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Abstract: For a better understanding of the bilevel programming on Riemannian manifolds, a
semivectorial bilevel programming scheme is proposed in this paper. The semivectorial bilevel
programming is firstly transformed into a single-level programming problem by using the Karush–
Kuhn–Tucker (KKT) conditions of the lower-level problem, which is convex and satisfies the Slater
constraint qualification. Then, the single-level programming is divided into two stages: restoration
and minimization, based on which an Inexact Restoration algorithm is developed. Under certain
conditions, the stability and convergence of the algorithm are analyzed.
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1. Introduction

The bilevel optimization problem on Euclidean spaces has been shown to be NP-hard,
and even the verification of the local optimality for a feasible solution is in general NP-
hard. Bilevel optimization problems are often nonconvex optimization problems, and this
makes the computation of an optimal solution a challenging task. Thus, it is natural to
consider the bilevel optimization problems on Riemannian manifolds. Actually, studying
optimization problems on Riemannian manifolds has many advantages. Some constrained
optimization problems on Euclidean spaces can be seen as unconstrained ones from the
Riemannian geometry viewpoint. Moreover, some nonconvex optimization problems in
the setting of Euclidean spaces may become convex optimization problems by introducing
an appropriate Riemannian metric. See for instance [1,2]. The aim of this paper is to study
the bilevel optimization problem on Riemannian manifolds.

In order to study the bilevel optimization problem on Riemannian manifolds, it is
reasonable to have some idea of solving the bilevel optimization problem in Euclidean
spaces. An approach to investigate bilevel optimization problems on Euclidean spaces is to
replace the lower-level problem by its (under certain necessary and sufficient assumptions)
KKT optimality conditions. In a recent article [3], the authors presented the KKT reformu-
lation of the bilevel optimization problems on Riemannian manifolds. Moreover, it has
been shown that global optimal solutions of the KKT reformulation correspond to global
optimal solutions of the bilevel problem on the Riemannian manifolds provided the lower
level convex problem satisfies Slater’s constraint qualification. On this basis, we consider a
semivectorial bilevel optimization problem on Riemannian manifolds with a multiobjective
problem in the lower-level problem. Since the Inexact Restoration (IR) algorithm [4,5] was
introduced to solve constrained optimization problems and if we transform the semivecto-
rial bilevel optimization problem into a single-level problem, it also can be solved by using
the IR algorithm as a constrained optimization problem.
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For the convenience of the readers, let us review the IR algorithm on Euclidean
spaces firstly. Each iteration of the IR algorithm consists of two phases: restoration and
minimization. Consider the following nonlinear programming:

min f (x)

s.t. C(x) ≤ 0, x ∈ Ω,
(1)

where f : Rn → R and C : Rn → Rm are continuous differentiable functions and the set
Ω ⊂ Rm is closed convex. The algorithm generates feasible iterates with respect to Ω,
xk ∈ Ω (for all k = 0, 1, 2 . . . ).

In the restoration step, which is executed once per iteration, an intermediate point
yk ∈ Ω is found such that the infeasibility at yk is a fraction of the infeasibility at xk.
Immediately after restoration, we construct an approximation πk of the feasible region
using available information at yk. In the minimization step, we compute a trial point
zki ∈ πk such that f (zki)� f (yk). Here, the symbol�means sufficiently smaller than, and
‖zki − yk‖ ≤ δki, where δki is a trust-region radius. The trial point zki is accepted as a new
iteration one if the value of a nonsmooth (exact penalty) merit function at zki is sufficiently
smaller than its value at xk. If zki is not acceptable, the trust-region radius is reduced.

The IR algorithm is related to classical feasible methods for nonlinear programming,
such as the generalized reduced gradient (GRG) and the family of sequential gradient
restoration algorithms. There are several studies on the numerical characteristics of the IR
algorithm. For example, this method was applied to the general constraint problem in [6],
and good results were obtained. In addition, the IR algorithm using the regularization
strategy was proposed in [7], in which the problem of derivative-free optimization was
effectively solved. The IR algorithms are especially useful when there is some natural way
to restore feasibility. One of the most successful applications of the IR algorithm is electronic
structure calculation, as shown in [8]. Moreover, the IR algorithm has also been successful
applied to optimization problems with the box constraint in [9] and problems with multiob-
jective constraints under weighted-sum scalarization in [10]. For more applications, please
see [11,12].

