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1. Introduction

The theory of nonlinear waves is still a young sciences, although research in this
direction was carried out even in the 19th century, mainly in connection with the problems
of gas and hydrodynamics. For example, the works of J. Scott Russell [1] who was the first
to observe solutions on the surfaces of a liquid, date back to 1830–1840. Nonlinear wave
pgenomena have been the subject of research by such outstanding scientists as Poison,
Stokes, Airy, Rayleigh, Boussinesq and Riemann. However, as a unified science, the theory
of nonlinear waves developed in the late 1960s and early 1970s, which were the years of its
rapid development.

This type of problem appears in several mathematical models which describe wave
phenomena in areas such as fluid dynamics and electromagnetism. Many authors such as H.
Brésiz, J. Mawhin, K. C. Chang and others, have developed topological tools, index theory
and variational methods to obtain a classical existence results for the one-dimensional
problem with various non-linearities. One can review the associated results in [2–5] and
the references therein.

A fractional derivative is a non-local characteristic of a function: it depends not only
on the behavior of the function in the vicinity of the point x under consideration, but also
on the values it takes over the entire interval (a, x). This non-locality means that the change
in the particle flux density depends not only on its values in the vicinity of the point under
consideration, but also on its values at distant points in space. We mention some related
results on the impulsive equation in [6–10] and these models have not been sufficiently
studies, despite their versability and practical importance.
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To begin with, let x ∈ Rn, n1 ∈ N, k = 1, . . . , n1. Let v = v(x, t), we consider the
following problem

cDβ
t,0+v− ∆xv = f (t, x, v, ∂tv, vx), t ∈ J = [0, 1], t 6= tk,

∂tv(x, tk+) = ∂tv(tk−, x) + Ik(x, tk, v(x, tk)),

v(x, tk+) = v(tk−, x) + Lk(x, tk, v(x, tk)),

v(x, 0) = h1(x, v(x, 0)), v(x, 1) = h2(x, v(x, 1)),

(1)

where f , h1, h2, lk, Lk, k ∈ {0, ., n1} satisfy the conditions (Hyp1)-(Hyp4) stated in the next
section.

Our aim is to investigate the problem (1) for existence and nonuniqueness of classical
solutions. To prove our main results, firstly we reduce the problem (1) to suitable integral
equation. Then, we define two operators so that any fixed point of their sum is a solution
of the problem (1). In the end, we use some recent fixed point theorems to prove that the
sum of the defined two operators has at least one and at least two fixed points in suitable
defined spaces. To our knowledge, there is no any research on existence of solutions for the
problem (1).

The paper is organized as follows. In Section 2, we give the main assumptions and we
state the main results in the paper. In Section 3, we give some preliminary results needed
for the proof of our main results. In Section 4, we prove existence of at least one classical
solution for the problem (1). In Section 5, we prove existence of at least two classical
solutions for the problem (1). In Section 6, we give an illustrative example. A conclusion is
provided in Section 7.

2. Main Results

(Hyp1) cDβ
t,0+ is the Caputo fractional derivative with respect to t, β ∈ (1, 2], 0 = t0 <

t1 < . . . < tn1 < tn1+1 = 1, J0 = [0, t1], J1 = (t1, t2], . . ., Jn1 = (tn1 , 1].

(Hyp2) Ik, Lk ∈ C([0, T]×Rn+1),

|Ik(tk, x, v(x, tk))| ≤ a1k(x, tk)|v(x, tk)|s1k ,

|Lk(x, tk, v(x, tk))| ≤ a2k(x, tk)|v(x, tk)|s2k ,

a1k, a2k ∈ C(J ×Rn), 0 ≤ a1k, a2k ≤ B on J ×Rn, for some positive constant B, s1k,
s2k ≥ 0.

(Hyp3) h1, h2 ∈ C2(Rn+1),

|h1(x, v(x, 0))| ≤ b11(x)|v(x, 0)|s1 ,

|h2(x, v(x, 1))| ≤ b12(x)|v(x, 1)|s2 ,

b11, b12 ∈ C(Rn), 0 ≤ b11, b12 ≤ B on Rn, s1, s2 ≥ 0.

(Hyp4) f ∈ C(J ×Rn ×R×R×Rn),

| f (t, x, v, u, w)| ≤
r

∑
j=1

(
aj(x, t)|v|pj + bj(x, t)|u|qj +

n

∑
i=1

cji(x, t)|wi|rji

)
,

(x, t) ∈ J × Rn, v, u ∈ R, w ∈ Rn, aj, bj, cji ∈ C(J × Rn), B ≤ aj, bj, cji ≤ 0 on
J ×Rn, pj, rji, qj > 0, i ∈ {1, . . . , n}, j ∈ {1, . . . , r}, r ∈ N.
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Here vx = (vx1 , . . . , vxn), ∂tv(tk−, x) = lim
t→tk−

∂tv, ∂tv(x, tk+) = lim
t→tk+

∂tv, v(tk−, x) =

lim
t→tk−

v, v(x, tk+) = lim
t→tk+

v. For l, s ∈ N∪ {0}, define

PC(J) = PC0(J)

= {g : J → R, g ∈ C(J\{tj}m−1
j=1 ),

∃g(tj+), g(tj−) and g(tj−) = g(tj),

j ∈ {1, . . . , n1}},

PCl(J) = {g : J → R, g ∈ PCl−1(J), g ∈ C l(J\{tj}n1
j=1),

∃g(l)(tj−), g(l)(tj+) and g(l)(tj−) = g(l)(tj),

j ∈ {1, . . . , n1}},

and

PCl(J, Cs(Rn)) = {v : v(·, x) ∈ PCl(J),

v(t, ·) ∈ Cs(Rn), t ∈ J}.

