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Abstract: A boundary-value problem for a couple of scalar nonlinear differential equations with a de-
lay and several generalized proportional Caputo fractional derivatives is studied. Ulam-type stability
of the given problem is investigated. Sufficient conditions for the existence of the boundary-value
problem with an arbitrary parameter are obtained. In the study of Ulam-type stability, this parameter
was chosen to depend on the solution of the corresponding fractional differential inequality. We
provide sufficient conditions for Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized
Ulam–Hyers–Rassias stability for the given problem on a finite interval. As a partial case, sufficient
conditions for Ulam-type stability for a couple of multi-term delay, Caputo fractional differential
equations are obtained. An example is illustrating the results.

Keywords: Ulam-type stability; boundary value problem; generalized proportional Caputo fractional
derivative

1. Introduction

The Ulam-type stability concept is significant in many applications, such as in numeri-
cal analysis, optimization, biology and economics. Ulam-type stability has been discussed
by a number of mathematicians, and this area has grown to be one of the main subjects
in mathematical analysis. For more details on the recent study on the Ulam-type stability
of differential equations, one can see for ordinary differential equations [1,2], for delay
differential equations [3], for Caputo fractional differential equations [4,5], for Caputo frac-
tional differential equations with impulses [6], for Riemann–Liouville fractional differential
equations [7], for generalized fractional derivatives [8], for Caputo fractional differen-
tial equations with delays [9], and for Hadamard fractional equations [10]. However, to
the best of our knowledge, the Ulam-type stability is rarely studied for boundary-value
problems for fractional differential equations. It is because of difficulties caused by the
applied type of fractional derivatives and also the connection between the solution of the
boundary-value problem for fractional differential equations and the solutions of the corre-
sponding fractional differential inequality. In some papers, the boundary-value problem is
not changeable, and according to the proved existence results, the solutions of the studied
boundary-value problem is unique and independent of the chosen solution of the corre-
sponding fractional differential inequality ([11,12] for Caputo fractional derivative, [13] for
Riemann–Liouville fractional derivative). It changes the meaning of the Ulam-type stability,
and it is in contradiction with the definitions for this types of stability. In this paper, we
consider the boundary-value problem as depending on a parameter, and this parameter
is chosen in deep connection with the used solution of the corresponding fractional dif-
ferential inequality. This idea is the basis of the study of Ulam-type stability for a couple
of delay fractional differential equations with several generalized proportional Caputo
fractional derivatives. As is known, there are many defined and applied types of fractional
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derivatives. Two typical kinds of fractional derivatives are the Rieman–Liouville type and
the Caputo type of derivatives. There are several differences between Riemann–Liouville-
type and Caputo-type fractional derivatives based on their definitions. The most notable
difference is connected with the form of initial conditions and their known physical interpre-
tation. Another difference is connected with the constants. (for more detailed comparisons,
see [14]). Since the initial/boundary-value conditions for Caputo-type fractional differential
equations and their physical interpretations are similar to those for ordinary differential
equations in this paper, we use the Caputo-type fractional derivative. Additionally, to be
more generalized, we consider the generalized proportional Caputo fractional derivative.
This derivative was recently defined (see [15,16]). It is a generalization of the Caputo
fractional derivative, and it provides wider possibilities for modeling more adequate com-
plexity of real world problems. Additionally, in the development of many mathematical
models through fractional differential equations, one can observe that a single operator is
not utilized exclusively. For more adequate modeling of a certain situation, in some cases
we need differential equations with several fractional derivatives of different orders called
multi-term fractional differential equations (for example, the Basset equation [17] is an
example of equations of such kind). Motivated by this, we consider a couple of multi-term,
generalized, proportional, Caputo fractional differential equations. Based on the integral
presentation of the studied problem and the existence result, obtained in [18], we define
and study the Ulam–Hyers stability, the Ulam–Hyers–Rassias stability, and the generalized
Ulam–Hyers–Rassias stability for the given problem. As a partial case, sufficient conditions
for Ulam-type stability for a couple of multi-term delay, Caputo fractional differential
equations are obtained. Some of the obtained results are illustrated with an example.

2. Preliminary Notes on Generalized Proportional Fractional Derivatives

We recall that the generalized proportional fractional integral and the generalized
Caputo proportional fractional derivative of a function u : [0, b]→ R, (b ≤ ∞), are defined,
respectively, by (as long as all integrals are well defined; see [15,16])

(0Iα,ρu)(t) =
1

ραΓ(α)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)α−1u(s) ds, t ∈ (0, b], α > 0, ρ ∈ (0, 1],

and

(C
0Dα,ρu)(t) =

1− ρ

ρ1−αΓ(1− α)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−αu(s) ds

+
ρα

Γ(1− α)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−αu′(s) ds, t ∈ (0, b], α ∈ (0, 1), ρ ∈ (0, 1].
(1)

Remark 1. For ρ = 1, the generalized Caputo proportional fractional derivative (C
0Dα,ρu)(t) is

reduced to the classical Caputo fractional derivative C
0 Dα

t u(t).

We introduce the following classes of functions:

Cα,ρ[0, b] = {u : [0, b]→ R : (C
0Dα,ρu)(t) exists on (0, b]},

Iα,ρ[0, b] = {u : [0, b]→ R : (0Iα,ρu)(t) exists on (0, b]}.

For u ∈ Cα,ρ[0, b], C
0Dα,ρu(.) ∈ Iα,ρ[0, b], we have the following result:

Lemma 1 (Theorem 5.3 [15]). Let ρ ∈ (0, 1] and α ∈ (0, 1). Then we have

(0Iα,ρ(C
0Dα,ρu))(t) = u(t)− u(0)e

ρ−1
ρ t, t ∈ (0, b].

For u ∈ Iα,ρ[0, b], 0Iα,ρu(.) ∈ Cα,ρ[0, b], ρ ∈ (0, 1] we have:
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Corollary 1 ([15]). Let α ∈ (0, 1). Then,

(C
0Dα,ρ(0Iα,ρu))(t) = u(t), t ∈ (0, b].

Lemma 2 (Theorem 5.2 [15]). For ρ ∈ (0, 1] and α ∈ (0, 1), we have

(0Iα,ρe
ρ−1

ρ ttβ−1)(τ) =
Γ(β)

ραΓ(β + α)
)e

ρ−1
ρ τ

τβ−1+α, β > 0.

Corollary 2 (Remarks 3.2 and 5.4 [15]). The equality (0
CDα,ρe

ρ−1
ρ (.)

)(t) = 0, t ∈ (0, b],
ρ ∈ (0, 1], α ∈ (0, 1), holds.

3. Statement of the Boundary-Value Problem for Multi-Term Fractional Problem
3.1. Generalized Proportional Caputo Fractional Derivatives

Let ρ ∈ (0, 1] and the sequences of numbers 1 > α1 > α2 > · · · > αn > 0 and
1 > β1 > β2 > · · · > βN > 0 be given.

Remark 2. The case ρ = 1, i.e., the case of application of Caputo fractional derivatives, will be
considered in the next section.