Since the IR algorithm is so important in applications, many researches have been
trying to improve it from different angles. The restoration phase improves feasibility, and
in the minimization step, optimality is improved as a linear tangent approximation of the
constraints. When a sufficient descent criterion does not hold, the trial point is modified in
such a way that, eventually, acceptance occurs at a point that may be close to the solution
of the restoration (first) phase. The acceptance criterion may use merit functions [4,5]
or filters [13]. The minimization step consists of an inexact (approximate) minimization
of f with linear constraints. In this case, the restoration step represents also an inexact
minimization of infeasibility with linear constraints. Therefore, the available algorithms for
(large-scale) linearly constrained minimization can be fully exploited; see the published
articles [14–16]. Furthermore, IR techniques for constrained optimization were improved,
extended, and analyzed in [7,17–19], among others.

Inspired and motivated by the research works [4,10,20–25], we introduce a kind of
bilevel programming with a multiobjective problem in the lower level on Riemannian
manifolds, the so-called semivectorial bilevel programming. Then, we transform the
semivectorial bilevel programming into a single-level programming by using the KKT
optimality conditions of the lower-level problem, which is convex and satisfies the Slater
constraint qualification. Finally, we divide the single-level programming into two stages:
restoration and minimization, and give an IR algorithm for semivectorial bilevel program-
ming. Under certain conditions, we analyze the well-definiteness and convergence of the
presented algorithm.

The remainder of this paper is organized as follows: In Section 2, some basic concepts,
notations, and important results of Riemannian geometry are presented. In Section 3, we
propose the semivectorial bilevel programming on the Riemannian manifold and give
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the KKT reformulation, and then, we present an algorithm by using the IR technique for
solving the semivectorial bilevel programming on Riemannian manifolds. In Section 4, its
convergence properties are studied. The conclusions are given in Section 5.

2. Preliminaries

An m-dimensional Riemannian manifold is a pair (M, g), where M stands for an
m-dimensional smooth manifold and g stands for a smooth, symmetric positive definite
(0, 2)-tensor field on M, called a Riemannian metric on M. If (M, g) is a Riemannian
manifold, then for any point x ∈ M, the restriction gx : Tx M × Tx M → R is an inner
product on the tangent space Tx M. The tangent bundle TM over M is TM :=

⋃
x∈M Tx M,

and a vector field on M is a section of the tangent bundle, which is a mapping X : M→ TM
such that, for any x ∈ M, X(x) ≡ Xx ∈ Tx M.

We denote 〈·, ·〉x by the scalar product on Tx M with the associated norm ‖.‖x. The
length of a tangent vector v ∈ Tx M is defined by ‖v‖x = 〈v, v〉 1

2 . Given a piecewise smooth
curve γ : [a, b] ⊂ R → M joining x to y, i.e., γ(a) = x and γ(b) = y, then its length is
defined by L(γ) =

∫ b
a ‖γ̇(t)‖γ(t)dt, where γ̇ means the first derivative of γ with respect to

t. Let x and y be two points in Riemannian manifold (M, g) and Γx,y the set of all piecewise
smooth curves joining x and y. The function:

d : M×M→ R, d(x, y) := inf{L(γ) : γ ∈ Γx,y}

is a distance on M, and the induced metric topology on M coincides with the topology of
M as the manifold.

Let∇ be the Levi-Civita connection associated with the Riemannian metric and γ be a
smooth curve in M. A vector field X is said to be parallel along γ : [0, 1]→ M if ∇γ̇X = 0.
If γ̇ itself is parallel along γ joining x to y,

γ(0) = x, γ(1) = y and ∇γ̇γ̇ = 0 on [0, 1],

then we say that γ is a geodesic, and in this case, ‖γ̇‖ is constant. When ‖γ̇‖ = 1, γ is said
to be normalized. A geodesic joining x to y in M is said to be minimal if its length equals
d(x, y).