In PC2(J, C2(Rn)), we define the norm

‖v‖ = max{ max
j∈{0,1,...,n1}

sup
(x,t)∈[tj ,tj+1]×Rn

|v|,

max
j∈{0,1,...,n1}

sup
(x,t)∈[tj ,tj+1]×Rn

|∂tv|,

max
j∈{0,1,...,n1}

sup
(x,t)∈[tj ,tj+1]×Rn

|∂ttv|,

max
j∈{0,1,...,n1}

sup
(x,t)∈[tj ,tj+1]×Rn

|vxi |,

max
j∈{0,1,...,n1}

sup
(x,t)∈[tj ,tj+1]×Rn

|vxixi |, i ∈ {1, . . . , n}},

as long as it exists. Here PC2(J, C2(Rn)) is a Banach space.
We are now in position to state the main results.

Theorem 1. Let (Hyp1)–(Hyp4) hold. Then, the problem (1) has a solution in PC2(J, C2(Rn)).

Theorem 2. Let (Hyp1)–(Hyp4) hold. Then, the problem (1) has at least two solutions in
PC2(J, C2(Rn)).

3. Preliminary

Here, as in [6], we introduce some preliminary tools and results which will be used to
prove our main results. The fixed point theorem for sum of two operators will be used to
prove the existence of at least one solution to the problem (1).
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Theorem 3. Let E be a Banach space. For ε ∈ (0, 1) and 0 < B we define

X = {x ∈ E : ‖x‖ ≤ B}.

Let Tx = −εx, x ∈ X , and S : X → E is continuous, (I − S)(X ) resides in a compact subset of
E and

{x ∈ E : x = λ(I − S)x, ‖x‖ = B} = ∅, ∀λ ∈
(

0,
1
ε

)
. (2)

Then, there exists a x∗ ∈ X so that
Tx∗ + Sx∗ = x∗.

Here µX = {µx : x ∈ X}, ∀µ ∈ R.

Proof. Define

r
(
−1

ε
x
)
=


− 1

ε x if ‖x‖ ≤ Bε

Bx
‖x‖ if ‖x‖ > Bε.

Then, r
(
− 1

ε (I − S)
)

: X → X is continuous and compact. Then, owing to the Schauder
fixed point theorem, there exists x∗ ∈ X such that

r
(
−1

ε
(I − S)x∗

)
= x∗,

where − 1
ε (I − S)x∗ 6∈ X . Thus∥∥∥(I − S)x∗

∥∥∥ > Bε,
B

‖(I − S)x∗‖ <
1
ε

,

and

x∗ =
B

‖(I − S)x∗‖ (I − S)x∗ = r
(
−1

ε
(I − S)x∗

)
,

and hence, ‖x∗‖ = B. This contradicts with (2). Therefore, − 1
ε (I − S)x∗ ∈ X and

x∗ = r
(
−1

ε
(I − S)x∗

)
= −1

ε
(I − S)x∗,

or
−εx∗ + Sx∗ = x∗,

or
Tx∗ + Sx∗ = x∗.

The proof is now completed.

Let X be a real Banach space.

Definition 1. We say that a mapping K : X → X is completely continuous, if K is continuous
and maps bounded sets into relatively compact sets.

The concept of contraction of the set l is linked to that of the Kuratowski measure of
non-compactness which we recall for completeness.
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Definition 2. Let ΩX be the class of all bounded sets of X . The Kuratowski measure of noncom-
pactness α : ΩX → [0, ∞) is defined, for j = 1, . . . , m, by

α(v) = inf

δx > 0 : v =
m⋃

j=1

vj, diam(vj) ≤ δx

,

where diam(vj) = sup{‖x− y‖X : x, y ∈ vj} is the diameter of vj.

For more related detail on the properties for measure of noncompactness, we refer
to [11].

Definition 3 ([12]). We say that the mapping K : X → X is l-set contraction, if K is continuous,
bounded and there exists a positive constant l ≥ 0 s. t.

α(K(v)) ≤ lα(v),

for all bounded set v ⊂ X . We say that he mapping K is strict set contraction if l < 1.

Remark 1. If K : X → X is a completely continuous mapping, then it is 0-set contraction
(see [13]).

Definition 4. Let X and v be real Banach spaces. We say that the mapping K : X → v is
expansive if there exists a constant h > 1 such that

‖Kx−Ky‖v ≥ h‖x− y‖X , ∀x, y ∈ X .