Consider the couple of delay differential equations with several generalized proportional
Caputo fractional derivatives, or so called multi-term generalized proportional fractional
delay differential equations (MDFE):

n

∑
i=1

Ai(
C
0Dαi ,ρx)(t) = f (t, x(t), x(λt), y(t)), for t ∈ (0, 1],

N

∑
i=1

Bi(
C
0Dβi ,ρy)(t) = g(t, y(t), y(λt), x(t)), for t ∈ (0, 1],

(2)

with the nonlocal boundary-value conditions

γ1x(0) + η1x(ξ1) + µ1x(1) = Φ1, γ2y(0) + η2y(ξ2) + µ2y(1) = Φ2, (3)

where λ ∈ (0, 1) and ξ1, ξ2 ∈ (0, 1) are arbitrary points, the numbers Ai, Bj, i = 1, 2, . . . , n,
j = 1, 2, . . . , N : A1 6= 0, B1 6= 0, |γk| + |ηk| + |µk| 6= 0, k = 1, 2, and the functions
f , g : [0, 1]×R3 → R, Φi ∈ R, i = 1, 2.

We shall need the following assumption:

Assumption 1. Let the inequalities

K1 = γ1 +
n

∑
k=1

Ak

(
η1e

ρ−1
ρ ξ1 ξ

α1−αk
1 + µ1e

ρ−1
ρ

)
A1ρα1−αk Γ(1 + α1 − αk)

6= 0,

K2 = γ2 +
N

∑
k=1

Bk

(
η2e

ρ−1
ρ ξ2 ξ

β1−βk
2 + µ2e

ρ−1
ρ

)
B1ρβ1−βk Γ(1 + β1 − βk)

6= 0,

(4)

hold.

Consider the space W =
(
∪n

k=2 Iα1−αk ,ρ[0, 1]
)
×
(
∪k=2

N Iβ1−βk ,ρ[0, 1]
)

with the norm

||z||W = ||(x, y)||W = max{ sup
s∈[0,1]

|x(s)|, sup
s∈[0,1]

|y(s)|}, z = (x, y) ∈W,
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and define the fractional integral operator Ω = (Ω1, Ω2) : W → R2 by

Ω1(x, y)(t) =
P(ξ1, x, y)

K1
e

ρ−1
ρ t

n

∑
k=1

Ak
A1ρα1−αk Γ(1 + α1 − αk)

tα1−αk

−
n

∑
k=2

Ak
A1ρα1−αk Γ(α1 − αk)

∫ t

0
e

ρ−1
ρ (t−s) x(s)

(t− s)1−α1+αk
ds

+
1

A1ρα1 Γ(α1)

∫ t

0
e

ρ−1
ρ (t−s) f (s, x(s), x(λs), y(s))

(t− s)1−α1
ds, t ∈ [0, 1],

Ω2(x, y)(t) =
Q(ξ2, x, y)

K2
e

ρ−1
ρ t

N

∑
k=1

Bk

B1ρβ1−βk Γ(1 + β1 − βk)
tβ1−βk

−
N

∑
k=2

Bk

B1ρβ1−βk Γ(β1 − βk)

∫ t

0
e

ρ−1
ρ (t−s) y(s)

(t− s)1−β1+βk
ds

+
1

B1ρβ1 Γ(β1)

∫ t

0
e

ρ−1
ρ (t−s) g(s, y(s), y(λs), x(s))

(t− s)1−β1
ds, t ∈ [0, 1],

(5)

where the constants K1, K2 are defined by (4) and

P(ξ1, x, y) = Φ1 +
n

∑
k=2

Ak
A1ρα1−αk Γ(α1 − αk)

(
η1

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) x(s)

(ξ1 − s)1−α1+αk
ds

+ µ1

∫ 1

0
e

ρ−1
ρ (1−s) x(s)

(1− s)1−α1+αk
ds
)

− 1
A1ρα1 Γ(α1)

(
η1

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) f (s, x(s), x(λs), y(s))

(ξ1 − s)1−α1
ds

+ µ1

∫ 1

0
e

ρ−1
ρ (1−s) f (s, x(s), x(λs), y(s))

(1− s)1−α1
ds
)

,

Q(ξ2, x, y) = Φ2 +
N

∑
k=2

Bk

B1ρβ1−βk Γ(β1 − βk)

(
η2

∫ ξ2

0
e

ρ−1
ρ (ξ2−s) y(s)

(ξ2 − s)1−β1+βk
ds

+ µ2

∫ 1

0
e

ρ−1
ρ (1−s) y(s)

(1− s)1−β1+βk
ds
)

− 1
B1ρβ1 Γ(β1)

(
η2

∫ ξ2

0
e

ρ−1
ρ (ξ2−s) g(s, y(s), y(λs), x(s))

(ξ2 − s)1−β1
ds

+ µ2

∫ 1

0
e

ρ−1
ρ (1−s) g(s, y(s), y(λs), x(s))

(1− s)1−β1
ds
)

.

(6)

We will use the following definition for the mild solution:

Definition 1 ([18]). The couple of functions (x(t), y(t)) : t ∈ [0, 1], such that x ∈ ∪n
k=2 Iα1−αk ,ρ

[0, 1] and y ∈ ∪N
k=2 Iβ1−βk ,ρ[0, 1], is called a mild solution of the boundary-value problem for

MDFE (2), (3) if it is a fixed point of the fractional integral operator Ω, defined by (5).

Remark 3. In the definition of the mild solution of MDFE (2) and (3) the boundary condition is
not used explicitly, but it is deeply included in the applied integral operator.

The connection between the mild solution and the solution of the boundary-value
problem for MDFE (2) and (3) is discussed in Theorems 1 and 2 [18]. In the same work, the
following existence result is also proved:

Theorem 1 ([18]). Let the following conditions be satisfied:
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1. The constants αi, βk ∈ (0, 1), i = 1, 2, . . . , n, k = 1, 2, . . . , N, ρ ∈ (0, 1), and condition A1
is satisfied.

2. There exist constants Li, Mi, i = 1, 2, 3, such that for t ∈ [0, 1], xj, yj, zj ∈ R, j = 1, 2, the
inequalities

| f (t, x1, y1, z1)− f (t, x2, y2, z2)| ≤ L1|x1 − x2|+ L2|y1 − y2|+ L3|z1 − z2|,
|g(t, x1, y1, z1)− g(t, x2, y2, z2)| ≤ M1|x1 − x2|+ M2|y1 − y2|+ M3|z1 − z2|.

hold.
3. The inequalities

P1 = L
[
1 +

(|η1|+ |µ1|)
|K1|

n

∑
k=1

|Ak|
|A1|ρα1−αk Γ(1 + α1 − αk)

]

×
( n

∑
k=2

|Ak|(Γ(α1 − αk)− Γ(α1 − αk, 1−ρ
ρ ))

|A1|(1− ρ)α1−αk Γ(α1 − αk)
+

Γ(α1)− Γ(α1, 1−ρ
ρ )

|A1|(1− ρ)α1 Γ(α1)

)
< 1,

P2 =M
[
1 +

(|η2|+ |µ2|)
|K2|

N

∑
k=1

|Bk|
|B1|ρβ1−βk Γ(1 + β1 − βk)

]

×
( N

∑
k=2

|Bk|(Γ(β1 − βk)− Γ(β1 − βk, 1−ρ
ρ ))

|B1|(1− ρ)β1−βk Γ(β1 − βk)
+

Γ(β1)− Γ(β1, 1−ρ
ρ )

|B1|(1− ρ)β1 Γ(β1)

)
< 1,

(7)

hold, where L = max{1, L1 + L2, L3}, M = max{1, M1 + M2, M3}, and Γ(., .) is the
incomplete Gamma function.

