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Abstract: The present article aims to establish more effective criteria for testing the oscillation of a
class of functional differential equations with delay arguments. In the non-canonical case, we deduce
some improved monotonic and asymptotic properties of the class of decreasing positive solutions
of the studied equation. Depending on both the new properties and the linear representation of the
studied equation, we obtain new oscillation criteria. Moreover, we test the effectiveness of the new
criteria by applying them to some special cases of the studied equation.
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1. Introduction

It is known that the study of the oscillatory behavior of solutions of differential
equations is one of the issues of qualitative theory, which is generally concerned with
studying the qualitative properties of solutions of differential equations. In the last decade,
there has been a great development in the study of the oscillatory properties of differential
equations, see [1–5]. This is because studying the oscillatory and asymptotic behavior of
mathematical models facilitates the understanding of these models and helps to study the
phenomena described by these models, see [6–10]. In addition, the oscillation theory is rich
in interesting theoretical problems that need the tools of mathematical analysis.

Delay differential equations are a type of functional differential equations that take into
account the memory of phenomena. Delay differential equations have many physical and
engineering applications, for examples of these applications, electrical networks containing
lossless transmission lines include soil settlement, elasticity issues, and structure deflection,
see [11,12]. Developing a study of the oscillatory behavior of solutions of delay differential
equations contributes to understanding and interpreting the behavior of these solutions. In
the study of p-Laplace equations, non-Newtonian fluid theory, porous media, and other
fields, half-linear equations have many uses, see [13–15].

One of the main goals of oscillation theory is to find sufficient conditions to ensure that
all solutions of the differential equation oscillate. One of the first monographs dealing with
oscillation theory was Ladas et al. [16], which covered the results until 1984. The primary
focus of this book is on how deviating arguments affect the oscillation of solutions, but it
has not touched upon equations with neutral delay. Among the important works in the
theory of oscillation is the book of Gyori and Ladas [17], which made great contributions to
the development of linearized oscillation theory and the connection between the oscillation
of all solutions and the distribution of the roots of characteristic equations.

Finding criteria for the existence of solutions with specific asymptotic features and
estimating the distance between the zeros of oscillatory solutions are additional subjects
of importance to the theory of oscillation, and are discussed in [18]. For more results,

Axioms 2022, 11, 719. https://doi.org/10.3390/axioms11120719 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11120719
https://doi.org/10.3390/axioms11120719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2878-5300
https://orcid.org/0000-0003-3850-1022
https://orcid.org/0000-0003-3844-7820
https://doi.org/10.3390/axioms11120719
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11120719?type=check_update&version=1


Axioms 2022, 11, 719 2 of 11

techniques, and references, monographs [19–24] covered and summarized many of the
results known in the literature up to the past decade.

In recent years, the development of oscillation theory has emerged significantly
through many interesting works. Drábek et al. [25] and Džurina and Jadlovská [26,27]
discussed improved criteria for testing the oscillation of delay equations. By introducing a
generalized Riccati substitution, Agarwal et al. [28] and Bohner et al. [29] provided criteria
for oscillation of neutral equations in the non-canonical case. Grace et al. [30] created the
test criteria for oscillation, similar to [29], but in the canonical case. Their method was based
on establishing sharper estimates associating a non-oscillatory solution with its derivatives.
Moreover, Hindi [31] and Moaaz et al. [32,33] introduced some improved conditions to
ensure that all solutions of neutral equations oscillate.

Many problems in the real world where the rate of development depends on both the
present and the future can be modeled using advanced differential equations. Hassan [34]
investigated the oscillation properties of second-order advanced dynamic equations on
time scales. Later, by obtaining the results of the Kamenev type without needing ad-
ditional conditions, Agarwal et al. [35] improved the results of Hassan [34]. In [36,37],
Chatzarakis et al. used a different approach from used in [34,35] and established verifiable
and efficient criteria for oscillation of the advanced equation.

In this article, we consider the half-linear delay differential equation(
r(`)

(
u′(`)

)κ
)′

+ q(`)uκ(g(`)) = 0, (1)

where ` ∈ [`0, ∞), κ is a ratio of odd natural numbers, r, q, and g are continuous real
functions on [`0, ∞), r is a positive and differentiable function, q is non-negative, g is a
delay function, i.e., g(`) ≤ `, and lim`→∞ g(`) = ∞.