Definition 5. We say that the closed, convex set P in X is cone if

1. αx ∈ P , ∀α ≥ 0, ∀x ∈ P ,
2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.

Lemma 1 ([12]). Let X be a closed convex subset of a Banach space E and v ⊂ X a bounded open
subset with 0 ∈ U . For 0 < ε small enough, we assume thatK : U → X is a strict k-set contraction
satisfying

Kx 6∈ {x, λx}, ∀x ∈ ∂U and λ ≥ 1 + ε.

Then,
i (K,U ,X ) = 1.

Proof. We consider the homotopic functionalH : [0, 1]×U → X given by

H(t, x) =
tKx
ε + 1

.

The operatorH is continuous and uniformly continuous in t for each x, and the mapping
H(t, .) is a strict set contraction for each 0 ≤ t ≤ 1. In addition, H(t, .) has no fixed point
on ∂U . On the other hand:

• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U .
• If t ∈ (0, 1], there exists some x0 ∈ P ∩ ∂U such that 1

ε+1 tKx0 = x0; then,Kx0 = 1+ε
t x0

with 1+ε
t ≥ 1+ ε, contradicting our assumption. From the invariance under homotopy

and the normalization properties of the index, we have

i (
1

ε + 1
K,U ,X ) = i (0,U ,X ) = 1.
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Now, we have to prove that

i (K,U ,X ) = i (
1

ε + 1
K,U ,X ).

We have
1

ε + 1
Kx 6= x, ∀ x ∈ ∂U . (3)

Then, there exists a positive conatant γ such that

γ ≤ ‖x− 1
ε + 1

Kx‖, ∀ x ∈ ∂U .

In other side, we have 1
ε+1Kx → Kx as ε→ 0, for x ∈ U . So for ε small enough

γ

2
> ‖Kx− 1

ε + 1
Kx‖, ∀ x ∈ ∂U .

Let us now define a convex functional G : [0, 1]×U → X by

G(t, x) = tKx + (1− t)
1

ε + 1
Kx.

which is continuous and uniformly continuous in t for each x, and the mapping G(t, .) is a
strict set contraction for each 0 ≤ t ≤ 1 and it has no fixed point on ∂U . For anny x ∈ ∂U ,
we have

‖x− G(t, x)‖ = ‖x− tKx− (1− t) 1
ε+1Kx‖

≥ ‖x− 1
ε+1Kx‖ − t‖Kx− 1

ε+1Kx‖
> γ− γ

2 > γ
2 .

Then, from the invariance property by homotopy of the index, our claim follows.

Proposition 1 ([12]). Let P be a cone in a Banach space E . Let also, U be a bounded open subset
of P with 0 ∈ U . Assume that T : Ω ⊂ P → E is an expansive mapping with constant 1 < h,
S : U → E is a l-set contraction with h− 1 > l ≥ 0, and S(U ) ⊂ (I − T )(Ω). If there exists a
positive constatnt ε such that

Sx 6= {(I − T )(x), (I − T )(λx)} for all x ∈ ∂U ∩Ω and λ ≥ 1 + ε,

then, the fixed point index
i∗ (T + S,U ∩Ω,P) = 1.

Proof. The mapping (I − T )−1S : U → P is a strict set contraction and it is readily seen
that the next condition is verified

(I − T )−1Sx 6∈ {x, λx}, ∀x ∈ ∂U and λ ≥ 1 + ε.

It is then followed owing to the definition of i∗ and Lemma 1.

We will use the following result in order to prove existence of at least two nonnegative
solutions to (1).

Theorem 4. Let P be a cone of a Banach space E ; Ω a subset of P and U1,U2 and U3 three open
bounded subsets of P such that U 1 ⊂ U 2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an
expansive mapping with constant h > 1, S : U 3 → E is a k-set contraction with 0 ≤ k < h− 1
and S(U 3) ⊂ (I − T )(Ω). Suppose that (U2 \ U 1) ∩Ω 6= ∅, (U3 \ U 2) ∩Ω 6= ∅, and there
exists v0 ∈ P∗ such that the following conditions hold:

(i) Sx 6= (I − T )(x− λv0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λv0),
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(ii) There exists 0 ≤ ε such that Sx 6= (I − T )(λx), ∀ 1 + ε ≤ λ, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λv0), ∀0 < λ and x ∈ ∂U3 ∩ (Ω + λv0).

Then, the operator T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U 3 \ U 2) ∩Ω

or
x1 ∈ (U2 \ U1) ∩Ω and x2 ∈ (U 3 \ U 2) ∩Ω.

Proof. Let Sx = (I−T )x for x ∈ ∂U2 ∩Ω, then we obtain a fixed point x1 ∈ ∂U2 ∩Ω of T +
S. Let Sx 6= (I − T )x, ∀x ∈ ∂U2 ∩Ω. Let us assume that T x + Sx 6= x on ∂U1 ∩Ω and x 6=
T x + Sx on ∂U3 ∩Ω, otherwise the conclusion has been proved. By [14] [Proposition 2.11
and Proposition 2.16] and Proposition 1, we have

i∗ (T + S,U1 ∩Ω,P) = i∗ (T + S,U3 ∩Ω,P) = 0 and i∗ (T + S,U2 ∩Ω,P) = 1.

