r=0

1
2 (−`+ n− 2r− 1)!

r

∑
s=0

c2r−2s−1 An−2sBs(n− s)!
s! (2r− 2s + 1)!

En−`−2r−1(x).

Based on the following two identities:

r

∑
s=0

c2r−2s An−2s Bs(n− s)!
s! (2r− 2s)!

=

An
(

A−2r Br (n− r)! (2r)! + n! r! 2F1

(
−r,−r + 1

2
−n

∣∣∣∣− 4B
A2

))
r! (2r)!

,

r

∑
s=0

c2r−2s−1 An−2s Bs(n− s)!
s! (2r− 2s + 1)!

=

An n! 2F1

(
−r,−r− 1

2
−n

∣∣∣∣− 4B
A2

)
(2r + 1)!

,

Formula (8) can be obtained. This proves Theorem 1.

Remark 1. It is to be noted that, for the case corresponding to the choice B = − A2

4 , Formula (8)
can be simplified due to the Chu–Vandermond identity. The following corollary exhibits this result.
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Corollary 1. For the case B = − A2

4 , Formula (8) reduces to the following one:

D`FA,− A2
4

n (x) =
1
2

An
b n−`

2 c
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n! (n−2r+ 3

2 )r
(2r)! (n−r+1)r

(−`+ n− 2r)!
En−`−2r(x)

+
1
2

An n!
b 1

2 (n−`−1)c
∑
r=0

(
n− 2r + 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)! (n− r + 1)r
En−`−2r−1(x).

(9)

Proof. The substitution by B = − A2

4 into Formula (8) yields

D`FA,− A2
4

n (x) = =
1
2

An
b n−`

2 c
∑
r=0

(
− 1

4

)r
(n− r)!(2r)! + n!r! 2F1

(
−r,−r + 1

2
−n

∣∣∣∣1)
r! (2r)! (−`+ n− 2r)!

En−`−2r(x)

+
1
2

Ann!
b 1

2 (n−`−1)c
∑
r=0

2F1

(
−r,−r− 1

2
−n

∣∣∣∣1)
(2r + 1)! (−`+ n− 2r− 1)!

En−`−2r−1(x).

Chu–Vandermonde identity implies the following two identities:

2F1

(
−r,−r + 1

2
−n

∣∣∣∣1) =

(
n− 2r + 3

2
)

r
(n− r + 1)r

,

2F1

(
−r,−r− 1

2
−n

∣∣∣∣1) =

(
n− 2r + 1

2

)
r

(n− r + 1)r
,

therefore, the following formula can be obtained:

D`FA,− A2
4

n (x) =
1
2

An
b n−`

2 c
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n! (n−2r+ 3

2 )r
(2r)! (n−r+1)r

(−`+ n− 2r)!
En−`−2r(x)

+
1
2

An n!
b 1

2 (n−`−1)c
∑
r=0

(
n− 2r + 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)! (n− r + 1)r
En−`−2r−1(x).

Remark 2. An expression for the derivatives of Chebyshev polynomials of the first kind can be
obtained as a direct special case of Formula (9). The following corollary displays this important
specific result.

Corollary 2. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the Chebyshev
polynomials of the second kind can be represented in terms of Euler polynomials as

D`Un(x) =2n−1
b n−`

2 c
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n!(n−2r+ 3

2 )r
(2r)!(n−r+1)r

(−`+ n− 2r)!
En−`−2r(x)

+ 2n−1n!
b 1

2 (n−`−1)c
∑
r=0

(
n− 2r + 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)! (n− r + 1)r
En−`−2r−1(x).

Theorem 2. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the ultraspher-
ical polynomials G(δ)

n (x) can be expanded in terms of Euler polynomials as in the following form:
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D`G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×

b n−`
2 c

∑
r=0

2n−2r+2δ−2
(
(−1)r (2r)! Γ(n− r + δ) +

4r r! Γ(n+δ)(n−2r+δ+ 1
2 )r

(n−r+δ)r

)
r! (2r)! (−`+ n− 2r)!

En−`−2r(x)

+
n! 2n+2δ−2 Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

b 1
2 (n−`−1)c

∑
r=0

(
n− 2r + δ− 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)!(n− r + δ)r
En−`−2r−1(x).

(10)

Proof. The power form representation of the ultraspherical polynomials given by

G(δ)
n (x) =

n! Γ(2δ + 1)
2Γ(δ + 1) Γ(n + 2δ)

b n
2 c

∑
m=0

(−1)m 2n−2m Γ(n−m + δ)

m! (n− 2m)!
xn−2m,

enables one to write:

D`G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)

b n−`
2 c

∑
m=0

(−1)m 2−2m+n+2δ−1 Γ(−m + n + δ)

m! (−`− 2m + n)!
xn−2m−`,

which can be written again with the aid of the inversion Formula (1) into the form

D`G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
2
√

π Γ(n + 2δ)
×

b n−`
2 c

∑
m=0

(−1)m 2−2m+n+2δ−1 Γ(−m + n + δ)

m! (−`− 2m + n)!

n−2m−`
∑
s=0

cs

(
−`− 2m + n
−`− 2m + n− s

)
En−2m−s−`(x).

Some lengthy algebraic computations lead to

D`G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)

b n−`
2 c

∑
r=0

1
(−`+ n− 2r)!

r

∑
s=0

(−1)s c2r−2s 2n−2s+2δ−2 Γ(n− s + δ)

s! (2r− 2s)!
En−`−2r(x)

+
b 1

2 (n−`−1)c
∑
r=0

1
(−`+ n− 2r− 1)!

r

∑
s=0

(−1)sc2r−2s+1 2n−2s+2δ−2 Γ(n− s + δ)

s! (2r− 2s + 1)!
En−`−2r−1(x)

.

(11)

To transform (11) into a simplified formula, we will find closed forms for the two
interior sums that appear in it. Regarding the first sum, we can write

r

∑
s=0

(−1)s c2r−2s 2n−2s+2δ−2 Γ(n− s + δ)

s!(2r− 2s)!

= 2n+2δ−2


(
− 1

4

)r
Γ(n− r + δ)

r!
+

Γ(n + δ) 2F1

(
−r + 1

2 ,−r
1− n− δ

∣∣∣∣1)
(2r)!

,

(12)
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and accordingly, the Chu–Vandermonde identity implies the following identity:

r

∑
s=0

c2r−2s (−1)s 2n−2s+2δ−2 Γ(n− s + δ)

s! (2r− 2s)!
=

2n+2δ−2

r!

(−1
4

)r
Γ(n− r + δ) +

r! Γ(n + δ)
(

n− 2r + δ + 1
2

)
r

(2r)! (n− r + δ)r

.