By a solution of Equation (1), we mean a real function u ∈ C1([`x, ∞)) for some `x ≥ `0,
which has the property r · (u′)κ ∈ C1([`x, ∞)) and u satisfies Equation (1) on [`x, ∞). Only
solutions that satisfy the condition sup{|u(`)| : ` ≥ `∗} > 0, for all `∗ ≥ `x, will receive
our attention. A solution of Equation (1) is called non-oscillatory if it is eventually positive
or eventually negative; otherwise, it is called oscillatory.

In 2003, Dzurina and Stavroulakis [38] tested the oscillation of the differential equation(
r
∣∣u′∣∣κ−1u′

)′
+ q|u ◦ g|κ−1(u ◦ g) = 0, (2)

where (u ◦ g)(`) = u(g(`)), by the criterion∫ ∞(
Rκ(g(b))q(b)− 1

4λ

κg′(b)
R(g(b))r1/κ(g(b))

)
db = ∞,

where κ ≥ 1 is a real number, λ ∈ (0, 1), and

R(v) :=
∫ v

`0

1
r1/κ(b)

db→ ∞ as v→ ∞.

Sun and Meng [39] improved the results in [38], and used the criterion

∫ ∞
(

Rκ(g(b))q(b)−
(

κ

κ + 1

)κ+1 g′(b)
R(g(b))r1/κ(g(b))

)
db = ∞, (3)

to check the oscillation of Equation (2).
Consider the delay equation of Euler type(∣∣u′∣∣κ−1u′

)′
+

q0

`κ+1 |u(µ`)|
κ−1u(µ`) = 0, (4)
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where ` ≥ 1, q0 > 0 and µ ∈ (0, 1). Using the results in [38,39], Equation (4) is oscillatory if
q0µ > κ/4 and q0µ > (κ/(κ + 1))κ+1, respectively. In the case where κ = 1, the two criteria
are congruent. However, if κ > 1, then the results in [39] provide a sharper criterion.

For ∫ ∞

`0

r−1/κ(b)db < ∞, (non-canonical case)

Ye and Xu [40] presented criteria for oscillation of neutral equation of second-order.
Theorem 2.4 in [40] proved that Equation (2) is oscillatory under conditions (3) and

∫ ∞

`0

q(b)
(∫ ∞

b
r−1/κ(η)dη

)κ+1
db = ∞.

Džurina and Jadlovská [26] developed a criterion with only one condition that guar-
antees the oscillation of Equation (1). They proved that, if

lim sup
`→∞

(∫ ∞

`
r−1/κ(η)dη

)κ ∫ `

`0

q(b)db > 1, (5)

then Equation (1) is oscillatory.
Consider the equation of Euler type(

`κ+1(u′(`))κ
)′

+ q0uκ(µ`) = 0, (6)

where ` ≥ 1, κ ≥ 1, q0 > 0 and µ ∈ (0, 1]. The results in [40] cannot be applied on (6), while
Theorem 3 in [26] indicated that (6) oscillates if q0 > 1.

In this article, we begin by deducing some monotonic properties of the decreasing pos-
itive solutions of (1). Next, we use these new properties to pair the behavior of Equation (1)
with a linear inequality. Based on this linear inequality, we introduce a new criterion for
testing the oscillation of all solutions of Equation (1). The new criterion improves (5) and
takes into account the impact of both κ and the delay argument g.

2. Preliminary Lemmas

In the first lemma, we classify the positive solutions of Equation (1) based on the sign
of the derivatives. Then, we put a condition that ensures that the positive solutions are
decreasing and also converge to zero. After that, we deduce a set of new monotonically
properties for the positive solutions of Equation (1). During the results, we will need the
following notations and operators:

A(v) : =
∫ ∞

v
r−1/κ(b)db,

φ(v) : = q(v)r1/κ(v)Aκ+1(v),

and
L[ G ; u, v] :=

∫ v

u
G(b)db.

Moreover, we use Ω+ to represent the set of all eventually positive solutions of (1).
Finaly, we need the following hypothesis to prove the main results:

(H) There is a positive constant c such that φ(`) ≥ κcκ .