The property of the additivity for the index yields

i∗ (T + S, (U2 \ U 1) ∩Ω,P) = 1 and i∗ (T + S, (U3 \ U 2) ∩Ω,P) = −1.

Then, using the existence property of the index, T + S has at least two fixed points x1 ∈
(U2 \ U1) ∩Ω and x2 ∈ (U 3 \ U 2) ∩Ω.

In [15], it is proved that the problem

cDβ
t,0+v(t) = f1(t), t ∈ J, t 6= tk, k ∈ {1, . . . , n1},

∂tv(tk+) = ∂tv(tk−) + Ĩk(v(tk)), tk ∈ (0, 1),

v(tk+) = v(tk−) + L̃k(v(tk)), tk ∈ (0, 1),

v(0) = h1(v(0)), v(1) = h2(v(1)),

where f1 ∈ C(J), h1, h2 ∈ C(R), has a solution of the form

v(t) =



c1(t, v(t))t + h1(v(t)) + 1
Γ(β)

∫ t
0 (t− s)β−1 f1(s)ds, t ∈ J0,

c1(t, v(t))t + h1(v(t)) + 1
Γ(β)

∫ t
tk
(t− s)β−1 f1(s)ds

+
k
∑

j=1

1
Γ(β)

∫ tj
tj−1

(tj − s)β−1 f1(s)ds +
k
∑

j=1
(t− tj) Ĩj(v(tj))

+
k
∑

j=1

t−tj
Γ(β−1)

∫ tj
tj−1

(tj − s)β−2 f1(s)ds +
k
∑

j=1
L̃j(v(tj)), t ∈ Jk,
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where

c1(t, v(t)) = h2(v(t))− h1(v(t))−
n1+1

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1 f1(s)ds

−
n1

∑
j=1

L̃j(v(tj))−
n1

∑
j=1

1− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−2 f1(s)ds

−
n1

∑
j=1

(1− tj)Ij(v(tj)), t ∈ J.

4. Proof of Theorem 1

For convenience, we set X = PC2(J, C2(Rn)). For v = v(x, t) ∈ X and (x, t) ∈ J ×Rn,
we define the operator

S1v =



−v + c(t, x, v) + h1(x, v(x, 0))

+ 1
Γ(β)

∫ t
0 (t− s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds,

−v + c(t, x, v) + h1(x, v(x, 0))

+ 1
Γ(β)

∫ t
tk
(t− s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k
∑

j=1

1
Γ(β)

∫ tj
tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k
∑

j=1
(t− tj)Ij(x, tj, v(x, tj))

+
k
∑

j=1

t−tj
Γ(β−1)

∫ tj
tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k
∑

j=1
Lj(x, tj, v(x, tj)), t ∈ Jk,

where

c(t, x, v) = h2(x, v(x, 1))− h1(x, v(x, 0))

−
n1+1

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

−
n1

∑
j=1

Lj(x, tj, v(x, tj))

−
n1

∑
j=1

1− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

−
n1

∑
j=1

(1− tj)Ij(x, tj, v(x, tj)).
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Note that if v ∈ X satisfying
S1v = 0,

then v is a solution to the problem (1). Set

B1 = B + 2B1+s1 + 2B1+s2 + 2
m−1

∑
j=1

(
B1+s1j + B1+s2j

)

+

(
n1 + 3

Γ(β + 1)
+

n1 + 1
Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)
.

Lemma 2. Let (Hyp1)–(Hyp4) hold. For v ∈ X , ‖v‖ ≤ B, we have

|S1v| ≤ B1.

Proof. We have

|∆xv| =

∣∣∣∣ n

∑
j=1

vxjxj

∣∣∣∣
≤

n

∑
j=1
|vxjxj |

≤ nB,

and

| f (t, x, v, ∂tv, vx)| ≤
n

∑
j=1

(
aj(x, t)|v|pj + bj(x, t)|v|qj

+
n

∑
i=1

cji(x, t)|vxi |
rji

)

≤
r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
,

and

|Ik(x, tk, v(x, tk))| ≤ a1k(x, tk)|v(x, tk)|s1k

≤ B1+s1k ,

and

|Lk(x, tk, v(x, tk))| ≤ a2k(x, tk)|v(x, tk)|s2k

≤ B1+s2k ,

and

|h1(x, v(x, 0))| ≤ b11(x)|v(x, 0)|s1

≤ B1+s1 ,
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and

|h2(x, v(x, 1))| ≤ b12(x)|v(x, 1)|s2

≤ B1+s2 ,

and

|c(t, x, v)| =

∣∣∣∣h2(x, v(x, 1))− h1(x, v(x, 0))

−
n1+1

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

−
n1

∑
j=1

Lj(x, tj, v(x, tj))