Regarding the second sum, set

Mr,n =
r

∑
s=0

c2r−2s+1 (−1)s 2n−2s+2δ−2 Γ(n− s + δ)

s! (2r− 2s + 1)!
,

and employ the important algorithm of Zeilberger [36] to show that the following recurrence
relation of order one is satisfied by Mr,n:

Mr+1,n −
(3− 2n + 4r− 2δ) (5− 2n + 4r− 2δ)

4 (r + 1) (2r + 3) (3− 2n + 2r− 2δ) (1− n + r− δ)
Mr,n = 0, M0,n = 1,

which can be immediately solved to give

r

∑
s=0

(−1)s c2r−2s+1 2n−2s+2δ−2 Γ(n− s + δ)

s! (2r− 2s + 1)!
=

2n+2δ−2Γ(n + δ)
(

n− 2r + δ− 1
2

)
r

(2r + 1)! (n− r + δ)r
. (13)

In virtue of the two Identities (12) and (13), Formula (11) can be put into the simpler
formula:

D`G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×

b n−`
2 c

∑
r=0

2n−2r+2δ−2
(
(−1)r (2r)! Γ(n− r + δ) +

4r r! Γ(n+δ)(n−2r+δ+ 1
2 )r

(n−r+δ)r

)
r! (2r)! (−`+ n− 2r)!

En−`−2r(x)

+
n! 2n+2δ−2 Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

b 1
2 (n−`−1)c

∑
r=0

(
n− 2r + δ− 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)!(n− r + δ)r
En−`−2r−1(x).

This proves Theorem 2.

Remark 3. Since the Legendre and Chebyshev polynomials of the first and second kinds are
included in the ultraspherical polynomials, G(δ)

n , three specific expressions for the derivatives of
these polynomials can be inferred as direct special cases of Formula (10). These expressions can be
seen in the subsequent corollary.

Corollary 3. Let n and ` be two non-negative integers with n ≥ `. The formulas that express the
derivatives of Legendre and Chebyshev polynomials of the first and second kinds in terms of Euler
polynomials are given as follows:
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D`Pn(x) =
1√
π

b n−`
2 c

∑
r=0

2n−2r−1
(
(−1)r(2r)! Γ

(
n− r + 1

2

)
+

4r r! Γ(n+ 1
2 )(n−2r+1)r

(n−r+ 1
2 )r

)
r! (2r)! (−`+ n− 2r)!

En−`−2r(x)

+
2n−1Γ

(
1
2 + n

)
√

π

b 1
2 (n−`−1)c

∑
r=0

(n− 2r)r

(2r + 1)! (−`+ n− 2r− 1)!
(

n− r + 1
2

)
r

En−`−2r−1(x),

(14)

D`Tn(x) =n!
b n−`

2 c
∑
r=0

2n−2r−2
(
(−1)r(2r)! + 4rr!

(
n− 2r + 1

2

)
r

)
r! (2r)! (−`+ n− 2r)! (n− r)r

En−`−2r(x)

+ 2n−2n!
b 1

2 (n−`−1)c
∑
r=0

(
n− 2r− 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)! (n− r)r
En−`−2r−1(x),

(15)

D`Un(x) =
1
2

b n−`
2 c

∑
r=0

2n−2r(22rn! r!
(
n− 2r + 3

2
)

r + (−1)r (2r)! (n− r)! (n− r + 1)r
)

r! (2r)! (−`+ n− 2r)! (n− r + 1)r
En−`−2r(x)

+ 2n−1n!
b 1

2 (n−`−1)c
∑
r=0

(
n− 2r + 1

2

)
r

(2r + 1)! (−`+ n− 2r− 1)! (n− r + 1)r
En−`−2r−1(x).

(16)

Proof. Formulas (14), (15) and (16) can be obtained as special cases of Formula (10) by
setting δ = 1

2 , 0, 1, respectively.

Remark 4. Expressions for the derivatives of other symmetric polynomials can be derived using
similar techniques to those used in the proofs of Theorems 1 and 2. Some outcomes in this regard are
shown by the following two theorems:

Theorem 3. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the Hermite
polynomials Hn can be expanded in terms of Euler polynomials as

D`Hn(x) =n!
b n−`

2 c
∑
r=0

(−1)r 2n−2r−1
(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (−`+ n− 2r)!
En−`−2r(x)

+
b 1

2 (n−`−1)c
∑
r=0

U
(
−r, 3

2 , 1
)

(−`+ n− 2r− 1)! (2r + 1)!
En−`−2r−1(x),

(17)

where U(a, b; z) is the well-known confluent hypergeometric [37].

Proof. Based on the power form representation of Hermite polynomials given by [37]

Hn(x) = n!
b n

2 c
∑

m=0

(−1)m2n−2m

m!(n− 2m)!
xn−2m,

along with the inversion formula of Euler polynomials (1), and performing similar steps
that followed in the proof of Theorem 1, Formula (17) can be obtained.

Theorem 4. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the generalized
Lucas polynomials that are constructed by (6) can be expanded in terms of Euler polynomials as
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D`LR,S
n (x) =

1
2

Rn
b n−`

2 c
∑
r=0

R−2r Sr n(n− r− 1)! (2r)! + n! r! 2F1

(
−r,−r + 1

2
1− n

∣∣∣∣− 4 S
R2

)
r! (2r)!(−`+ n− 2r)!

En−`−2r(x)

+
1
2

Rnn!
b 1

2 (n−`−1)c
∑
r=0

2F1

(
−r,−r− 1

2
1− n

∣∣∣∣− 4S
R2

)
(2r + 1)! (−`+ n− 2r− 1)!

En−`−2r−1(x).

(18)

Proof. Similar to the proof of Theorem 1.

3.2. Derivative Expressions for Some Non-Symmetric Polynomials

This section is confined to developing new expressions for the derivatives of some
non-symmetric polynomials in terms of Euler polynomials. To be more precise, the expres-
sions for the derivatives of the shifted Jacobi, Laguerre, and Schröder polynomials will
be presented.

Theorem 5. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the shifted
Jacobi polynomials can be written in terms of the Euler polynomials as

D`Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×

n−`
∑

m=0

Γ(2n−m + λ + δ + 1)
m! (n−m− `)! Γ(n−m + λ + 1) Γ(n−m + δ + 1)

×

((−1)m Γ(n−m + λ + 1) Γ(n + δ + 1) + Γ(n + λ + 1) Γ(n−m + δ + 1)) En−`−m(x).