Lemma 1. Eventually, positive solutions to Equation (1) are monotonic, meaning that they are
either increasing or decreasing.

Proof. Assuming that u ∈ Ω+ leads directly to u ◦ g is also ultimately positive. Through
Equation (1), we also deduce that

(
r(u′)κ)′ ≤ 0. Then, r(u′)κ is of fixed sign, and so u is a

monotonic function, i.e., u′ > 0 or u′ < 0, eventually.
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Lemma 2. If (H) holds, then every eventually positive solution to Equation (1) is decreasing and
converges to zero.

Proof. Assume that u ∈ Ω+. Suppose the contrary, that u′(`) > 0 for ` ≥ `1 ≥ `0. Then,
there is a $0 > 0 such that u(`) ≥ $0, for ` ≥ `1. Applying L[ · ; `1, ∞] on Equation (1),
we obtain

r(`1)
(
u′(`1)

)κ ≥ L[q · (uκ ◦ g); `1, ∞]

≥ $κ
0 L[q; `1, ∞],

which, with the fact that φ(`) ≥ κcκ , gives

r(`1)
(
u′(`1)

)κ ≥ κcκ$κ
0 L
[

1
r1/κ Aκ+1 ; `1, ∞

]
≥ cκ$κ

0

(
lim
s→∞

1
Aκ(s)

− 1
Aκ(`1)

)
,

which tends to ∞, which is a contradiction.
Now, we have that u is positive and decreasing. Then, lim`→∞ u(`) = $1 ≥ 0. Assume

that $1 > 0. Therefore, there is a `1 ≥ `0 such that u(`) ≥ $1 for ` ≥ `1. Applying L[ · ; `1, `]
on Equation (1), we arrive at

r(`)
(
u′(`)

)κ ≤ −L[q · (uκ ◦ g); `1, `]

≤ −$κ
1 L[q; `1, `],

and then

u′(`) ≤ −κcκ$κ
1

1
r1/κ(`)

L1/κ

[
1

r1/κ Aκ+1 ; `1, `
]

≤ −κcκ$κ
1

1
r1/κ(`)

(
1

Aκ(`)
− 1

Aκ(`1)

)1/κ

. (7)

Since lim`→∞ A(`) = 0, then we obtain

A−κ(`)− A−κ(`1) ≥ λA−κ(`), for λ ∈ (0, 1). (8)

Applying L[ · ; `1, ∞] on inequality (7) and using (8), we get

u(`1) ≥ κcκ$κ
1λ1/κ L

[
1

r1/κ A
; `1, ∞

]
≥ κcκ$κ

1λ1/κ ln
A(`1)

A(`)
,

which tends to ∞ as `→ ∞. This contradiction leads to $1 = 0.

Lemma 3. If u ∈ Ω+ and (H) holds, then the functions u/A and u/Ac are increasing and
decreasing, respectively.

Proof. Assume that u ∈ Ω+. By using Lemma 2, we have that u is decreasing and
converges to zero. Since

u(`) ≥ L
[
−u′; `, ∞

]
= −L

[
1

r1/κ
r1/κu′; `, ∞

]
≥ −r1/κ(`)u′(`)L

[
1

r1/κ
; `, ∞

]
= −r1/κ(`)u′(`)A(`),

We obtain A2(u/A)′ = A u′ + r−1/κ u ≥ 0. Then, u/A is an increasing function.



Axioms 2022, 11, 719 5 of 11

Next, applying L[ · ; `1, `] on Equation (1), we find

r(`)
(
u′(`)

)κ ≤ r(`1)
(
u′(`1)

)κ −L[q · (uκ ◦ g); `1, `]

≤ r(`1)
(
u′(`1)

)κ − uκ(`)L[q; `1, `],

which, with the fact that φ(`) ≥ κcκ , gives

r(`)
(
u′(`)

)κ ≤ r(`1)
(
u′(`1)

)κ − κcκuκ(`)L
[

1
r1/κ Aκ+1 ; `1, `

]
≤ r(`1)

(
u′(`1)

)κ − cκuκ(`)

(
1

Aκ(`)
− 1

Aκ(`1)

)
. (9)

Since u converges to zero, we have that r(`1)(u′(`1))
κ + cκ(u(`)/Aκ(`1)) ≤ 0. Hence,

(9) reduces to

r1/κ(`)u′(`) ≤ −c
u(`)
A(`)

.