−
n1

∑
j=1

1− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

−
n1

∑
j=1

(1− tj)Ij(x, tj, v(x, tj))

∣∣∣∣
≤ |h2(x, v(x, 1))|+ |h1(x, v(x, 0))|

+
n1+1

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

+
n1

∑
j=1
|Lj(x, tj, v(x, tj))|

+
n1

∑
j=1

1− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

+
n1

∑
j=1

(1− tj)|Ij(x, tj, v(x, tj))|

≤ B1+s1 + B1+s2 +
m−1

∑
j=1

(
B1+s1j + B1+s2j

)

+

(
n1 + 1

Γ(β + 1)
+

n1

Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)
.
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Hence,

|S1v| =

∣∣∣∣− v + c(t, x, v) + h1(x, v(x, 0))

+
1

Γ(β)

∫ t

0
(t− s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

∣∣∣∣
≤ |v|+ |c(t, x, v)|+ |h1(x, v(x, 0))|

+
1

Γ(β)

∫ t

0
(t− s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

≤ B +

(
n1 + 1

Γ(β + 1)
+

n1

Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

+B1+s1 + B1+s2 +
n1

∑
j=1

(
B1+s1j + B1+s2j

)
+ B1+s1

+
1

Γ(β + 1)

(
r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

= B + 2B1+s1 + B1+s2 +
m−1

∑
j=1

(
B1+s1j + B1+s2j

)

+

(
n1 + 2

Γ(β + 1)
+

n1

Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

≤ B1,

and

|S1v| =

∣∣∣∣− v + c(t, x, v) + h1(x, v(x, 0))

+
1

Γ(β)

∫ t

tk

(t− s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k

∑
j=1

(t− tj)Ij(x, tj, v(x, tj))

+
k

∑
j=1

t− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−1( f (., s, v(., s), ∂tv(., s), vx(., s)) + ∆xv(., s))ds

+
k

∑
j=1

Lj(x, tj, v(x, tj))

∣∣∣∣
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≤ |v|+ |c(t, x, v)|+ |h1(x, v(x, 0))|

+
1

Γ(β)

∫ t

tk

(t− s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

+
k

∑
j=1

1
Γ(β)

∫ tj

tj−1

(tj − s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

+
k

∑
j=1

(t− tj)|Ij(x, tj, v(x, tj))|

+
k

∑
j=1

t− tj

Γ(β− 1)

∫ tj

tj−1

(tj − s)β−1(| f (., s, v(., s), ∂tv(., s), vx(., s))|+ |∆xv(., s)|)ds

+
k

∑
j=1
|Lj(x, tj, v(x, tj))|

≤ B + 2B1+s1 + B1+s2 +
m−1

∑
j=1

(
B1+s1j + B1+s2j

)

+

(
n1 + 2

Γ(β + 1)
+

n1

Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

+
1

Γ(β + 1)

(
r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

+
1

Γ(β)

(
r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

+
k

∑
j=1
BB1+s1j +

k

∑
j=1
B1+s2j

= B + 2v1+s1 + 2B1+s2 + 2
m−1

∑
j=1

(
B1+s1j + B1+s2j

)

+

(
n1 + 3

Γ(β + 1)
+

n1 + 1
Γ(β)

)( r

∑
j=1

(
Bpj+1 + Bqj+1 +

n

∑
i=1
Brji+1

)
+ nB

)

= B1.

This is completes the proof.

Let us suppose that A ∈ R+
∗ and g to be continuous function on Rn, where

(Hyp5) g > 0 on Rn\{
⋃n

i=1{xi = 0}},

g(0, x2, . . . , xn) = . . . = g(x1, . . . , xn−1, 0) = 0, xj ∈ R, j ∈ {1, . . . , n},

and

2 · 8n
n

∏
j=1

(
1 + |xj|+ x2

j

)∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣ ≤ A,
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where ∫ x

0
=
∫ x1

0
. . .
∫ xn

0
, dy = dyn . . . dy1.

We define for v ∈ X , the operator

S2v =
∫ t

0
(t− s)2

∫ x

0

n

∏
j=1

(xj − yj)
2g(y)S1v(s, y)dyds.

Lemma 3. Suppose (Hyp1)–(Hyp5). If v ∈ X satisfying

S2v = 0, (4)

then v satisfies the problem (1).

Proof. Differentiating three times in t and three times in x1, . . ., xn the equation (4), we
obtain

g(x)S1v = 0, (x, t) ∈ J ×
(
Rn\

{
n⋃

i=1

{xi = 0}
})

,

whereupon

S1v = 0, (x, t) ∈ J ×
(
Rn\

{
n⋃

i=1

{xi = 0}
})

.

Since S1v ∈ C(J ×Rn), we have

0 = S1v(t, 0, x2, . . . , xn)

= lim
x1→0

S1v(t, x1, x2, . . . , xn),

· · ·

0 = S1v(t, x1, x2, . . . , 0)

= lim
xn→0

S1v(t, x1, x2, . . . , xn), x1, . . . , xn ∈ R, t ∈ J.

Therefore, we obtain
S1v = 0.