Then, the boundary-value problem for MDFE (2) and (3) has a unique mild solution.

3.2. Caputo Fractional Derivatives

Now we will consider the case of ρ = 1, i.e., the case of Caputo fractional derivatives
in (2).

Let the sequences of numbers 1 > α1 > α2 > · · · > αn > 0 and 1 > β1 > β2 > · · · >
βN > 0 be given.

Consider a couple of differential equations with several Caputo fractional derivatives, or so
called multi-term Caputo fractional differential equations (MFE):

n

∑
i=1

Ai
C
0 Dαi x(t) = f (t, x(t), x(λt), y(t)), for t ∈ (0, 1],

N

∑
i=1

Bi
C
0 Dβi y(t) = g(t, y(t), y(λt), x(t)), for t ∈ (0, 1],

(8)

with the nonlocal boundary-value conditions

γ1x(0) + η1x(ξ1) + µ1x(1) = Φ1, γ2y(0) + η2y(ξ2) + µ2y(1) = Φ2, (9)

where C
0 Dαx(t) is the Caputo fractional derivative of order α ∈ (0, 1), λ ∈ (0, 1), ξ1, and

ξ2 ∈ (0, 1) are arbitrary points; the numbers Ai, Bj, i = 1, 2, . . . , n, j = 1, 2, . . . , N : A1 6=
0, B1 6= 0, and |γk|+ |ηk|+ |µk| 6= 0, k = 1, 2; and the functions f , g : [0, 1]×R3 → R and
Φi ∈ R, i = 1, 2.

We introduce the following condition:

Assumption 2. The inequalities

K1 = γ1 +
n

∑
k=1

Ak

(
η1ξα1−α2

1 + µ1

)
A1Γ(1 + α1 − αk)

6= 0, K2 = γ2 +
N

∑
k=1

Bk

(
η2ξ

β1−βk
2 + µ2

)
B1Γ(1 + β1 − βk)

6= 0 (10)
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hold.

Remark 4. The boundary-value problem for MFE (8) and (9) is studied in [11], but in the boundary
conditions there are functions with arguments equal to the unknown functions with undefined
arguments. Additionally, in the definitions of Ulam-type stability, any solution of the corresponding
inequalities is applied. At the same time, in the proof for Ulam-type stability, a special solution
of these inequalities is taken—the solution which is satisfying the boundary conditions. Thus, the
meaning of the Ulam-type stability is a misunderstanding.

Consider the following classes of functions

Cα[0, b] = {u : [0, b]→ R : C
0 Dαu(t) exists on (0, b]},

Iα[0, b] = {u : [0, b]→ R : 0 Iαu(t) exists on (0, b]}.

where 0 Iαu(t) is the Riemann–Liouville fractional integral of order α ∈ (0, 1).
We introduce the following spaceW =

(
∪n

k=2 Iα1−αk [0, 1]
)
×
(
∪k=2

m Iβ1−βk [0, 1]
)

with
the norm

||z||W = ||(x, y)||W = max{ sup
s∈[0,1]

|x(s)|, sup
s∈[0,1]

|y(s)|}, z = (x, y) ∈ W

and define the operator Ω = (Ω1, Ω2) :W → R2 by

Ω1(x, y)(t) =
P(ξ1, x, y)
K1

n

∑
k=1

Ak
A1Γ(1 + α1 − αk)

tα1−αk

−
n

∑
k=2

Ak
A1Γ(α1 − αk)

∫ t

0

x(s)

(t− s)1−α1+αk
ds

+
1

A1Γ(α1)

∫ t

0

f (s, x(s), x(λs), y(s))

(t− s)1−α1
ds, t ∈ [0, 1],

Ω2(x, y)(t) =
Q(ξ2, x, y)
K2

N

∑
k=1

Bk
B1Γ(1 + β1 − βk)

tβ1−βk

−
N

∑
k=2

Bk
B1Γ(β1 − βk)

∫ t

0

y(s)

(t− s)1−β1+βk
ds

+
1

B1Γ(β1)

∫ t

0

g(s, y(s), y(λs), x(s))

(t− s)1−β1
ds, t ∈ [0, 1],

(11)

where the constants K1, K2 are defined by (10) and

P(ξ1, x, y) = Φ1 +
n

∑
k=2

Ak
A1Γ(α1 − αk)

(
η1

∫ ξ1

0

x(s)

(ξ1 − s)1−α1+αk
ds

+ µ1

∫ 1

0

x(s)

(1− s)1−α1+αk
ds
)

− 1
A1Γ(α1)

(
η1

∫ ξ1

0

f (s, x(s), x(λs), y(s))

(ξ1 − s)1−α1
ds + µ1

∫ 1

0

f (s, x(s), x(λs), y(s))

(1− s)1−α1
ds
)

,

Q(ξ2, x, y) = Φ2 +
N

∑
k=2

Bk
B1Γ(β1 − βk)

(
η2

∫ ξ2

0

y(s)

(ξ2 − s)1−β1+βk
ds

+ µ2

∫ 1

0

y(s)

(1− s)1−β1+βk
ds
)

− 1
B1Γ(β1)

(
η2

∫ ξ2

0

g(s, y(s), y(λs), x(s))

(ξ2 − s)1−β1
ds + µ2

∫ 1

0

g(s, y(s), y(λs), x(s))

(1− s)1−β1
ds
)

.

(12)
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The definition of the mild solution of the boundary-value problem for multi-term,
Caputo fractional differential Equations (8) and (9) is similar to Definition 1 while replacing
the fractional operator Ω, defined by (5), with the fractional operator Ω, defined by the
equalities (11).

The connection between the mild solution and the solution of (8) and (9) is discussed
in Theorems 3 and 4 [18]. Additionally, in the same work, the following existence result is
proved:

Theorem 2 ([18]). Let the following conditions be satisfied:

1. The constants αi, βk ∈ (0, 1), i = 1, 2, . . . , n, k = 1, 2, . . . , N, and Ki 6= 0, i = 1, 2.
2. There exist constants Li, Mi, i = 1, 2, 3, such that for t ∈ [0, 1], xi, yi, zi ∈ R, i = 1, 2,

the inequalities

| f (t, x1, y1, z1)− f (t, x2, y2, z2)| ≤ L1|x1 − x2|+ L2|y1 − y2|+ L3|z1 − z2|,
|g(t, x1, y1, z1)− g(t, x2, y2, z2)| ≤ M1|x1 − x2|+ M2|y1 − y2|+ M3|z1 − z2|.