Therefore, A−1−c(u/Ac)′ = A u′ + cr−1/κ u ≤ 0. Then, u/Ac is a decreasing func-
tion.

We recast Equation (1) as a linear inequality in the next lemma.

Lemma 4. If u ∈ Ω+ and (H) holds, then(
r1/κ(`)u′(`)

)′
+ Q(`)u(g(`)) ≤ 0, (10)

where

Q(`) :=


1
κ q(`)Aκ−1(`), if κ ≤ 1;

1
κ c1−κq(`)Aκ−1(g(`)), if κ > 1.

Proof. Assume that u ∈ Ω+. By using Lemma 2 we have that u is decreasing and converges
to zero. It is easy to notice that(

r
(
u′
)κ
)′

=
((

r1/κu′
)κ)′

= κ
(

r1/κu′
)κ−1(

r1/κu′
)′

. (11)

First, suppose that κ ≤ 1. By using Lemma 3, we have that (u/A)′ ≥ 0, and so

−r1/κu′ ≤ u
A
≤ (u ◦ g)

A
,

which implies (
r1/κu′

)κ−1
≥
(
(u ◦ g)

A

)κ−1
. (12)

Combining (1), (11), and (12), we get

−(u ◦ g)κq =
(

r
(
u′
)κ
)′
≥ κ

(
(u ◦ g)

A

)κ−1(
r1/κu′

)′
.

By a simple computation, we get that (10) holds.
Next, we assume that κ > 1. From Lemma 3, we get that (u/A)′ ≥ 0 and (u/Ac)′ ≤ 0.

Hence,

− r1/κu′ ≥ c
u
A
≥ c

(u ◦ g)
(A ◦ g)

. (13)
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Combining (1), (11), and (13), we get

−(u ◦ g)κq =
(

r
(
u′
)κ
)′
≥ κ

(
c
(u ◦ g)
(A ◦ g)

)κ−1(
r1/κu′

)′
.

By a simple computation, we get that (10) holds.

3. Oscillation Theorems

Now, we use our results in the previous section to obtain the criteria of the oscillation
for the solutions of (1).

Theorem 1. Assume that (H) holds. Every solution of Equation (1) is oscillatory if

lim sup
`→∞

(
A(g(`))L[Q; `1, g(`)] + L[A ·Q; g(`), `] +

1
A(g(`))

L[A ·Q · (A ◦ g); `, ∞]

)
> 1. (14)

Proof. Assume the contrary that u ∈ Ω+. By using Lemma 4, we have(
r1/κu′

)′
+ Q(u ◦ g) ≤ 0, (15)

which is equivalent to (
Ar1/κu′ + u

)′
+ AQ(u ◦ g) ≤ 0. (16)

Applying L[ · ; `1, `] on inequality (15), we get

− r1/κ(`)u′(`) ≥ L[Q · (u ◦ g); `1, `]. (17)

On the other hand, from Lemma 3, we obtain u/A is increasing, and so A u′ ≥
−r−1/κ u. Then, the function Ar1/κu′ + u is positive. Moreover, from (16), we note that
Ar1/κu′ + u is decreasing. Applying L[ · ; `, ∞] on inequality (16), we have

A(`)r1/κ(`)u′(`) + u(`) ≥ L[A ·Q · (u ◦ g); `, ∞]. (18)

From (17) and (18), we find

u(`) ≥ A(`)L[Q · (u ◦ g); `1, `] + L[A ·Q · (u ◦ g); `, ∞].

Therefore,

u(g(`)) ≥ A(g(`))L[Q · (u ◦ g); `1, g(`)] + L[A ·Q · (u ◦ g); g(`), ∞],

which is equivalent to

u(g(`)) ≥ A(g(`))L[Q · (u ◦ g); `1, g(`)] + L[A ·Q · (u ◦ g); g(`), `]
+L[A ·Q · (u ◦ g); `, ∞]. (19)

Using the facts that u/A and u are increasing and decreasing, respectively, we con-
clude that

u(g(s)) ≥ u(g(`)) for s ≤ g(`) ≤ `,

≥ A(g(s))
A(g(`))

u(g(`)) for ` ≤ s,

which, with (19), gives

A(g(`))L[Q; `1, g(`)] + L[A ·Q; g(`), `] +
1

A(g(`))
L[A ·Q · (A ◦ g); `, ∞] ≤ 1. (20)
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Taking lim sup`→∞ of (20), we have a contradiction with (14).