Hence, we then conclude that v satisfies (1). The proof is now completed.

Lemma 4. Let assumptions (Hyp1)–(Hyp5) hold. If v ∈ X and ‖v‖ ≤ B, then

‖S2v‖ ≤ AB1.
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Proof. We have

|S2v| =

∣∣∣∣ ∫ t

0

∫ x

0

n

∏
j=1

(t− s)2(xj − sj)
2g(t1, s)S1v(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(t− s)2(xj − sj)
2g(t1, s)|S1v(t1, s)|ds

∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ B14n
n

∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ 2B18n
n

∏
j=1

(
1 + |xj|+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ AB1,

and

|∂tS2v| =

∣∣∣∣2 ∫ t

0

∫ x

0

n

∏
j=1

(t− s)(xj − sj)
2g(t1, s)S1v(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(t− s)(xj − sj)
2g(t1, s)|S1v(t1, s)|ds

∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ 2B14n
n

∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ 2B18n
n

∏
j=1

(
1 + |xj|+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ AB1,

|∂ttS2v| =

∣∣∣∣2 ∫ t

0

∫ x

0

n

∏
j=1

(xj − sj)
2g(t1, s)S1v(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(xj − sj)
2g(t1, s)|S1v(t1, s)|ds

∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ 2B14n
n

∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ 2B18n
n

∏
j=1

(
1 + |xj|+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ AB1,
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and

|∂xkS2v| = 2
∣∣∣∣ ∫ t

0

∫ x

0

n

∏
j=1,j 6=k

(t− s)2(xj − sj)
2(xk − sk)g(t1, s)S1v(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1,j 6=k

(t− s)2(xj − sj)
2|xk − sk|g(t1, s)|S1v(t1, s)|ds

∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1,j 6=k

(xj − sj)
2|xk − sk|g(t1, s)ds

∣∣∣∣dt1

≤ B14n
n

∏
j=1

x2
j |xk|

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ B18n
n

∏
j=1

(
1 + |xj|+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ AB1, k ∈ {1, . . . , n},

and

|∂xkkS2v| = 2
∣∣∣∣ ∫ t

0

∫ x

0

n

∏
j=1,j 6=k

(t− s)2(xj − sj)
2g(t1, s)S1v(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1,j 6=k

(t− s)2(xj − sj)
2g(t1, s)|S1v(t1, s)|ds

∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n

∏
j=1,j 6=k

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ B14n−1
n

∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ B18n
n

∏
j=1

(
1 + |xj|+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1

≤ AB1, k ∈ {1, . . . , n}.

Thus,
‖S2u‖ ≤ AB1.

The proof is now completed.

Moreover, we suppose that

(Hyp6) ε ∈ (0, 1), A and B satisfy εB1(1 +A) < 1 and AB1 < 1.

Let ˜̃̃v denote the set of all equi-continuous families in X with respect to the norm ‖ · ‖. Let

also, ˜̃v =
˜̃̃
v be the closure of ˜̃̃v, ṽ = ˜̃v ∪ {h1, h2},

v = {v ∈ ṽ : ‖v‖ ≤ B}.

Note that v is a compact set in X . For v ∈ X , we define

T v = −εv,

Sv = v + εv + εS2v.
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For v ∈ v, by Lemma 4, we obtain

‖(I − S)v‖ = ‖εv− εS2v‖

≤ ε‖v‖+ ε‖S2v‖

≤ εB1 + εvB1

= εB1(1 +A)

< B.

Thus, S : v → E is continuous and (I − S)(v) resides in a compact subset of E . Now,
suppose that there is a v ∈ E so that ‖v‖ = B and

v = λ(I − S)v,

or
1
λ

v = (I − S)v = −εv− εS2v,

or (
1
λ
+ ε

)
v = −εS2v,

for some λ ∈
(

0, 1
ε

)
. Hence, ‖S2v‖ ≤ AB1 < B,

εB <

(
1
λ
+ ε

)
B =

(
1
λ
+ ε

)
‖v‖ = ε‖S2v‖ < εB,

which is a contradiction. Hence by Theorem 3, it follows that the operator T + S has a fixed
point v∗ ∈ v. Therefore

v∗ = T v∗ + Sv∗

= −εv∗ + v∗ + εv∗ + εS2v∗,

whereupon
0 = S2v∗.

Owing to the Lemma 3, we can easily conclude that v is a solution to (1), which completes
the proof.

5. Proof of the Second Result: Theorem 2

In this section, we suppose the following additional condition.

(Hyp7) Let 0 < m be a large enough and B, A, L, r, R1 be positive constants such that

R1 > L > r, 0 < ε,
(

2
5m

+ 1
)

L < R,

AB1 <
L
5

.

Let
P̃ = {v ∈ X : v ≥ 0 on J ×Rn}.
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With P we will denote the set of all equi-continuous families in P̃. For v ∈ X , define the
operators

T1v(t) = (1 + mε)v(t)− ε
L
10

,

S3v(t) = −εS2v(t)−mεv(t)− ε
L
10

,

t ∈ [0, ∞). Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the BVP
(1). Define

U1 = Pr = {v ∈ P : ‖v‖ < r},

U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1 = {v ∈ P : ‖v‖ < R1},

R2 = R1 +
A
m
B1 +

L
5m

,

Ω = PR2 = {v ∈ P : ‖v‖ ≤ R2}.