3. The inequalities

P1 = L
[
1 +

(|η1|+ |µ1|)
|K1|

n

∑
k=1

|Ak|
|A1|Γ(1 + α1 − αk)

]
×
( n

∑
k=2

|Ak|
|A1|Γ(1 + α1 − αk)

+
1

|A1|Γ(1 + α1)

)
< 1,

P2 =M
[
1 +

(|η2|+ |µ2|)
|K2|

N

∑
k=1

|Bk|
|B1|Γ(1 + β1 − βk)

]
×
( N

∑
k=2

|Bk|
|B1|Γ(1 + β1 − βk)

+
1

|B1|Γ(1 + β1)

)
< 1,

(13)

hold, where L = max{1, L1 + L2, L3} andM = max{1, M1 + M2, M3}.
Then, the boundary-value problem for multi-term generalized proportional Caputo fractional

differential equations, Equations (8) and (9), has a unique mild solution.

4. Ulam-Type Stability for Boundary-Value Problems
4.1. Some Comments and Remarks about Ulam-Type Stability

In this section, we discuss some concepts of the Ulam-type stability. For this purpose,
consider the simple fractional differential equation with a Caputo fractional derivative of
order α ∈ (0, 1):

C
0 Dαu(t) = F(t, u(t)), t ∈ (0, 1] (14)

with F ∈ C([0, 1]×R,R).
Together with this equation, we could consider

- initial value condition
u(0) = a, (15)

- boundary-value condition
g(u(0), u(1)) = 0, (16)

where a ∈ R, g : R2 → R.

We recall the classical definition for Ulam–Hyers stability of (14): there exists a
real constant C > 0 such that for each ε > 0 and each solution y(t) of the fractional
differential inequality

|C0 Dαy(t)− F(t, y(t))| ≤ ε, t ∈ [0, 1] (17)

there exists a solution u(t) of (14) with |u(t)− y(t)| ≤ Cε.
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In the case of initial-value problem (14) and (15), for the particular solution y(t) of
inequality (17), we could consider the solution of (14) and (17) with a = y(0).

However, how could we proceed in the case of a boundary-value problem? How
could the solution of the fractional differential equation be connected with the solution y(t)
of inequality (17)? The answers will be based off the main definitions of Ulam-type stability
and the further study in the paper.

Example 1. Consider the simple equation

C
0 Dαu(t) = −u(t), t ∈ (0, 1]. (18)

with α ∈ (0, 1).
First, consider the initial value condition

u(0) = u0. (19)

The initial value problem (18) and (19) has a unique solution u(t) = u0Eα(−tα) for any initial
value u0, where Eα(.) is the Mittag–Leffler function with one parameter. Consider the fractional
differential inequality ∣∣∣C0 Dαy(t) + y(t)

∣∣∣ ≤ ε, t ∈ (0, 1] (20)

where ε > 0 is an arbitrary number. The function y(t) = AEα(−tα) is a solution of (20) for any
constant A. Let u0 = A in (19). Then, the difference |u(t)− y(t)| = 0 ≤ ε.

Now consider (18) with the boundary-value condition

u(0) =
1

Eα(−1)
u(1). (21)

The boundary value problem (18) and (21) has a unique solution u(t) = Eα(−tα).
Let y(t) be a solution of the fractional differential inequality (20). Then the difference

|u(t)− y(t)| = |1−A|Eα(−tα), and there is no constant C > 0 such that |1−A||1−A|Eα(−tα) ≤
Cε for any A and t ∈ [0, 1]. Since the boundary-value condition (21) is fixed, solution u(t) does
not depend on solution y(t) of the fractional differential inequality (20) as it did in the case of the
initial value condition.

Note that in some papers about boundary-value problems for various types of frac-
tional differential equations, appropriate fractional inequalities similar to (17) are applied.
Additionally, instead of considering any solution of these inequalities, the authors con-
sider only their solutions satisfying the boundary condition (see, for example, the proof of
Theorem 12 [13], the inequality (2.1) in Definition 2.4 [19], and its application in (4.1) [19]
where the boundary condition is added; the last line of (4.5) [20]; the applied function h(t)
in (16) [7], which depends on the boundary conditions; the proof of Theorem 3 [21]; the
solutions of (25) [11] which do not satisfy the boundary-value problem). In the cited papers,
the meaning of Ulam-type stability is changed from all solutions of the appropriately
defined fractional differential inequalities to applying only to those satisfying the given
boundary-value condition (if any).

4.2. Ulam-Type Stability for Multi-Term Couple of Generalized Proportional Caputo
Fractional Derivatives

In this section, we consider the case of ρ ∈ (0, 1).
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Let ε > 0 and Ψ ∈ C([0, 1],R), Ψ(t) ≥ 0 for t ∈ [0, 1] and Ψ(.) be nondecreasing. We
consider the following fractional differential inequalities:∣∣∣∣∣ n

∑
i=1

Ai(
C
0Dαi ,ρu)(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ ε∣∣∣∣∣ N

∑
i=1

Bi(
C
0Dβi ,ρv)(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ ε, t ∈ [0, 1],

(22)

or ∣∣∣∣∣ n

∑
i=1

Ai(
C
0Dαi ,ρu)(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ εΨ(t)∣∣∣∣∣ N

∑
i=1

Bi(
C
0Dβi ,ρv)(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ εΨ(t), t ∈ [0, 1],

(23)

or ∣∣∣∣∣ n

∑
i=1

Ai(
C
0Dαi ,ρu)(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ Ψ(t)∣∣∣∣∣ N

∑
i=1

Bi(
C
0Dβi ,ρv)(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ Ψ(t), t ∈ [0, 1].

(24)

Lemma 3. Let the conditions of Theorem 1 be satisfied and the couple (u, v) ∈ W be a solu-
tion of the fractional differential inequalities (22). Then, there exist constants C1, C2 ∈ R :
|C1| ≤ ε, |C2| ≤ ε such that the couple (u, v) is a fixed point of the fractional integral operator
Ω̃ = (Ω̃1, Ω̃2), defined by (5) with changing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s))
by C1 + f (s, x(s), x(λ1s), y(s)) and C2 + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0)+
η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (6).

Proof. Since the couple (u, v) is a solution of (22), there exist constants C1, C2 ∈ R :
|C1| ≤ ε, |C2| ≤ ε such that

n

∑
i=1

Ai(
C
0Dαi ,ρu)(t) = C1 + f (t, u(t), u(λ1t), v(t))

N

∑
i=1

Bi(
C
0Dβi ,ρv)(t) = C2 + g(t, v(t), v(λ2t), u(t)), t ∈ [0, 1],

(25)

According to Theorem 1 applied to the boundary-value problem for (25) with
Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1), the couple (u, v) is
a mild solution of (25) with the corresponding boundary condition; i.e., u(t) = Ω̃1(u, v),
v(t) = Ω̃2(u, v), t ∈ [0, 1].