Theorem 2. Assume that (H) holds. Every solution of Equation (1) is oscillatory if

lim sup
`→∞

(
A1−c(g(`))L[Q · (Ac ◦ g); `1, g(`)] +

1
Ac(g(`))

L[A ·Q · (Ac ◦ g); g(`), `]

+
1

A(g(`))
L[A ·Q · (A ◦ g); `, ∞]

)
> 1. (21)

Proof. Proceeding as in the proof of Theorem 1, we arrive at (19). Using the facts that u/A
and u/Ac are increasing and decreasing, respectively, we conclude that

u(g(s)) ≥ Ac(g(s))
Ac(g(`))

u(g(`)) for s ≤ g(`) ≤ `,

u(g(s)) ≥ A(g(s))
A(g(`))

u(g(`)) for ` ≤ s,

which, with (19), gives

1 ≥ A1−c(g(`))L[Q · (Ac ◦ g); `1, g(`)] +
1

Ac(g(`))
L[A ·Q · (Ac ◦ g); g(`), `]

+
1

A(g(`))
L[A ·Q · (A ◦ g); `, ∞]. (22)

Taking lim sup`→∞ of (22), we have a contradiction with (21).

Example 1. Consider the delay differential equation

(eκ`(u′(`))κ)′ + q0eκ`uκ(`− δ) = 0, (23)

where κ > 0, q0 > 0 and δ > 0. Note that,

g(`) = `− δ, r(`) = eκ`, and q(`) = q0eκ`.

Hence, we get A(`) = e−`, and so A(`0) < ∞ (the non-canonical case). It is easy to conclude
that φ(`) = q0, c = (q0/κ)1/κ , and

Q(`) :=


1
κ q0e` if κ ≤ 1;

( q0
κ

)1/κe`+δ(κ−1), if κ > 1.

Proceduring some substitutions and computations, condition (14) reduces to

eδ(κ−1)
( q0

κ

)1/κ
lim sup
`→∞

(
e−`+δ

∫ `−δ

`1

ebdb+
∫ `

`−δ
db+

1
e−`+δ

∫ ∞

`
e−b+δdb

)
= eδ(κ−1)

( q0

κ

)1/κ
lim sup
`→∞

(
δ + e−`+δ

(
e`−δ − e`1

)
+ 1
)

= eδ(κ−1)
( q0

κ

)1/κ
lim sup
`→∞

(
δ + 2− e−`+δ+`1

)
= eδ(κ−1)(δ + 2)

( q0

κ

)1/κ

> 1, if κ > 1,

and



Axioms 2022, 11, 719 8 of 11

1
κ

q0lim sup
`→∞

(
e−`+δ

∫ `−δ

`1

ebdb+
∫ `

`−δ
db+

1
e−`+δ

∫ ∞

`
e−b+δdb

)
=

1
κ

q0lim sup
`→∞

(
e−`+δ

(
e`−δ − e`1

)
+ δ + 1

)
=

1
κ
(δ + 2)q0

> 1, if κ ≤ 1.

By using Theorem 1, we have that (23) is oscillatory if

q0 >


κ

(δ+2)κ eκ(1−κ)δ, if κ > 1;

κ
(δ+2) , if κ ≤ 1.

(24)

Now, proceduring some substitutions and computations, condition (21) reduces to

eδ(κ−1)
( q0

κ

)1/κ
lim sup
`→∞

[
e(−`+δ)(1−c)

∫ `−δ

`1

ebe(−b+δ)cdb

+
1

e(−`+δ)c

∫ `

`−δ
e(−b+δ)cdb+

1
e(−`+δ)

∫ ∞

`
e(−b+δ)db

]
= eδ(κ−1)

( q0

κ

)1/κ
lim sup
`→∞

([
ecδ

(1−c)
− e(−`+δ)(1−c)+`1(1−c)+cδ

(1−c)