1. For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 + mε)‖v1 − v2‖,

whereupon T1 : Ω→ X be an expansive operator with the constant 1 < 1 + mε = h.
2. For v ∈ PR1 , we obtain

‖S3v‖ ≤ ε‖S2v‖+ mε‖v‖+ ε
L
10

≤ ε

(
AB1 + mR1 +

L
10

)
.

Therefore, S3(PR1) is uniformly bounded. Since S3 : PR1 → X is continuous, we have
that S3(PR1) is equi-continuous. Consequently, S3 : PR1 → X is a 0-set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S2v1 +
L

5m
.

Note that S2v1 +
L
5 ≥ 0 on J ×Rn. We have v2 ≥ 0 on J ×Rn and

‖v2‖ ≤ ‖v1‖+
1
m
‖S2v1‖+

L
5m

≤ R1 +
A
m
B1 +

L
5m

= R2.

Therefore, v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L
10
− ε

L
10
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or

(I − T1)v2 = −εmv2 + ε
L
10

= S3v1.

Consequently, S3(PR1) ⊂ (I − T1)(Ω).
4. Assume that ∀v0 ∈ P∗ there exist λ ≥ 0 and x ∈ ∂Pr ∩ (Ω + λv0) or x ∈ ∂PR1 ∩ (Ω +

λv0) such that
S3x = (I − T1)(x− λv0).

Then
−εS2x−mεx− ε

L
10

= −mε(x− λv0) + ε
L
10

,

or
−S2x = λmv0 +

L
5

.

Hence,

‖S2x‖ =
∥∥∥∥λmv0 +

L
5

∥∥∥∥ >
L
5

.

which makes a contradiction.
5. Suppose that ∀ε1 ≥ 0 small enough there exist a x1 ∈ ∂PL and λ1 ≥ 1 + ε1 such that

λ1x1 ∈ PR1 and
S3x1 = (I − T1)(λ1x1). (5)

In particular, for ε1 > 2
5m , we have x1 ∈ ∂PL, λ1x1 ∈ PR1 , λ1 ≥ 1 + ε1 and (5) holds.

Since x1 ∈ ∂PL and λ1x1 ∈ PR1 , then(
2

5m
+ 1
)

L < λ1L = λ1‖x1‖ ≤ R1.

Moreover,

−εS2x1 −mεx1 − ε
L
10

= −λ1mεx1 + ε
L
10

,

or
S2x1 +

L
5
= (λ1 − 1)mx1.

From here,

2
L
5
≥
∥∥∥∥S2x1 +

L
5

∥∥∥∥ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.

Therefore, all conditions of Theorem 2 hold. Hence, the BVP (1) has at least two solutions
v1 and v2 so that

‖v1‖ = L < ‖v2‖ < R1,

or
r < ‖v1‖ < L < ‖v2‖ < R1.

6. Illustrative Example

In this example, we try to illustrate the aim of our main results. For this end, let m = 2,
n = 1,

s1 = s2 = 0, s1k = s2k = 2, k ∈ {1, 2}, p1 = 3, q1 = 0, r11 = 0,
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t1 = 1
4 , t2 = 1

2 and

R1 = B = 10, L = 5, r = 4, m = 1050, A =
1

10B1
, ε =

1
5B1(1 +A)

.

Then
AB1 =

1
10

< B, εB1(1 +A) < 1,

i.e., (Hyp6) holds, and

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1
)

L, AB1 <
L
5

.

i.e., (Hyp7) holds. Let

h(s) = log
1 + s11

√
2 + s22

1− s11
√

2 + s22
, l(s) = arctan

s11
√

2
1− s22 , s ∈ R, s 6= ±1.

Then

h′(s) =
22
√

2s10(1− s22)

(1− s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s20)

1 + s40 , s ∈ R, s 6= ±1.

Therefore

−∞ < lim
s→±∞

(1 + s + s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s + s2)l(s) < ∞.

Hence, there exists C1 > so that

(1 + s + s2)3

(
1

44
√

2
log

1 + s11
√

2 + s22

1− s11
√

2 + s22
+

1
22
√

2
arctan

s11
√

2
1− s22

)
≤ C1,

s ∈ R. We have lim
s→±1

l(s) = π
2 and as in [16] (pp. 707, Integral 79), we have

∫ dz
1 + z4 =

1
4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1
2
√

2
arctan

z
√

2
1− z2 .

Let

Q(s) =
s10

(1 + s44)(1 + s + s2)2 , s ∈ R,

and
g1(x) = Q(x1) . . . Q(xn).

Then, there exists a positive constant C > 0 such that

2 · 8n
n

∏
j=1

(
1 + |xj|+ x2

j

)∣∣∣∣ ∫ x

0
g1(y)dy

∣∣∣∣∣ ≤ C.