(19)

Proof. The representation of the shifted Jacobi polynomials in (4) serves to obtain the
following formula:

D`Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
Γ(n + λ + 1) Γ(n + δ + 1 + λ)

n+m−`
∑
r=0

(−1)r Γ(2n− r + δ + λ + 1)
r! (−`+ n− r)! Γ(n− r + δ + 1)

xn−r−`,

hence, when the inversion Formula (1) is applied, it yields the following formula:

D`Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + δ + 1 + λ)

×

n+m−`
∑
r=0

(−1)r Γ(2n− r + δ + λ + 1)
r! (−`+ n− r)! Γ(n− r + δ + 1)

n−`−r

∑
t=0

ct

(
−`+ n− r
−`+ n− r− t

)
En−r−`−t(x).

Rearranging the terms in the last formula turns it into the following form:

D`Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + δ + 1 + λ)

n−`
∑

m=0

1
(−`+ n−m)!

×

m

∑
r=0

(−1)r cm−r Γ(2n− r + δ + λ + 1)
(m− r)! r! Γ(n− r + δ + 1)

En−`−m(x).

(20)

The second sum that appears on the right-hand side of (20) can be rewritten in the
following form:

m

∑
r=0

(−1)r cm−r Γ(2n− r + δ + λ + 1)
r! (m− r)! Γ(n− r + δ + 1)

=

(−1)m Γ(n + δ + 1) Γ(2n−m + δ + λ + 1) + Γ(n−m + δ + 1) Γ(2n + δ + λ + 1) Hm,n

m! Γ(n + δ + 1) Γ(n−m + δ + 1)
,
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where Hm,n is given by

Hm,n = 2F1

(
−m,−n− δ
−2n− δ− λ

∣∣∣∣1).

Chu-Vandermond identity implies that

2F1

(
−m,−n− δ
−2n− δ− λ

∣∣∣∣1) =
(n−m + λ + 1)m

(2n−m + δ + λ + 1)m
,

thus, the following identity can be obtained:

m

∑
r=0

(−1)r cm−r Γ(2n− r + δ + λ + 1)
(m− r)! r! Γ(n− r + δ + 1)

=

(
(−1)m

Γ(n−m+δ+1) +
Γ(n+λ+1)

Γ(n+δ+1) Γ(n−m+λ+1)

)
Γ(2n−m + δ + λ + 1)

m!
.

The reduction of the last sum enables one to reduce Formula (20) in the following
simpler form:

D`Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×

n−`
∑

m=0

Γ(2n−m + λ + δ + 1)
m! (n−m− `)! Γ(n−m + λ + 1) Γ(n−m + δ + 1)

×

((−1)m Γ(n−m + λ + 1) Γ(n + δ + 1) + Γ(n + λ + 1) Γ(n−m + δ + 1)) En−`−m(x).

This finalizes the proof of Theorem 5.

Taking into consideration the six special polynomials of the shifted Jacobi polynomials,
six special formulas of Formula (19) can be obtained. The following two corollaries present
these formulas.

Corollary 4. Let n and ` be two non-negative integers with n ≥ `. The following expressions give
the derivatives of the shifted ultraspherical, shifted Legendre, and shifted Chebyshev polynomials of
the first and second kinds:

D`G̃(δ)
n (x) =

n! Γ
(

δ + 1
2

)
Γ(n + 2δ)

b n−`
2 c

∑
m=0

Γ(2(n−m + δ))

(2m)! (−`+ n− 2m)! Γ
(

1
2 + n− 2m + δ

)En−`−2m(x),

D`P̃n(x) =
b n−`

2 c
∑

m=0

(2n− 2m)!
(2m)! (n− 2m)! (−`+ n− 2m)!

En−`−2m(x),

D`T̃n(x) =n
√

π
b n−`

2 c
∑

m=0

(2n− 2m + 1)!

(2m)! (−`+ n− 2m)! Γ
(

n− 2m + 1
2

)En−`−2m(x),

D`Ũn(x) =
1
2
√

π
b n−`

2 c
∑

m=0

(2n− 2m + 1)!
(2m)! (−`+ n− 2m)! Γ

(
n− 2m + 3

2
)En−`−2m(x).
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Corollary 5. Let n and ` be two non-negative integers with n ≥ `. The derivatives of the shifted
third- and fourth-kind Chebyshev polynomials are, respectively, given by the following expressions:

D`Ṽn(x) =
1
2
√

π

b n−`
2 c

∑
m=0

(2n− 2m + 1)!

(2m)! (−`+ n− 2m)! Γ
(

n− 2m + 3
2

)En−`−2m(x)

−
b 1

2 (n−`−1)c
∑

m=0

(2n− 2m− 1)!

(2m)! (−`+ n− 2m− 1)! Γ
(

n− 2m + 1
2

)En−`−2m−1(x)

,

(21)

D`W̃n(x) =
1
2
√

π

b n−`
2 c

∑
m=0

(2n− 2m + 1)!

(2m)! (−`+ n− 2m)! Γ
(

n− 2m + 3
2

)En−`−2m(x)

+
b 1

2 (n−`−1)c
∑

m=0

(2n− 2m− 1)!

(2m)! (−`+ n− 2m− 1)! Γ
(

n− 2m + 1
2

)En−`−2m−1(x)

.

(22)

Theorem 6. For non-negative integers n and q with n ≥ q, the derivatives of the generalized
Laguerre polynomials L(λ)

n (x) can be expanded in terms of the Euler polynomials as

D`L(λ)
n (x) =

1
2

Γ(n + λ + 1)
n−`
∑

m=0

(−1)n+m (1 + 1F1(−m; n−m + λ + 1; 1))
m! (−`+ n−m)! Γ(n−m + λ + 1)

En−`−m(x). (23)

Proof. The proof can be done with the aid of the following formula [37]:

L(λ)
n (x) =

Γ(n + λ + 1)
n!

n

∑
k=0

(−1)n−k (n
k)

Γ(n + λ− k + 1)
xn−k,

along with Formula (1).

Theorem 7. For non-negative integers n and q with n ≥ q, the derivatives of the Schröder
polynomials can be expanded in terms of Euler polynomials as

D`Sn(x) =
1

2(n + 1)!

n−`
∑

m=0

(n + 1)! (2n−m)! + (2n)! (n−m + 1)! 2F1

(
−m,−n− 1
−2n

∣∣∣∣∣− 1

)
m! (n−m + 1)! (−`+ n−m)!

×

En−`−m(x).

(24)

Proof. The proof can be done with the aid of the following representation of Schröder
polynomials [38]

Sn(x) =
n

∑
r=0

(2r
r )(

n+r
n−r)

j + 1
xr,

along with Formula (1).