Lemma 4. Let the conditions of Theorem 1 be satisfied and the couple (u, v) ∈W be a solution of
the fractional inequalities (24). Then, there exist constants C1, C2 ∈ [−1, 1] such that the couple
(u, v) is a fixed point of the fractional integral operator Ω̂ = (Ω̂1, Ω̂2), defined by (5) with chang-
ing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s)) by C1Ψ(t) + f (s, x(s), x(λ1s), y(s)) and
C2Ψ(t) + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and
Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (6).

Lemma 5. Let the conditions of Theorem 1 be satisfied and the couple (u, v) ∈ W be a solution
of the fractional inequalities (23). Then there exist constants C1, C2 ∈ R : |C1| ≤ ε, |C2| ≤ ε
such that the couple (u, v) is a fixed point of the fractional integral operator Ω̄ = (Ω̄1, Ω̄2),
defined by (5) with changing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s)) by C1Ψ(t) +
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f (s, x(s), x(λ1s), y(s)) and C2Ψ(t) + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0) +
η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (6).

Based on the well defined and studied Ulam-type stability for initial-value prob-
lems for ordinary differential equations by Rus [1], we define Ulam-type stability for the
boundary-value problem for MDFE (2) and (3).

Definition 2. The boundary-value problem for MDFE (2) and (3) is Ulam–Hyers-stable if there
exists a real number C > 0 such that for each ε > 0 and for each solution (u, v) ∈ W of the
inequality (22) there exists a mild solution (x, y) ∈W of the boundary-value problem for MDFE
(2) and (3) such that

‖(x, y)− (u, v)‖W ≤ Cε. (26)

Definition 3. The boundary-value problem MDFE (2) and (3) is Ulam–Hyers–Rassias-stable with
respect to Φ if there exists a positive real number C such that for each ε > 0 and for each solution
(u, v) ∈ W of the inequality (23), there exists a mild solution (x, y) ∈ W of the boundary-value
problem for MDFE (2) and (3) such that

‖(x, y)− (u, v)‖W ≤ Cε sup
t∈[0,1]

Φ(t). (27)

Definition 4. The boundary-value problem for MDFE (2) and (3) is generalized Ulam–Hyers–
Rassias-stable with respect to Φ if there exists a positive real number C such that for each solution
(u, v) ∈ W of the inequality (24), there exists a mild solution (x, y) ∈ W of the boundary-value
problem for MDFE (2) and (3) such that

‖(x, y)− (u, v)‖W ≤ C sup
t∈[0,1]

Φ(t). (28)

Remark 5. Note that in inequalities (22), (24) and (23) the boundary condition of the type (3) is not
applied, but for any solution (u, v) of them, we will define in the appropriate way the boundary-value
condition (3) depending on the solution (u, v), and we will consider the unique solution of (2) with
the appropriately changed (3).

Theorem 3 (Stability results). Assume that the conditions of Theorem 1 are satisfied.

(i) Suppose for any ε > 0, the inequalities (22) have at least one solution. Then, the boundary-
value problem for MDFE (2) and (3) is Ulam–Hyers-stable.

(ii) The function Ψ ∈ C([0, 1],R), Ψ(t) ≥ 0 for t ∈ [0, 1], Ψ(.) is nondecreasing, and there
exists a constant Λ > 0 :∫ t

0
e

1−ρ
ρ (t−s) Ψ(s)

(t− s)1−α1
ds ≤ ΛΨ(t),

∫ t

0
e

1−ρ
ρ (t−s) Ψ(s)

(t− s)1−β1
ds ≤ ΛΨ(t), t ∈ [0, 1]. (29)

Let for any ε > 0, inequalities (23) have at least one solution. Then the boundary-value
problem for MDFE (2) and (3) is Ulam–Hyers–Rassias-stable with respect to Ψ.

(iii) The function Ψ ∈ C([0, 1],R), Ψ(t) ≥ 0 for t ∈ [0, 1], Ψ(.) is nondecreasing and there
exists a constant Λ > 0 such that inequalities (29) are satisfied. Let inequalities (24) have
at least one solution. Then the boundary-value problem for MDFE (2) and (3) is generalized
Ulam–Hyers–Rassias-stable with respect to Ψ.

Proof.

(i) Let ε > 0 be an arbitrary number and the couple (u, v) ∈W be a solution of inequali-
ties (22). According to Lemma 3, there exist constants C1, C2 ∈ R :
|C1| ≤ ε, |C2| ≤ ε such that the couple (u, v) is a fixed point of the fractional inte-
gral operator Ω̃ = (Ω̃1, Ω̃2), defined by (5) with changing f (s, x(s), x(λ1s), y(s)) and
g(s, y(s), y(λ2s), x(s)) by C1 + f (s, x(s), x(λ1s), y(s)) and C2 + g(s, v(s), v(λ2s), u(s)),
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respectively, and Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) +
µ2v(1) in (6).

Let Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in the
boundary-value conditions (3). According to Theorem 1, there exists a mild solution
(x, y) ∈W of the boundary-value problem for MDFE (2) and (3) on [0, 1].

Let t ∈ [0, 1] be a fixed point. From Equation (6), using
∫ t

0
e

ρ−1
ρ (t−s)

(t−s)1−α ds = ρα

(1−ρ)α (Γ(α)−

Γ(α, 1−ρ
ρ t)) for t ∈ [0, 1], α ∈ (0, 1) ρ ∈ (0, 1), where Γ(α, z) =

∫ ∞
z sα−1e−sds is the in-

complete gamma function, and Γ(α, ct) is a decreasing function for c > 0, t ∈ [0, 1] and
condition 2 of Theorem 1, we obtain

|P(ξ1, x, y)− P(ξ1, u, v)| ≤
n

∑
k=2

|Ak|
|A1|ρα1−αk Γ(α1 − αk)

(
|η1|

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) |x(s)− u(s)|

(ξ1 − s)1−α1+αk
ds

+ |µ1|
∫ 1

0
e

ρ−1
ρ (1−s) |x(s)− u(s)|

(1− s)1−α1+αk
ds
)

+
1

|A1|ρα1 Γ(α1)

(
|η1|

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) | f (s, x(s), x(λs), y(s))− f (s, u(s), u(λ1s), v(s))|

(ξ1 − s)1−α1
ds

+ |µ1|
∫ 1

0
e

ρ−1
ρ (1−s) | f (s, x(s), x(λs), y(s))− f (s, u(s), u(λ1s), v(s))|

(1− s)1−α1
ds
)

+
|C1|

|A1|ρα1 Γ(α1)

(
|η1|

∫ ξ1

0

e
ρ−1

ρ (ξ1−s)

(ξ1 − s)1−α1
ds + |µ1|

∫ 1

0

e
ρ−1

ρ (1−s)

(1− s)1−α1
ds
)

≤ (|η1|+ |µ1|)
( n

∑
k=2

|Ak|(Γ(α)− Γ(α, 1−ρ
ρ t))

|A1|(1− ρ)α1−αk Γ(α1 − αk)
+

L1 + L2

|A1|ρα1 α1Γ(α1)

)
sup

s∈[0,1]
|x(s)− u(s)|

+
|µ1|L3(Γ(α1)− Γ(α1, 1−ρ

ρ ))

|A1|(1− ρ)α1 Γ(α1)
sup

s∈[0,1]
|y(s)− v(s)|

+
ε(Γ(α1)− Γ(α1, 1−ρ

ρ ξ1))

|A1|ρα1 Γ(α1)
(|η1|+ |µ1|)

≤ L(|η1|+ |µ1|)
( n

∑
k=2

|Ak|(Γ(α1 − αk)− Γ(α1 − αk, 1−ρ
ρ ξ1))

|A1|(1− ρ)α1−αk Γ(α1 − αk)

+
Γ(α1)− Γ(α1, 1−ρ

ρ ξ1)

|A1|(1− ρ)α1 Γ(α1)

)
||(x, y)− (u, v)||W + ε

Γ(α1)− Γ(α1, 1−ρ
ρ ξ1)

|A1|ρα1 Γ(α1)
(|η1|+ |µ1|).