]
+

[
1
−c
− eδc

−c

]
+ 1

)

= eδ(κ−1)
( q0

κ

)1/κ
((

ecδ

(1−c)

)
+

(
1
−c
− eδc

−c

)
+ 1
)

= eδ(κ−1)
( q0

κ

)1/κ
([

eδc

(1−c)c

]
+ 1− 1

c

)
> 1 , if κ>1.

and

1
κ

q0lim sup
`→∞

(e(−`+δ)(1−c)
∫ `−δ

`1

ebe(−b+δ)cdb+
1

e(−`+δ)c

∫ `

`−δ
e(−b+δ)cdb

+
1

e(−`+δ)

∫ ∞

`
e(−b+δ)db)

=
1
κ

q0lim sup
`→∞

([
eδc

(1− c)
− e(−`+δ)(1−c)+`1(1−c)+δc

(1− c)

]
+

[
1
−c
− eδc

−c

]
+ 1

)

=
1
κ

q0

([
eδc

(1− c)

]
+

[
1
−c
− eδc

−c

]
+ 1
)

=
1
κ

q0

([
eδc

(1−c)c

]
+ 1− 1

c

)
> 1, if κ ≤ 1.

By using Theorem 2, we have that (23) is oscillatory if

q0 >


κ([

eδc
(1−c)c

]
+1− 1

c

)κ eκδ(1−κ), if κ > 1;

κ([
eδc

(1−c)c

]
+1− 1

c

) , if κ ≤ 1.
(25)

In the case where κ = 1 and δ = 0.5, conditions (24) and (25) reduce to q0 > 0.4 and
q0 > 0.3095, respectively.
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Example 2. Consider the equation of Euler type (6) where ` ≥ 1, q0 > 0, and µ ∈ (0, 1]. Note
that,

r(`) = `κ+1, g(`) = µ`, and q(`) = q0.

Hence, we get A(`) = κ/`1/κ , and so A(`0) < ∞ (the non-canonical case). It is easy to
conclude that φ(`) = κκ+1q0, c = κq1/κ

0 , and

Q(`) :=


q0

κκ−2

`1−1/κ , if κ ≤ 1;

1
κ q1/κ

0
1

(µ`)1−1/κ , if κ > 1.

Proceduring some substitutions and computations, condition (14) reduces to

1
µ

q1/κ
0 lim sup

`→∞

(
κ

`1/κ

∫ µ`

`1

1
b1−1/κ

db+ µ1/κ
∫ `

µ`

1
b

db+ µ1/κ`1/κ
∫ ∞

`

1
b1+1/κ

db
)

=
1
µ

q1/κ
0 lim sup

`→∞

(
κ

`1/κ

(
µ1/κ`1/κ − `1/κ

1

)
+ µ1/κ ln

1
µ
+ κµ1/κ

)
= µ1/κ−1q1/κ

0

(
2κ + ln

1
µ

)
> 1, if κ > 1,

and

κκ−1q0lim sup
`→∞

(
1

µ1/κ`1/κ

∫ µ`

`1

1
b1−1/κ

db+
∫ `

µ`

1
b

db+ `1/κ
∫ ∞

`

1
b1+1/κ

db
)

= κκ−1q0lim sup
`→∞

(
κ

µ1/κ`1/κ

(
µ1/κ`1/κ − `1/κ

1

)
+ ln

1
µ
+ κ

)
= κκ−1q0

(
2κ + ln

1
µ

)
> 1, if κ ≤ 1.

By using Theorem 1, we have that (23) is oscillatory if

q0 >


µκ−1(

2κ+ln 1
µ

)κ , if κ > 1;

κ1−κ(
2κ+ln 1

µ

) , if κ ≤ 1.

4. Conclusions

It is easy to note the great development in the study of oscillatory behavior and
asymptotic properties of solutions of differential equations. This development and interest
is due not only to the importance of such studies in many applications in different sciences,
but also to the theoretical and analytical importance. In this article, we introduce new
oscillation criteria that guarantee the oscillation of all solutions of a class of second-order
half-linear delay differential equations. The focus of the study was on the non-canonical
case. We obtained new monotonic properties and then used these properties to obtain
improved oscillation criteria. It would be interesting to extend the results of this article to
the neutral case.
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