4. Connection Formulas of Different Polynomials with Euler Polynomials

In this section, the connection formulas between some symmetric and non-symmetric
polynomials and the Euler polynomials are given. In fact, since all the derivative formulas
developed in Section 3 are valid for ` = 0, it is an easy matter to deduce the connection
formulas as special cases of these formulas.

4.1. Connection Formulas between Some Symmetric Polynomials and Euler Polynomials

In this section, we present new connection formulas between some symmetric poly-
nomials and Euler polynomials. More precisely, the connection formulas between the
ultraspherical, generalized Fibonacci, generalized Lucas, and Hermite polynomials and
Euler polynomials will be presented.
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Corollary 6. For every non-negative integer n, the following connection formulas hold:

U(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×b

n
2 c

∑
r=0

2n−2r+2δ−2
(
(−1)r(2r)! Γ(n− r + δ) +

4r r! Γ(n+δ)(−n+r−δ+ 1
2 )r

(1−n−δ)r

)
r! (2r)! (n− 2r)!

En−2r(x)

+Γ(n + δ)
b n−1

2 c
∑
r=0

2n+2δ−2(−n + r− δ + 3
2
)

r
(2r + 1)! (n− 2r− 1)! (1− n− δ)r

En−2r−1(x)

,

(25)

Pn(x) =
1√
π

b n
2 c

∑
r=0

2n−1
(
(− 1

4 )
r

Γ(n−r+ 1
2 )

r! +
Γ(n+ 1

2 ) (n−2r+1)r

(2r)! (n−r+ 1
2 )r

)
(n− 2r)!

En−2r(x)

+
2n−1 Γ

(
n + 1

2

)
√

π

b n−1
2 c

∑
r=0

(n− 2r)r

(2r + 1)! (n− 2r− 1)!
(

n− r + 1
2

)
r

En−2r−1(x),

Tn(x) =n!
b n

2 c
∑
r=0

2n−2r−2
(
(−1)r(2r)! + 4r r!

(
n− 2r + 1

2

)
r

)
r! (2r)! (n− 2r)! (n− r)r

En−2r(x)

+ 2n−2n!
b n−1

2 c
∑
r=0

(
n− 2r− 1

2

)
r

(2r + 1)! (n− 2r− 1)! (n− r)r
En−2r−1(x),

Un(x) =
1
2

n!
b n

2 c
∑
r=0

2n
((
− 1

4

)r
(2r)! + r!

(
n− 2r + 3

2
)

r

)
r! (2r)! (n− 2r)! (n− r + 1)r

En−2r(x)

+ 2n−1 n!
b n−1

2 c
∑
r=0

(
n− 2r + 1

2

)
r

(2r + 1)! (n− 2r− 1)! (n− r + 1)r
En−2r−1(x).

Proof. All formulas listed in Corollary 6 are direct consequences of Theorem 2 and Corollary 3
with the same arrangement of their equations. They can be deduced by setting ` = 0.

Corollary 7. Let n be any positive integer. The following are the generalized Fibonacci–Euler, the
generalized Lucas–Euler, and the Hermite–Euler connection formulas.

FA,B
n (x) =An


b n

2 c
∑
r=0

A−2r Br(n− r)! (2r)! + n! r! 2F1

(
−r,−r + 1

2
−n

∣∣∣∣− 4B
A2

)
2 r! (2r)! (n− 2r)!

En−2r(x)

+ n!
b n−1

2 c
∑
r=0

2F1

(
−r,−r− 1

2
−n

∣∣∣∣− 4B
A2

)
2 (2r + 1)! (n− 2r− 1)!

En−2r−1(x)

,

(26)
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LR,S
n (x) =

1
2

Rnn!


b n

2 c
∑
r=0

R−2r Sr n(n− r− 1)! (2r)! + n! r! 2F1

(
−r,−r + 1

2
1− n

∣∣∣∣− 4 S
R2

)
r! (2r)! (n− 2r)!

En−2r(x)

+ n!
b n−1

2 c
∑
r=0

2F1

(
−r,−r− 1

2
1− n

∣∣∣∣− 4 S
R2

)
(2r + 1)! (n− 2r− 1)!

En−2r−1(x)

,

(27)

Hn(x) =n!
b n

2 c
∑
r=0

(−1)r2n−2r−1
(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (n− 2r)!
En−2r(x)

+ 2n−1n!
b n−1

2 c
∑
r=0

1
(2r + 1)! (n− 2r− 1)!

U
(
−r,

3
2

, 1
)

En−2r−1(x).

(28)

Proof. Formulas (26), (27) and (28) are, respectively, special cases of Formulas (8), (18) and (17)
for the case ` = 0.

4.2. Connection Formulas between Some Non-Symmetric Polynomials with Euler Polynomials

In this section, we introduce new connection formulas between some non-symmetric
polynomials and Euler polynomials. The shifted Jacobi–Euler, generalized Laguerre–Euler,
and Schröder–Euler connection formulas will be displayed.

Corollary 8. Let n be a non-negative integer. The shifted Jacobi–Euler connection formula is

Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×

n

∑
m=0

(Γ(−m + n + δ + 1) Γ(n + λ + 1) + (−1)m Γ(n + δ + 1) Γ(1−m + n + λ))

m! (n−m)! Γ(−m + n + δ + 1)Γ(1−m + n + λ)
×

Γ(−m + 2n + δ + λ + 1) En−m(x).

(29)

Proof. Formula (29) can be immediately deduced for Formula (19) by setting q = 0.

Corollary 9. Let n be a non-negative integer. The following are the ultraspherical-Euler, Legendre-
Euler, first-kind-Euler, and second-kind-Euler connection formulas

G̃(δ)
n (x) =

n! Γ
(

δ + 1
2

)
Γ(n + 2δ)

b n
2 c

∑
m=0

Γ(2(n−m + δ))

(2m)! (n− 2m)! Γ
(

1
2 + n− 2m + δ

) En−2m(x),

P̃n(x) =
b n

2 c
∑

m=0

(2n− 2m)!

(2m)! ((n− 2m)!)2 En−2m(x),

T̃n(x) =n
√

π
b n

2 c
∑

m=0

(2n− 2m− 1)!

(2m)! (n− 2m)! Γ
(

n− 2m + 1
2

)En−2m(x),

Ũn(x) =
1
2
√

π
b n

2 c
∑

m=0

(2n− 2m + 1)!
(2m)! (n− 2m)! Γ

(
n− 2m + 3

2
)En−2j(x).

Proof. Corollary 9 is a special case of Corollary 4 for ` = 0.
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Corollary 10. The following are the shifted third-kind Chebyshev–Euler and shifted fourth-kind
Chebyshev–Euler connection formulas.