(30)
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Thus, we get

|u(t)− x(t)| = |Ω̃1(u, v)(t)−Ω1(x, y)(t)|

≤ |P(ξ1, u, v)− P(ξ1, x, y)| e
ρ−1

ρ t
n

∑
k=1

|Ak|
|K1| |A1|ρα1−αk Γ(1 + α1 − αk)

tα1−αk

+
n

∑
k=2

|Ak|
|A1|ρα1−αk Γ(α1 − αk)

∫ t

0
e

ρ−1
ρ (t−s) |u(s)− x(s)|

(t− s)1−α1+αk
ds

+
1

|A1|ρα1 Γ(α1)

∫ t

0
e

ρ−1
ρ (t−s) | f (s, x(s), x(λs), y(s))− f (s, u(s), u(λs), v(s))|

(t− s)1−α1
ds

+
ε

|A1|ρα1 Γ(α1)

∫ t

0

e
ρ−1

ρ (t−s)

(t− s)1−α1
ds

≤ |P(ξ1, u, v)− P(ξ1, x, y)|
n

∑
k=1

|Ak|
|K1| |A1|ρα1−αk Γ(1 + α1 − αk)

+
{ n

∑
k=2

|Ak|(Γ(α1 − αk)− Γ(α1 − αk, 1−ρ
ρ t))

|A1|(1− ρ)α1−αk Γ(α1 − αk)

+
L(Γ(α1)− Γ(α1, 1−ρ

ρ t))

|A1|(1− ρ)α1 Γ(α1)

}
||(u, v)− (x, y)||W + ε

Γ(α1)− Γ(α1, 1−ρ
ρ t)

|A1|(1− ρ)α1 Γ(α1)
.

(31)

Hence,

|u(t)− x(t)| ≤ ε
Γ(α1)− Γ(α1, 1−ρ

ρ t)

|A1|(1− ρ)α1 Γ(α1)

+ ε(|η1|+ |µ1|)
Γ(α1)− Γ(α1, 1−ρ

ρ t)

|A1|(1− ρ)α1 Γ(α1)

n

∑
k=1

|Ak|
|K1| |A1|ρα1−αk Γ(1 + α1 − αk)

+ P1||(u, v)− (x, y)||W ,

(32)

and therefore,
sup

s∈[0,1]
|x(s)− u(s)| ≤ Gε + P1||(u, v)− (x, y)||W ,

where G = 1
|A1|(1−ρ)α1

(
1 + (|η1|+ |µ1|)∑n

k=1
|Ak |

|K1| |A1|ρα1−αk Γ(1+α1−αk)

)
.

Similarly,
sup

s∈[0,1]
|v(t)− y(t)| ≤ Hε + P2||(u, v)− (x, y)||W ,

whereH = 1
|B1|(1−ρ)β1

(
1 + (|η2|+ |µ2|)∑N

k=1
|Bk |

|K2| |B1|ρβ1−βk Γ(1+β1−βk)

)
.

Therefore, inequality (26) holds with C = max{G,H}
max{P1,P2}

.

(iii) Let the couple (u, v) ∈W be a solution of the inequalities (24). According to Lemma 4,
there exist constants C1, C2 ∈ [−1.1] such that the couple (u, v) is a fixed point
of the fractional integral operator Ω̄ = (Ω̄1, Ω̄2), defined by (5) with changing
f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s)) by C1Ψ(t) + f (s, x(s), x(λ1s), y(s))
and C2Ψ(t)+ g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0)+ η1u(ξ1)+ µ1u(1)
and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (6).

Let Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in the
boundary-value conditions (3). According to Theorem 1, there exists a mild solution
(x, y) ∈W of the boundary-value problem for MDFE (2) and (3) on [0, 1].

Similarly to the proof of inequality (30), we obtain
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|P(ξ1, x, y)− P(ξ1, u, v)| ≤
n

∑
k=2

|Ak|
|A1|ρα1−αk Γ(α1 − αk)

(
|η1|

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) |x(s)− u(s)|

(ξ1 − s)1−α1+αk
ds

+ |µ1|
∫ 1

0
e

ρ−1
ρ (1−s) |x(s)− u(s)|

(1− s)1−α1+αk
ds
)

+
1

|A1|ρα1 Γ(α1)

(
|η1|

∫ ξ1

0
e

ρ−1
ρ (ξ1−s) | f (s, x(s), x(λs), y(s))− f (s, u(s), u(λ1s), v(s))|

(ξ1 − s)1−α1
ds

+ |µ1|
∫ 1

0
e

ρ−1
ρ (1−s) | f (s, x(s), x(λs), y(s))− f (s, u(s), u(λ1s), v(s))|

(1− s)1−α1
ds
)

+
|C1|

|A1|ρα1 Γ(α1)

(
|η1|

∫ ξ1

0

e
ρ−1

ρ (ξ1−s)Ψ(s)

(ξ1 − s)1−α1
ds + |µ1|

∫ 1

0

e
ρ−1

ρ (1−s)Ψ(s)

(1− s)1−α1
ds
)

≤ L(|η1|+ |µ1|)
( n

∑
k=2

|Ak|(Γ(α1 − αk)− Γ(α1 − αk, 1−ρ
ρ ξ1))

|A1|(1− ρ)α1−αk Γ(α1 − αk)

+
Γ(α1)− Γ(α1, 1−ρ

ρ ξ1)

|A1|(1− ρ)α1 Γ(α1)

)
||(x, y)− (u, v)||W + sup

s∈[0,1]
Ψ(s)

Λ(|η1|+ |µ1|)
|A1|ρα1 Γ(α1)

(33)

and similarly to inequality (31), we have

sup
s∈[0,1]

|x(s)− u(s)| ≤ G sup
s∈[0,1]

Ψ(s) + P1||(u, v)− (x, y)||W ,

where G = Λ
|A1|(1−ρ)α1

(
1 + (|η1|+ |µ1|)∑n

k=1
|Ak |

|K1| |A1|ρα1−αk Γ(1+α1−αk)

)
,

and
sup

s∈[0,1]
|v(t)− y(t)| ≤ Hsupσ∈[0,1]Ψ(s) + P2||(u, v)− (x, y)||W ,

whereH = Λ
|B1|(1−ρ)β1

(
1 + (|η2|+ |µ2|)∑N

k=1
|Bk |

|K2| |B1|ρβ1−βk Γ(1+β1−βk)

)
.