By the Hopf–Rinow theorem, we know that, if M is complete, then any pair of points
in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete metric space,
and the bounded closed subsets are compact. Furthermore, for the exponential mapping at
x, expx : Tx M → M is well defined on Tx M. Clearly, a curve γ : [0, 1] → M is a minimal
geodesic joining x to y if and only if there exists a vector v ∈ Tx M such that ‖v‖ = d(x, y)
and γ(t) = expx(tv) for each t ∈ [0, 1].

Set p ∈ M and Vp := {v ∈ Tp M : γv defined in [0, 1]}. The exponential mapping
expp : Vp → M is defined by expp(v) = γv(1), ∀v ∈ Vp. The exponential mapping
expp : Tp M → M at p ∈ M is well posed on the tangent space Tp M. Obviously, a curve
γ : [0, 1] → M joining p and q is a minimum geodesic, if and only if there is a vector
v ∈ Tp M such that ‖v‖ = d(p, q) and γ(t) = expp(tv) hold for every t ∈ [0, 1].

The gradient of a differentiable function f : M→ R with respect to the Riemannian
metric g is the vector field grad f defined by g(grad f , X) = d f (X), ∀X ∈ TM, where d f
denotes the differential of the function f .

In this normal coordinate system, the geodesics through p are represented by lines
passing through the origin. Moreover, the matrix (gij) associated with the bilinear form g
at the point p in this orthonormal basis reduces to the identity matrix, and the Christoffel
symbols vanish. Thus, for any smooth function f : M→ R, in normal coordinates around
p, we obtain

grad f (p) = ∑
i

∂ f
∂xi (p)

∂

∂xi .
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Now, consider a smooth function f : M→ R and the real-valued function Tp M 3 v 7→
fp(v) := f (expp v) defined around 0 in Tp M.

It is easy to see that
∂ fp

∂xi (0) =
∂ f
∂xi (p).

The Taylor–Young formula (for Euclidean spaces) applied to fp around the origin can
be written using matrices as

fp(v) = fp(0) + J fp(0)v +
1
2

vTHess fp(0)v + o(‖v‖2),

where

v = [v1 . . . vn]T ,

J fp(0) =
[ ∂ f

∂x1 (p) . . .
∂ f
∂xn (p)

]
,

Hess fp(0) =
( ∂2 f

∂xi∂xj (p)
)
= Hessp f (v, v).

In other words, we have the following Taylor–Young expansion for f around p:

f (expp v) = f (p) + gp(grad f , v) +
1
2

Hessp f (v, v) + o(‖v‖2
p)

which holds in any coordinate system.
The set A ⊂ M is said to be convex if it contains a geodesic segment γ whenever

it contains the end points of γ, that is γ((1− t)a + tb) is in A whenever x = γ(a) and
y = γ(b) are in A, and t ∈ [0, 1]. A function f : M→ R is said to be convex if its restriction
to any geodesic curve γ : [a, b]→ M is convex in the classical sense, such that the one real
variable function f ◦ γ : [a, b]→ R is convex. Let PA denote the projection on A ⊂ M, that
is, for each x ∈ M,

PAx =

{
x̄ ∈ A : d(x, x̄) = inf

z∈A
d(x, z)

}
. (2)

For more details and complete information on the fundamentals in Riemannian geom-
etry, see [1,26–28].

3. Inexact Restoration Algorithm

We study an optimistic bilevel programming on an m-dimensional Riemannian man-
ifold (M, g), where the lower-level problem is a multi-objective problem, the so-called
semivectorial bilevel programming. The problem is formulated below:

min F(x)

s.t. x ∈ Sol(MOP),
(3)

where F : M→ R and Sol(MOP) is the effective solution set of the following multi-objective
problem (MOP):

min { f1(x), . . . , fp(x)}
s.t. h(x) = 0,

x ∈ M,

(4)

where f = { f1(x), . . . , fp(x)} : M → Rp, I := {1, . . . , p}, h : M → Rn, and D = {x ∈ M :
h(x) = 0} denote the feasible solution of the MOP.
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Definition 1. Let f : M → Rp be a vectorial function on Riemannian manifold M. Then, f is
said to be convex on M if, for every x, y ∈ M and every geodesic segment γ : [0, 1]→ M joining x
to y, i.e., γ(0) = x and γ(1) = y, it holds that

f (γ(t)) � (1− t) f (x) + t f (y), t ∈ [0, 1].