Ṽn(x) =
1
2
√

π

b n
2 c

∑
m=0

(2n− 2m + 1)!
(2m)! (n− 2m)! Γ

(
n− 2m + 3

2
)En−2m(x)

−
b n−1

2 c
∑

m=0

(2n− 2m− 1)!

(2m)! (n− 2m− 1)! Γ
(

n− 2m + 1
2

) En−2m−1(x)

,

(30)

W̃n(x) =
1
2
√

π

b n
2 c

∑
m=0

(2n− 2m + 1)!
(2m)! (n− 2m)! Γ

(
n− 2m + 3

2
)En−2m(x)

+
b n−1

2 c
∑

m=0

(2n− 2m− 1)!

(2m)! (n− 2m− 1)! Γ
(

n− 2m + 1
2

) En−2m−1(x)

.

(31)

Proof. Formulas (30) and (31) are, respectively, special ones of Formulas (21) and (22) only
by setting ` = 0.

Corollary 11. The following are the generalized Laguerre–Euler and Schröder–Euler connection
formulas:

L(λ)
n (x) =

1
2

Γ(n + λ + 1)
n

∑
m=0

(−1)n+m(1 + 1F1(−m; n−m + λ + 1; 1))
m! (n−m)! Γ(n−m + λ + 1)

En−m(x), (32)

Sn(x) =
1

2(n + 1)!

n

∑
m=0

(n + 1)! (2n−m)! + (2n)! (n−m + 1)! 2F1

(
−m,−n− 1
−2n

∣∣∣∣− 1
)

m! (n−m)! (n−m + 1)!
En−m(x). (33)

Proof. Formulas (32) and (33) are, respectively, special ones of Formula (23) and (24) only
by setting ` = 0.

5. Application to Compute Some New Integrals

This section is confined to developing an application to the connection formulas
between different polynomials and the Euler polynomials. In this regard, new formulas are
developed for computing some definite integrals of the products of different symmetric and
non-symmetric polynomials with Euler polynomials. In fact, the connection coefficients
aid in the evaluation of the desired definite integrals.

5.1. Definite Integrals for the Product of Euler Polynomials with Symmetric Polynomials

This section is interested in introducing a new explicit formula for evaluating a definite
integral for the product of the Euler polynomial of any degree with a symmetric polynomial
of any degree. After that, we apply this general formula to evaluate the definite integral for
the product of Euler polynomials with some celebrated symmetric polynomials.

Theorem 8. Let φn(x) be any symmetric polynomial that can be expressed as in (2), and let it have
the following connection formula with Euler polynomials:

φn(x) =
b n

2 c
∑
r=0

Rr,n En−2r(x) +
b n−1

2 c
∑
r=0

R̄r,n En−2r−1(x). (34)
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The following integral formula is valid:

∫ 1

0
φn(x) Em(x) dx =4 m!

b n
2 c

∑
r=0

(−1)n(2m+n−2r+2 − 1
)
(n− 2r)!

(m + n− 2r + 2)!
Bm+n−2r+2 Rr,n

+
b n−1

2 c
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)
(n− 2r− 1)!

(m + n− 2r + 1)!
Bm+n−2r+1 R̄r,n

,

(35)

and Bn are the well-known Bernoulli numbers.

Proof. The connection Formula (34) immediately yields

∫ 1

0
φn(x) Em(x) dx =

b n
2 c

∑
r=0

Rr,n

∫ 1

0
Em(x)En−2r(x) dx +

b n−1
2 c

∑
r=0

R̄r,n

∫ 1

0
Em(x)En−2r−1(x) dx. (36)

In virtue of the well-known formula [29]:

∫ 1

0
Em(x)En(x) dx = Fm,n =

4(−1)n(2m+n+2 − 1
)

n! m!
(m + n + 2)!

Bm+n+2. (37)

Formula (36) can be transformed into the following formula:

∫ 1

0
φn(x) Em(x) dx =

b n
2 c

∑
r=0

Rr,n Fm,n−2r +
b n−1

2 c
∑
r=0

R̄r,n Fm,n−2r−1,

and this leads to the following integral formula:

∫ 1

0
φn(x) Em(x) dx =4 m!

b n
2 c

∑
r=0

(−1)n(2m+n−2r+2 − 1
)
(n− 2r)!

(m + n− 2r + 2)!
Bm+n−2r+2 Rr,n

+
b n−1

2 c
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)
(n− 2r− 1)!

(m + n− 2r + 1)!
Bm+n−2r+1 R̄r,n

.

This proves Theorem 8.

Remark 5. As a consequence of Theorem 8 along with the connection formulas stated in Section 4,
several new definite integral formulas of the product of some symmetric polynomials with the Euler
polynomials can be obtained. The following corollaries exhibit these formulas.

Corollary 12. For all non-negative integers m and n, the following definite integral formula holds:

∫ 1

0
G(δ)

n (x) Em(x) dx =
(−1)nm! n! Γ

(
δ + 1

2

)
√

π Γ(n + 2δ)

b n
2 c

∑
r=0

2n−2r+2δ
(
2m+n−2r+2 − 1

)
r! (2r)! (m + n− 2r + 2)!

×(−1)r(2r)! Γ(n− r + δ) +
4rr! Γ(n + δ)

(
−n + r− δ + 1

2

)
r

(1− n− δ)r

 Bm+n−2r+2

+
2n+2δm! n! Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

b n−1
2 c

∑
r=0

(−1)n+1(2m+n−2r+1 − 1
) (
−n + r− δ + 3

2
)

r
(2r + 1)! (m + n− 2r + 1)! (1− n− δ)r

Bm+n−2r+1.

(38)

Proof. This result is a direct consequence of the connection Formula (25) along with the
integral Formula (35).
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The following three specific formulas of Formula (38) are concerned with the definite
integral formulas for the products of Legendre and Chebyshev polynomials of the first and
second kinds with Euler polynomials.

Corollary 13. Let m and n be any non-negative integers. The following definite integral formu-
las apply:

∫ 1

0
Pn(x)Em(x) dx =

(−1)n2n+1m!√
π

b n
2 c

∑
r=0

(
2m+n−2r+2 − 1

)( (− 1
4 )

r
Γ(n−r+ 1

2 )
r! +

Γ(n+ 1
2 )(n−2r+1)r

(2r)! (n−r+ 1
2 )r

)
(m + n− 2r + 2)!

Bm+n−2r+2

+ (−1)n+122−nm!
b n−1

2 c
∑
r=0

(
2m+n+1 − 4r)(2n− 2r− 1)!