Therefore, inequality (28) holds with C = max{G,H}
max{P1,P2}

.
The proof of claim (ii) is similar to the one of (iii), and we omit it.

4.3. Ulam-Type Stability for a Multi-Term Couple of Caputo Fractional Derivatives

Let ε > 0 and Ψ ∈ C([0, 1], (0, ∞)), Ψ(.) be nondecreasing. We consider the inequalities:∣∣∣∣∣ n

∑
i=1

Ai(
C
0 Dαi u(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ ε∣∣∣∣∣ N

∑
i=1

Bi(
C
0 Dβi v(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ ε, t ∈ [0, 1],

(34)

or ∣∣∣∣∣ n

∑
i=1

Ai(
C
0 Dαi u(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ εΨ(t)∣∣∣∣∣ N

∑
i=1

Bi(
C
0 Dβi v(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ εΨ(t), t ∈ [0, 1],

(35)
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or ∣∣∣∣∣ n

∑
i=1

Ai(
C
0 Dαi u(t)− f (t, u(t), u(λ1t), v(t))

∣∣∣∣∣ ≤ Ψ(t)∣∣∣∣∣ N

∑
i=1

Bi(
C
0 Dβi v(t)− g(t, v(t), v(λ2t), u(t))

∣∣∣∣∣ ≤ Ψ(t), t ∈ [0, 1].

(36)

Similarly to Lemmas 3–5 for inequalities (34)–(36), the following results are true:

Lemma 6. Let the conditions of Theorem 2 be satisfied and the couple (u, v) ∈ W be a so-
lution of the fractional differential inequalities (34). Then there exist constants C1, C2 ∈ R :
|C1| ≤ ε, |C2| ≤ ε such that the couple (u, v) is a fixed point of the fractional integral operator
Ω̃ = (Ω̃1, Ω̃2), defined by (11) with changing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s))
by C1 + f (s, x(s), x(λ1s), y(s)) and C2 + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0)
+η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (12).

Lemma 7. Let the conditions of Theorem 2 be satisfied and the couple (u, v) ∈ W be a solution of
the fractional inequalities (36). Then there exist constants C1, C2 ∈ [−1, 1] such that the couple
(u, v) is a fixed point of the fractional integral operator Ω̂ = (Ω̂1, Ω̂2), defined by (11) with chang-
ing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s)) by C1Ψ(t) + f (s, x(s), x(λ1s), y(s)) and
C2Ψ(t) + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and
Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (12).

Lemma 8. Let the conditions of Theorem 2 be satisfied and the couple (u, v) ∈ W be a solution
of the fractional inequalities (35). Then there exist constants C1, C2 ∈ R : |C1| ≤ ε, |C2| ≤ ε
such that the couple (u, v) is a fixed point of the fractional integral operator Ω̄ = (Ω̄1, Ω̄2),
defined by (11) with changing f (s, x(s), x(λ1s), y(s)) and g(s, y(s), y(λ2s), x(s)) by C1Ψ(t) +
f (s, x(s), x(λ1s), y(s)) and C2Ψ(t) + g(s, v(s), v(λ2s), u(s)), respectively, and Φ1 = γ1u(0) +
η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in (12).

The definitions of Ulam-type stability of (8) and (9) are similar to Definitions 2–4, only
replacing inequalities (22)–(23) with (34)–(36), respectively.

Theorem 4. Assume that the conditions of Theorem 2 are satisfied.

(i) Suppose for any ε > 0, the inequalities (34) have at least one solution. Then, problems

(8) and (9) is Ulam–Hyers-stable with the constant C = max{G,H}
max{P1,P2}

, where P,P2 are defined
by (13), the constants K1,K2 are defined by (10), and

G =
1

|A1|Γ(1 + α1)

(
1 + (|η1|+ |µ1|)

n

∑
k=1

|Ak|
|K1| |A1|Γ(1 + α1 − αk)

)
(37)

H =
1

|B1|Γ(1 + β1)

(
1 + (|η2|+ |µ2|)

N

∑
k=1

|Bk|
|K2| |B1|Γ(1 + β1 − βk)

)
. (38)

(ii) The function Ψ ∈ C([0, 1], Ψ(t) ≥ 0 for t ∈ [0, 1], Ψ(.) is nondecreasing, and there exists a
constant Λ > 0 :∫ t

0

Ψ(s)
(t− s)1−α1

ds ≤ ΛΨ(t),
∫ t

0

Ψ(s)
(t− s)1−β1

ds ≤ ΛΨ(t), t ∈ [0, 1]. (39)

Let any ε > 0 inequalities (35) have at least one solution. Then, problems (8) and (9) is
Ulam–Hyers–Rassias-stable with respect to Ψ.
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(iii) The function Ψ ∈ C([0, 1], Ψ(t) ≥ 0 for t ∈ [0, 1], Ψ(.) is nondecreasing and there exists
a constant Λ > 0 such that (39) hold. Let inequalities (36) have at least one solution. Then,
problems (8) and (9) is generalized- Ulam–Hyers–Rassias-stable with respect to Ψ.

Proof.

(i) Let ε > 0 be an arbitrary number and the couple (u, v) ∈ W be a solution of inequali-
ties (34). According to Lemma 6, there exist constants C1, C2 ∈ R :
|C1| ≤ ε, |C2| ≤ ε such that the couple (u, v) is a fixed point of the fractional integral
operator Ω̃ = (Ω̃1, Ω̃2), defined by (11) with changing f (s, x(s), x(λ1s), y(s)) and
g(s, y(s), y(λ2s), x(s)) by C1 + f (s, x(s), x(λ1s), y(s)) and C2 + g(s, v(s), v(λ2s), u(s)),
respectively, and Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) +
µ2v(1) in (12).

Let Φ1 = γ1u(0) + η1u(ξ1) + µ1u(1) and Φ2 = γ2v(0) + η2v(ξ2) + µ2v(1) in the
boundary-value conditions (9). According to Theorem 2, there exists a mild solution
(x, y) ∈ W of the boundary-value problems (8) and (9).

Let t ∈ [0, 1] be a fixed point. From Equation (12),
∫ t

0
1

(t−s)1−α ds = tα

α for t ∈ [0, 1],
α ∈ (0, 1) and αΓ(α) = Γ(1 + α), we obtain

|P(ξ1, x, y)− P(ξ1, u, v)| ≤ (|η1|+ |µ1|)
( n

∑
k=2

|Ak|
|A1|Γ(1 + α1 − αk)

+
L1 + L2

|A1|Γ(1 + α1)

)
sup

s∈[0,1]
|x(s)− u(s)|

+
|µ1|L3

|A1|Γ(1 + α1)
sup

s∈[0,1]
|y(s)− v(s)|

+
ε

|A1|Γ(1 + α1)
(|η1|+ |µ1|)

≤ L(|η1|+ |µ1|)
( n

∑
k=2

|Ak|
|A1|Γ(1 + α1 − αk)

+
1

|A1|Γ(1 + α1)

)
||(x, y)− (u, v)||W

+ ε
1

|A1|Γ(1 + α1)
(|η1|+ |µ1|).