The above definition is a natural extension of the definition of convexity in Euclidean
space to the Riemannian context; see [29].

Definition 2. A point x ∈ M is said to be Pareto critical of f on Riemannian manifold M if, for
any v ∈ Tx M, there are an index i ∈ I and u ∈ grad fi(x), such that

〈u, v〉 ≥ 0.

Definition 3. (a) A point x∗ ∈ M is a Pareto-optimal point of f on Riemannian manifold M if
there is no x ∈ M with f (x) � f (x∗). (b) A point x∗ ∈ M is a weak Pareto-optimal point of f on
Riemannian manifold M if there is no x ∈ M with f (x) ≺ f (x∗).

We know that criticality is a necessary, but not a sufficient condition for optimality.
Under the convexity of the vectorial function f , the following proposition shows that
criticality is equivalent to weak optimality.

Proposition 1 ([29]). Let f : M → Rp be a convex function given by f = { f1(x), . . . , fp(x)}.
A point x ∈ M is a critical Pareto-optimal point of the function f if and only if it is a weak
Pareto-optimal point of the function f .

We assume that the functions f = { f1(x), . . . , fp(x)} : M → Rp and h : M → Rn are
twice continuously differentiable and consider the weighted sun scaling problem related to
the MOP, as follows.

Let ωi ≥ 0, i = 1, . . . , p such that
p
∑

i=1
ωi = 1:

min
x

p

∑
i=1

ωi fi(x)

s.t. h(x) = 0,

x ∈ M.

(5)

Note that, if ωi ≥ 0, i = 1, . . . , p such that ∑
p
i=1 ωi = 1, then the weak Pareto-optimal

solution sets of Problem (4) are equivalent to the union of the optimal solution sets of Prob-
lem (5). Meanwhile, if fi : M→ R, i = 1, . . . , p is the convex function on the Riemannian

manifold, then the function
p
∑

i=1
ωi fi(x) is also convex. Thus, the bilevel programming (3)–(4)

can be transformed into the following problem:

min
x,ω

F(x)

s.t.
p

∑
i=1

ωi = 1,

ωi ≥ 0, i ∈ I,

x ∈ arg min


min

p

∑
i=1

ωi fi(x)

s.t. h(x) = 0,

x ∈ M.

.

(6)
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A strategy to solve the bilevel problem (6) on the Riemannian manifolds is to replace
the lower-level problem with the KKT conditions. When the lower-level problem is convex
and satisfies the Slater constraint qualification, the global optimal solutions of the KKT
reformulation correspond to the global optimal solutions of the bilevel problem on the
Riemannian manifolds. See Theorems 4.1 and 4.2 in [3].

In the following, we give the KKT reformulation of the semivectorial bilevel program-
ming on Riemannian manifolds.

min
x,ω

F(x)

s.t. ω ∈W,
p

∑
i=1

ωigradx fi(x) + gradxh(x)µ = 0,

h(x) = 0,

x ∈ M,

(7)

where

W =

{
ω ∈ Rp :

p

∑
i=1

ωi = 1, ωi ≥ 0, i = 1, . . . , p

}
is a convex and compact set, µ ∈ Rn, and M is a complete m-dimensional Riemannian manifold.

We will adopt an IR method to solve the optimization problem in two stages, first
pursuing feasibility and optimality, keeping a certain control over the feasibility that has
been realized. Consequently, the approach exploits the inherent minimization structure
of the problem, especially in the feasibility phase, so that it can obtain better solutions.
Moreover, in the feasibility phase of the IR strategy, the user is free to choose the method of
his/her choice, as long as the recovered iteration satisfies some mild assumptions [4,5].