(2r + 1)! (n− 2r− 1)! (m + n− 2r + 1)!
Bm+n−2r+1,

(39)

∫ 1

0
Tn(x)Em(x) dx =

m! n!

b n
2 c

∑
r=0

(−2)n−2r(2m+n−2r+2 − 1
)(

(−1)r(2r)! + 4rr!
(

1
2 + n− 2r

)
r

)
r! (2r)! (m + n− 2r + 2)! (n− r)r

Bm+n−2r+2

+
b n−1

2 c
∑
r=0

(−2)n−2r(−2m+n+1 + 4r)(− 1
2 + n− 2r

)
r

(2r + 1)! (m + n + 1− 2r)! (n− r)r
Bm+n−2r+1

, n ≥ 1,

(40)

∫ 1

0
Un(x)Em(x) dx =

m!

b n
2 c

∑
r=0

(−2)n−2r+1(−2m+n+2 + 4r)n!
((
− 1

4

)r
(2r)! + r!

(
n− 2r + 3

2

)
r

)
r! (2r)! (m + n− 2r + 2)! (n− r + 1)r

Bm+n−2r+2

+ n!
b n−1

2 c
∑
r=0

(−2)n−2r+1(2m+n+1 − 4r)( 1
2 + n− 2r

)
r

(2r + 1)! (m + n + 1− 2r)! (n− r + 1)r
Bm+n−2r+1

.

(41)

Proof. Formulas (39), (40) and (41) can be obtained as special cases of Formula (38) by
setting δ = 1

2 , 0, 1, respectively.

The following corollary is concerned with the definite integrals of the two generalized
Fibonacci and generalized Lucas polynomials with the Euler polynomials.

Corollary 14. For all non-negative integers m and n, the following definite integral formulas
apply:

∫ 1

0
FA,B

n (x) Em(x) dx = 2 An m!×

b n
2 c

∑
r=0

(−1)n (2m+n−2r+2 − 1
) (

A−2r Br (n− r)!(2r)! + n! r! 2F1

(
−r,−r + 1

2
−n

∣∣∣∣− 4 B
A2

))
r! (2r)!(m + n− 2r + 2)!

×

Bm+n−2r+2 + 2Anm! n!
b n−1

2 c
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)

2F1

(
−r,−r− 1

2
−n

∣∣∣∣− 4 B
A2

)
(2r + 1)! (m + n− 2r + 1)!

Bm+n−2r+1,

(42)
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∫ 1

0
LR,S

n (x) Em(x) dx = 2(−1)n m!
b n

2 c
∑
r=0

(
2m+n−2r+2 − 1

)
Rn

r! (2r)! (m + n− 2r + 2)!
×(

n R−2rSr(n− r− 1)! (2r)! + n! r! 2F1

(
−r,−r + 1

2
1− n

∣∣∣∣− 4 S
R2

))
Bm+n−2r+2

+ 2(−1)n+1m! n! Rn
b n−1

2 c
∑
r=0

(
2m+n−2r+1 − 1

)
2F1

(
−r,−r− 1

2
1− n

∣∣∣∣− 4 S
R2

)
(2r + 1)! (m + n− 2r + 1)!

Bm+n−2r+1, n ≥ 1.

(43)

Proof. Formulas (42) and (43) can be obtained, respectively, as by the application to Theorem 8
along with the two connection Formulas (26) and (27).

Corollary 15. For all non-negative integers m and n, the following definite integral formula
applies: ∫ 1

0
Hn(x)Em(x) dx = m! n!×b n

2 c
∑
r=0

(−1)n−r2n−2r+1(2m+n−2r+2 − 1
)(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (m + n− 2r + 2)!
Bm+n−2r+2

+
b n−1

2 c
∑
r=0

(−2)n−2r+1(2m+n+1 − 4r)
(2r + 1)! (m + n− 2r + 1)!

U
(
−r,

3
2

, 1
)

Bm+n−2r+1

.

Proof. Direct application to Theorem 8 making use of the connection formula (28) yields
the desired result.

5.2. Definite Integrals for the Product of Euler Polynomials with Non-Symmetric Polynomials

This section focuses on developing a new closed expression for a definite integral for
the product of the Euler polynomial of any degree with any non-symmetric polynomial of
any degree. Furthermore, it focuses on some specific definite integrals for the product of
Euler polynomials with some celebrated non-symmetric polynomials. In this regard, the
following theorem will be stated and proved.

Theorem 9. Let φn(x) by any non-symmetric polynomial that is connected with Euler polynomials
by the following formula:

φn(x) =
n

∑
r=0

Sr,n En−r(x). (44)

The following integral formula applies:

∫ 1

0
φn(x) Em(x) dx = 4 m!

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(n− r)!

(m + n− r + 2)!
Bm+n−r+2Sr,n.

Proof. Based on the connection Formula (44), one has the following integral formula:

∫ 1

0
φn(x) Em(x) dx =

n

∑
r=0

Sr,n Fm,n−r,

where Fm,n are given by (37). This leads to the formula

∫ 1

0
φn(x) Em(x) dx = 4 m!

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(n− r)!

(m + n− r + 2)!
Bm+n−r+2Sr,n.
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Remark 6. As a consequence of Theorem 9, along with the connection formulas in Section 4.2,
several new definite integral formulas for the product of some non-symmetric polynomials with the
Euler polynomials can be obtained. The following corollaries exhibit some of these integral formulas.

Corollary 16. For all positive integers m and n, the following integral formulas hold:∫ 1

0
Ṽ(λ,δ)

n (x) Em(x) dx =
2 m! n! Γ(λ + 1)

Γ(n + λ + 1)Γ(n + δ + 1 + λ)
×

n

∑
r=0

(−1)n−r (2m+n−r+2 − 1
)

Γ(2n− r + δ + λ + 1)
r! (m + n + 2− r)! Γ(n− r + δ + 1) Γ(n− r + λ + 1)

×

(Γ(n− r + δ + 1) Γ(n + λ + 1) + (−1)r Γ(n + δ + 1) Γ(n− r + λ + 1)) Bm+n−r+2.

(45)

Proof. The proof is based on utilizing Theorem 9 along with the connection Formula (29).

The following two corollaries give six special formulas of Formula (45).

Corollary 17. For all positive integers m and n, the following integral formulas hold:

∫ 1

0
G̃(δ)

n (x) Em(x) dx =
4 (−1)n m! n! Γ

(
δ + 1

2

)
Γ(n + 2 δ)

b n
2 c

∑
r=0

(
2m+n−2r+2 − 1

)
Γ(2(n− r + δ))

(2r)! (m + n− 2r + 2)! Γ
(

n− 2r + δ + 1
2

)×
Bm+n−2r+2,

(46)

∫ 1

0
P̃n(x)Em(x) dx =4 m! (−1)n

b n
2 c

∑
r=0

(
2m+n−2r+2 − 1

)
(2n− 2r)!