(40)

Thus, we get

|u(t)− x(t)| = |Ω̃1(u, v)(t)−Ω1(x, y)(t)|

≤ |P(ξ1, u, v)− P(ξ1, x, y)|
n

∑
k=1

|Ak|
|K1| |A1|Γ(1 + α1 − αk)

+
{ n

∑
k=2

|Ak|
|A1|Γ(1 + α1 − αk)

+
L

|A1|Γ(1 + α1)

}
||(u, v)− (x, y)||W

+ ε
1

|A1|Γ(1 + α1)
,

(41)

where the constant K1 is defined by (10).
Hence,

sup
s∈[0,1]

|x(s)− u(s)| ≤ Gε + P1||(u, v)− (x, y)||W ,

where P1 is defined by (13), G is defined by (37).
Similarly,

sup
s∈[0,1]

|v(t)− y(t)| ≤ Hε + P2||(u, v)− (x, y)||W ,

where P2 is defined by (13),H is defined by (38), the constant K2 is defined by (10).
Therefore, inequality (26) holds with C = max{G,H}

max{P1,P2}
.

The proof of (ii) and (iii) is similar to that of Theorem 3 and the case (i), and we omit
it.
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5. Example

We give an example to illustrate the main results of this paper.
Consider the following boundary-value problem for MFE:

3 C
0 D0.3x(t) + 0.005 C

0 D0.01x(t) = e−|x(t)| + e0.5t−|y(t)|,

4 C
0 D0.4y(t) + 0.006 C

0 D0.01y(t) = e−|x(t)| + e1.2t−|y(t)|,
(42)

with boundary-value condition

3x(0)− 0.1x(0.4) + 2x(1) = Φ1, 3y(0) + 0.7y(0.6)− 0.5y(1) = Φ2. (43)

Clearly, f (t, x, y, z) = e−|x| + e0.5t−|z|, g(t, x, y, z) = e−|x| + e0.5t−|z| and hence
L1 = M1 = 1, L2 = M2 = 0, L3 = e0.5, M3 = e1.2, A1 = 3, A2 = 0.005, α1 = 0.3,
α2 = 0.01, γ1 = γ2 = 3, η1 = −0.1, µ1 = 2, ξ1 = 0.4, B1 = 4, B2 = 0.006, β1 = 0.4,
β2 = 0.01, η2 = 0.7, µ2 = −0.5, ξ2 = 0.6 and

K1 = 3 +
0.005

(
−0.1 ∗ 0.40.3−0.01 + 2

)
3Γ(1 + 0.3− 0.01)

+ (−0.1 + 2) = 4.90357 6= 0,

K2 = γ2 +
B2

(
η2ξ

β1−β2
2 + µ2

)
B1Γ(1 + β1 − βk)

+ (η2 + µ2) = 3.35012 6= 0

(44)

P1 = e0.5
[
1 +

(0.1 + 2)
|K1|

(1 +
0.005

3Γ(1 + 0.3− 0.01)
)
]( 0.005

3Γ(1 + 0.3− 0.01)
+

1
3Γ(1 + 0.3)

)
= 0.615903 < 1,

P2 =M
[
1 +

(|η2|+ |µ2|)
|K2|

(
1 +

|B2|
|B1|Γ(1 + β1 − βk)

)]
×
( |B2|
|B1|Γ(1 + β1 − βk)

+
1

|B1|Γ(1 + β1)

)
= 0.941699 < 1,

(45)

Additionally,

G =
1

3Γ(1.3)

(
1 +

0.1 + 2
4.90357

(
1 +

0.005
3Γ(1.3− 0.01)

))
= 0.530771, (46)

H =
1

4Γ(1.4)

(
1 + (

0.7 + 0.5
3.35012

(
1 +

0.006|
4Γ(1.4− 0.01)

))
= 0.382863, (47)

and C = 0.530771
0.941699 = 0.563631.

Therefore, the conditions of Theorem 2 are satisfied, and therefore, the boundary-value
problem for MFE (42) and (43) has a unique solution for any Φ1, Φ2, and according to
Theorem 4, the problems (42) and (43) is Ulam–Hyers-stable. We will illustrate it.

For example, let ε = 2.9. Consider the functions u(s) = s and v(s) = s, s ∈ [0, 1]. Then,
applying C

0 Dαu(t) = 1
Γ(1−α)

∫ t
0 (t− s)−α ds = t1−α

(1−α)Γ(1−α)
, we obtain the inequalities∣∣∣∣3 t0.7

0.7Γ(0.7)
+ 0.005

t0.99

0.99Γ(0.99)
− e−t − e0.5t−t

∣∣∣∣ ≤ 2.9,∣∣∣∣4 t0.6

0.4Γ(0.6)
+ 0.006

t0.99

0.99Γ(0.99)
− e−t − e1.2t−t

∣∣∣∣ ≤ 2.9;
(48)

i.e., the couple (u, v) is a solution of the inequalities (34) with ε = 2.9.
Consider the solution (x(t), y(t)) in (42) with the boundary condition (43) with

Φ1 = 3u(0) − 0.1u(0.4) + 2u(1) = 1.96 and Φ2 = 3v(0) + 0.7v(0.6) − 0.5v(1) = −0.08.
Then, the inequality max{|x(s) − s|, |y(s) − s|} ≤ 2.9C = 1.63453, s ∈ [0, 1] holds; i.e.,
x(t), y(t) ∈ [t− 1.63453, t + 1.63453] for t ∈ [0, 1].
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Remark 6. As is mentioned above the problem MFE (8) and (9) with Caputo fractional derivatives
is studied in [11]. If we apply the results of [11] to the above example, then L1 = 3.15314 > 1
and the conditions of Theorem 4 [11] are not satisfied. This is because of the mistaken integral
presentation of the solution of MFE (8) and (9).

6. Conclusions

In this paper, the concept of Ulam-type stability was applied to a couple of nonlinear
delay fractional differential equations with several generalized proportional Caputo frac-
tional derivatives, and the nonlocal boundary-value condition was discussed and studied.
Various types of Ulam stability were defined and investigated. The solution of the appropri-
ate fractional differential inequality is deeply connected with the boundary condition of the
given system and its solution, respectively. Then, the closeness between both solutions, the
solution of the inequality, and the solution of the corresponding boundary-value problem
were proved. Additionally, as a partial case, some sufficient conditions for Ulam-type
stability for a boundary-value problem for a couple of fractional differential equations with
delay and several Caputo fractional derivatives were provided.

Further, the ideas for Ulam-type stability, the connection between the solutions of the
corresponding fractional inequalities, and the boundary-value conditions could be applied
to various types of differential equations with different types of boundary-value conditions.
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