Let
g(x) =

A
C

g1(x).
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Then

2 · 8n
n

∏
j=1

(
1 + |xj|+ x2

j

)∣∣∣∣ ∫ x

0
g(y)dy

∣∣∣∣∣ ≤ A,

i.e., (Hyp7) holds. Then, for x ∈ R, the next problem

cD
5
3
t,0+u− vxx = u3

1+x4 , t ∈ [0, 1],

v(t+1 , x) = v(t1, x) + (v(t1,x))2

1+x10 ,

v(t+2 , x) = v(t2, x) + (v(t2,x))2

1+x18 ,

∂tv(t+1 , x) = ∂tv(t1, x) + (v(t1,x))2

10+20x30 ,

∂tv(t+2 , x) = ∂tv(t2, x) + (v(t2,x))2

1+4x20 ,

v(x, 0) = 1
1+x4 ,

v(x, 1) = 1
1+x6 ,

is fulfilled all conditions of Theorems 1 and 2.

7. Conclusions

In this paper, we investigate a class of fractional impulsive wave equation. We reduce
the considered problem to a suitable integral equation. Then, we define two operators and
show that any fixed point of their sum is a solution of the considered problem. After this,
we apply recent fixed point theorems and we show that the considered problem has at least
one and at least two classical solutions. The proposed approach can be applied for other
classes impulsive partial differential equations.

Author Contributions: S.G.: visualization; supervision. K.B.: writing—review and editing. K.Z.:
writing—original draft preparation. In addition, all authors have co-operated with each other in
revising the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Russell, S.J. Report on waves. In Report of the 14th Meetings of the British Association for the Advancement of Science; John Murray:

London, UK, 1844; pp. 311–390.
2. Brézis, H. Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Am. Math. Soc. 1983, 8, 409–426 .

[CrossRef]
3. Brézis, H.; Coron, J.M.; Nirenberg, L. Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Commun.

Pure Appl. Math. 1980, 33, 667–689. [CrossRef]
4. Chang, K.C. Solutions of asymptotically linear operator equations via Morse theory. Commun. Pure Appl. Math. 1981, 34, 693–712.

[CrossRef]
5. Chang, K.C.; Wu, S.P.; Li, S.J. Multiple periodic solutions for an asymptotically linear wave equation. Indiana Univ. Math. J. 1982,

31, 721–731. [CrossRef]
6. Georgiev, S.; Zennir, K. Existence of solutions for a class of nonlinear impulsive wave equations. Ric. Mat. 2022, 71, 211–225.

[CrossRef]
7. Georgiev, S.G.; Zennir, K.; Khalifa, W.A.S.B.; Yassin, A.H.M.; Ghilen, A.; Zubair, S.A.M.; Osman, N.E.A. Classical solutions for a

BVP for a class impulsive fractional partial differential equations. Fractals 2022, 30, 2240264. [CrossRef]

http://doi.org/10.1090/S0273-0979-1983-15105-4
http://dx.doi.org/10.1002/cpa.3160330507
http://dx.doi.org/10.1002/cpa.3160340503
http://dx.doi.org/10.1512/iumj.1982.31.31051
http://dx.doi.org/10.1007/s11587-021-00649-2
http://dx.doi.org/10.1142/S0218348X22402642


Axioms 2022, 11, 721 21 of 21

8. Tran, T.; Phong, L.D.L. Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator. J.
Pseudo-Differ. Oper. Appl. 2022, 26, 357–367.

9. Nikan, O.; Golbabai, A.; Machado, J.A.; Nikazad, T. Numerical approximation of the time fractional cable model arising in
neuronal dynamics. Eng. Comput. 2022, 38, 155–173. [CrossRef]

10. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Boston, MA, USA, 1988; Volume 5.
11. Banas, J.; Goebel, K. Measures of noncompactness in Banach spaces. In Lecture Notes in Pure and Applied Mathematics; Marcel

Dekker, Inc.: New York, NY, USA, 1980; p. 60.
12. Georgiev, S.; Zennir, K. Boundary Value Problems on time Scales; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; Volume II,

457p.
13. Drabek, P.; Milota, J. Methods in Nonlinear Analysis, Applications to Differential Equations; Birkhäuser: Basel, Switzerland, 2007.
14. Djebali, S.; Mebarki, K. Fixed point index theory for perturbation of expansive mappingsby of k-set contractions. Topol. Methods

Nonlinear Anal. 2019, 54, 613–640.
15. Yang, S.; Zhang, S. Boundary value problems for impulsive fractyional differential equations in Banach spaces. Filomat 2017, 31,

5603–5616. [CrossRef]
16. Polyanin, A.D.; Manzhirov, A.V. Hoandbook of Integral Equations; CRC Press: Boca Raton, FL, USA, 2008

http://dx.doi.org/10.1007/s00366-020-01033-8
http://dx.doi.org/10.2298/FIL1718603Y

	Introduction
	Main Results
	Preliminary
	Proof of Theorem 1
	Proof of the Second Result: Theorem 2
	Illustrative Example
	Conclusions
	References