(2r)! (n− 2r)! (m + n− 2r + 2)!
Bm+n−2r+2, (47)

∫ 1

0
T̃n(x)Em(x) dx =4 (−1)n n

√
π m!

b n
2 c

∑
r=0

(
2m+n−2r+2 − 1

)
(2n− 2r− 1)!

(2r)! Γ
(

n− 2r + 1
2

)
(m + n− 2r + 2)!

Bm+n−2r+2, (48)

∫ 1

0
Ũn(x)Em(x) dx =2 (−1)n m!

√
π
b n

2 c
∑
r=0

(
2m+n+2−2r − 1

)
(2n− 2r + 1)!

(2r)! Γ
(
n− 2r + 3

2
)
(m + n− 2r + 2)!

Bm+n−2r+2. (49)

Proof. Formula (46) can be obtained from the general Formula (45) if both λ and δ are
replaced by

(
δ− 1

2

)
. Formulas (47), (48) and (49) are special ones of Formula (46) for the

cases δ = 1
2 , 0, 1, respectively.

Corollary 18. For all positive integers m and n, the following integral formulas hold:∫ 1

0
Ṽn(x)Em(x) dx =

√
π m!×

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(1 + (−1)r + 2(1 + (−1)r)n− 2r)(2n− r)!

r! Γ
(
n− r + 3

2
)
(m + n + 2− r)!

Bm+n−r+2,
(50)

∫ 1

0
W̃n(x)Em(x) dx =

√
π m!×

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(1 + 2n + (−1)r(2n− 2r + 1))(2n− r)!

r! Γ
(
n− r + 3

2
)
(m + n + 2− r)!

Bm+n−r+2.
(51)

Proof. Formulas (50) and (51) can be obtained as direct special cases of Formula (45) for
the three cases λ = − 1

2 , δ = 1
2 , and λ = 1

2 , δ = − 1
2 , respectively .

Corollary 19. For all positive integers m and n, the following integral formula holds:
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∫ 1

0
L(λ)

n (x)Em(x) dx =2 m! Γ(n + λ + 1)
n

∑
r=0

(
2m+n−r+2 − 1

)
(1 + 1F1(−r; n− r + λ + 1; 1))

r! (m + n− r + 2)! Γ(n− r + λ + 1)
×

Bm+n−r+2.

Proof. Direct application to Theorem 9, taking into consideration the connection For-
mula (32), will yield the desired result.

Corollary 20. For all positive integers m and n, the following integral formula holds:

∫ 1

0
Sn(x) Em(x) dx = 2m!×

n

∑
r=0

(−1)n−r (2m+n−r+2 − 1
)(

(n + 1)! (2n− r)! + (2n)! (n− r + 1)! 2F1

(
−r,−n− 1
−2n

∣∣∣∣− 1
))

(n + 1)! r! (n− r + 1)! (m + n + 2− r)!
×

Bm+n−r+2.

Proof. Direct application to Theorem 9 taking into consideration the connection For-
mula (33) will yield the desired result.

6. Concluding Remarks

In this article, we developed new identities involving the Euler polynomials. We estab-
lished new derivative expressions for different polynomials in terms of Euler polynomials.
Connection formulas between various polynomials and the Euler polynomials. We proved
that the connection coefficients are in many cases simple and free of any hypergeometric
functions, but in other cases, they involve certain hypergeometric functions. An interesting
application is provided where various definite integrals involving Euler polynomials are
computed exactly in closed forms to highlight the significance of the derived connection
formulas. We intend to derive further identities and integrals involving Euler polynomials
in the near future based on other formulas between different polynomials and Euler poly-
nomials. We think that the majority of the findings in this work are novel, and they might
be applicable to other areas of mathematics.
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2. Yalçinbaş, S.; Aynigül, M.; Sezer, M. A collocation method using Hermite polynomials for approximate solution of pantograph

equations. J. Frankl. Inst. 2011, 348, 1128–1139. [CrossRef]
3. Gülsu, M.; Gürbüz, B.; Öztürk, Y.; Sezer, M. Laguerre polynomial approach for solving linear delay difference equations. Appl.

Math. Comput. 2011, 217, 6765–6776. [CrossRef]

http://doi.org/10.1002/num.22674
http://dx.doi.org/10.1016/j.jfranklin.2011.05.003
http://dx.doi.org/10.1016/j.amc.2011.01.112


Axioms 2022, 11, 743 21 of 22

4. Doha, E.H.; Abd-Elhameed, W.M.; Bassuony, M.A. On using third and fourth kinds Chebyshev operational matrices for solving
Lane-Emden type equations. Rom. J. Phys. 2015, 60, 281–292.

5. Mittal, A.K.; Balyan, L.K. Chebyshev pseudospectral approximation of two dimensional fractional Schrodinger equation on a
convex and rectangular domain. AIMS Math. 2020, 5, 1642–1662. [CrossRef]

6. Ali, K.K.; Abd El Salam, M.A.; Mohamed, M.S. Chebyshev fifth-kind series approximation for generalized space fractional partial
differential equations. AIMS Math. 2022, 7, 7759–7780. [CrossRef]

7. Abd-Elhameed, W.M.; Ahmed, H.M. Tau and Galerkin operational matrices of derivatives for treating singular and Emden–Fowler
third-order-type equations. Int. J. Mod. Phys. 2022, 33, 2250061. [CrossRef]

8. Abd-Elhameed, W.M.; Zeyada, N.A. New formulas including convolution, connection and radicals formulas of k-Fibonacci and
k-Lucas polynomials. Indian J. Pure Appl. Math. 2022, 53, 1006–1016. [CrossRef]

9. Abd-Elhameed, W.M.; Philippou, A.N.; Zeyada, N.A. Novel results for two generalized classes of Fibonacci and Lucas polynomials
and their uses in the reduction of some radicals. Mathematics 2022, 10, 2342. [CrossRef]

10. Abd-Elhameed, W.M.; Amin, A.K.; Zeyada, N.A. Some new identities of a type of generalized numbers involving four parameters.
AIMS Math. 2022, 7, 12962–12980. [CrossRef]

11. Aceto, L.; Malonek, H.R.; Tomaz, G. A unified matrix approach to the representation of Appell polynomials. Integral Transform.
Spec. Funct. 2015, 26, 426–441. [CrossRef]

12. Costabile, F.A.; Gualtieri, M.I.; Napoli, A. General bivariate Appell polynomials via matrix calculus and related interpolation
hints. Mathematics 2021, 9, 964. [CrossRef]

13. Ismail, M.E.H.; van Assche, W. Classical and Quantum Orthogonal Polynomials in One Variable; Cambridge University Press:
Cambridge, UK, 2005; Volume 13.

14. Srivastava, H.M.; Pinter, A. Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 2004,
17, 375–380. [CrossRef]

15. Kim, T. Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 2015, 38, 553–562. [CrossRef]
16. Pintér, A.; Rakaczki, C. On the decomposability of the linear combinations of Euler polynomials with odd degrees. Symmetry

2019, 11, 739. [CrossRef]
17. Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [CrossRef]
18. Kim, D.S.; Kim, T.; Lee, S.S.; Kim, Y.H. Some identities for the product of two Bernoulli and Euler polynomials. Adv. Differ. Equ.

2012, 2012, 95. [CrossRef]
19. Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 1–17.

[CrossRef]
20. Tabinda, N.; Mohd, S.; Serkan, A. A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Math.

2021, 6, 13566–13579.
21. Alam, N.; Khan, W.A.; Ryoo, C.S. A note on Bell-based Apostol-type Frobenius-Euler polynomials of complex variable with its

certain applications. Mathematics 2022, 10, 2109. [CrossRef]
22. Rezabeyk, S.; Abbasbandy, S.; Shivanian, E. Solving fractional-order delay integro-differential equations using operational matrix

based on fractional-order Euler polynomials. Math. Sci. 2020, 14, 97–107. [CrossRef]
23. Behera, S.; Ray, S.S. An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra

delay-integro-differential equations. J. Comput. Appl. Math. 2022, 406, 113825. [CrossRef]
24. Wang, Y.; Huang, J.; Wen, X. Two-dimensional Euler polynomials solutions of two-dimensional Volterra integral equations of

fractional order. Appl. Numer. Math. 2021, 163, 77–95. [CrossRef]
25. Doha, E.H.; Abd-Elhameed, W.M.; Bassuony, M.A. On the coefficients of differentiated expansions and derivatives of Chebyshev

polynomials of the third and fourth kinds. Acta Math. Sci. 2015, 35, 326–338. [CrossRef]
26. Abd-Elhameed, W.M.; Alkenedri, A.M. Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials

generalizing third-and fourth-kinds of Chebyshev polynomials. CMES Comput. Model. Eng. Sci. 2021, 126, 955–989. [CrossRef]
27. Abd-Elhameed, W.M. Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the

non-linear one-dimensional Burgers’ equation. Fractal Fract. 2021, 5, 53. [CrossRef]
28. Abd-Elhameed, W.M. New formulae between Jacobi polynomials and some fractional Jacobi functions generalizing some

connection formulae. Anal. Math. Phys. 2019, 9, 73–98. [CrossRef]
29. Djordjevic, G.B.; Milovanovic, G.V. Special Classes of Polynomials; University of Nis, Faculty of Technology Leskovac, Leskovac,

Serbia, 2014.
30. Abd-Elhameed, W.M. New product and linearization formulae of Jacobi polynomials of certain parameters. Integral Transform.

Spec. Funct. 2015, 26, 586–599. [CrossRef]
31. Abd-Elhameed, W.M.; Ali, A. New specific and general linearization formulas of some classes of Jacobi polynomials. Mathematics

2020, 9, 74. [CrossRef]
32. Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71.
33. Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003.
34. Abd-Elhameed, W.M.; Badah, B.M. New approaches to the general linearization problem of Jacobi polynomials based on moments

and connection formulas. Mathematics 2021, 9, 1573. [CrossRef]
35. Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 51.

http://dx.doi.org/10.3934/math.2020111
http://dx.doi.org/10.3934/math.2022436
http://dx.doi.org/10.1142/S0129183122500619
http://dx.doi.org/10.1007/s13226-021-00214-5
http://dx.doi.org/10.3390/math10132342
http://dx.doi.org/10.3934/math.2022718
http://dx.doi.org/10.1080/10652469.2015.1013035
http://dx.doi.org/10.3390/math9090964
http://dx.doi.org/10.1016/S0893-9659(04)90077-8
http://dx.doi.org/10.2989/16073606.2014.981688
http://dx.doi.org/10.3390/sym11060739
http://dx.doi.org/10.3390/axioms7030056
http://dx.doi.org/10.1186/1687-1847-2012-95
http://dx.doi.org/10.1007/s00009-018-1181-1
http://dx.doi.org/10.3390/math10122109
http://dx.doi.org/10.1007/s40096-020-00320-1
http://dx.doi.org/10.1016/j.cam.2021.113825
http://dx.doi.org/10.1016/j.apnum.2021.01.007
http://dx.doi.org/10.1016/S0252-9602(15)60004-2
http://dx.doi.org/10.32604/cmes.2021.013603
http://dx.doi.org/10.3390/fractalfract5020053
http://dx.doi.org/10.1007/s13324-017-0183-7
http://dx.doi.org/10.1080/10652469.2015.1029924
http://dx.doi.org/10.3390/math9010074
http://dx.doi.org/10.3390/math9131573


Axioms 2022, 11, 743 22 of 22

36. Koepf, W. Hypergeometric Summation, 2nd ed.; Springer Universitext Series; Springer: Berlin/Heidelberg, Germany, 2014.
37. Rainville, E.D. Special Functions; The Maximalan Company: New York, NY, USA, 1960.
38. Liu, J.C. A supercongruence involving Delannoy numbers and Schröder numbers. J. Number Theory 2016, 168, 117–127. [CrossRef]

http://dx.doi.org/10.1016/j.jnt.2016.04.019

	Introduction
	Preliminaries and Some Essential Formulas
	An Account of Euler Polynomials
	An Overview on Symmetric and Non-Symmetric Polynomials

	New Expressions for the Derivatives of Some Celebrated Polynomials in Terms of Euler Polynomials
	Derivative Expressions for Some Symmetric Polynomials
	Derivative Expressions for Some Non-Symmetric Polynomials

	Connection Formulas of Different Polynomials with Euler Polynomials
	Connection Formulas between Some Symmetric Polynomials and Euler Polynomials
	Connection Formulas between Some Non-Symmetric Polynomials with Euler Polynomials

	Application to Compute Some New Integrals
	Definite Integrals for the Product of Euler Polynomials with Symmetric Polynomials
	Definite Integrals for the Product of Euler Polynomials with Non-Symmetric Polynomials

	Concluding Remarks
	References