For simplicity, we introduce the following notations:

C(x, ω, µ) =

 p
∑

i=1
ωigradx fi(x) + gradxh(x)µ

h(x)

 ∈ Rm+n (8)

and
L(x, ω, µ, λ) = F(x) + C(x, ω, µ)Tλ, λ ∈ Rm+n. (9)

We write shortly s = (x, ω, µ) ∈ M×W ×Rn and give the Jacobian of C as follows:

C′(s) =

 p
∑

i=1
ωiHessx fi +

n
∑

j=1
µjHessxhj gradx f1 · · · gradx fp gradxh

gradxhT 0 · · · 0 0

. (10)

Thus, the semivectorial bilevel programming can be reduced:

min F(s)

s.t. C(s) = 0,

s ∈ M×W ×Rn.

(11)

Before giving a rigorous description of the algorithm, let us start with an overview of
each step.

Restoration step: We apply any globally convergent optimization algorithm to solve
the lower-level minimization problem parameterized by zk = (x̄, ωk, µ̄). Once an approxi-
mate minimizer x̄ and a pair of corresponding estimated Lagrange multiplier vectors are
obtained, then we compute the current set πk and the direction dk

tan.
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Approximate linearized feasible region: The set πk is a linear approximation of the
region described by KKT(x̄) containing zk = (x̄, ωk, µ̄). This auxiliary region is given by

πk = {s ∈ M×W ×Rn : 〈C′(zk), γ̇s,zk (0)〉 = 0}.

Descent direction: Using the projection on Riemannian manifolds, the projection
defined on πk is represented as follows:

Pπk (z
k) = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
,

where η > 0 is an arbitrary scaling parameter independent of k. It turns out that

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk

which is a feasible descent direction on πk.
Minimization step: The objective of the minimization step is to obtain vk,i ∈ πk such

that L(vk,i, λk) < L(zk, λk) and vk,i ∈ Bk,i = {v : d(v, zk) ≤ δk,i}, where δk,i is a trust-region
radius. The first trial point at each iteration is obtained using a trust-region radius δk,0. A
successive trust-region radius is tried until a point vk,i is found such that the merit function
at this point is sufficiently smaller than the merit function at sk.

Merit function and penalty parameter: We decided to use a variant of the sharp
Lagrangian merit function, given by

Ψ(s, λ, θ) = θL(s, λ) + (1− θ)|C(s)|,

where θ ∈ (0, 1] is a penalty parameter used to give different weights to the objective
function and the feasibility objective. The choice of the parameter θ at each iteration
depends on practical and theoretical considerations. Roughly speaking, we wish the merit
function at the new point to be less than the merit function at the current point sk.

That is, we want Aredk,i > 0, where Aredk,i is the actual reduction of the merit function,
defined by

Aredk,i = Ψ(sk, λk, θk,i)−Ψ(vk,i, λk, θk,i).

So,

Aredk,i = θk,i

[
L(sk, λk)− L(vk,i, λk,i)

]
+ (1− θk,i)

[
|C(sk)| − |C(vk,i)|

]
.

However, merely a reduction of the merit function is not sufficient to guarantee
convergence. In fact, we need a sufficient reduction of the merit function, which will be
defined by the satisfaction of the following test:

Aredk,i ≥ 0.1Predk,i,

where Predk,i is a positive predicted reduction of the merit function Ψ(s, λ, θ) between sk

and vk,i. It is defined by

Predk,i =θk,i

[
L(sk, λk)− L(vk,i, λk)− C(zk)T(λk,i − λk)

]
+

(1− θk,i)
[
|C(sk)| − |C(zk)|

]
.

The quantity Predk,i defined above can be nonpositive depending on the value of
the penalty parameter. Fortunately, if θk,i is small enough, Predk,i is arbitrarily close to
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[
|C(sk)| − |C(zk)|

]
, which is necessarily nonnegative. Therefore, we will always be able to

choose θk,i ∈ (0, 1] such that

Predk,i ≥
1
2

[
|C(sk)| − |C(zk)|

]
.

When the criterion Aredk,i ≥ 0.1Predk,i is satisfied, we accept vk,i = zk. Otherwise, we
reduce the trust-region radius.

To establish IR methods for semivectorial bilevel programming on Riemannian mani-
folds, we adapt the IR method presented in [4]. In the presented algorithm, the parameters
η > 0, N > 0, θ−1 ∈ (0, 1), δmin > 0, τ1 > 0, and τ2 > 0 are given. The initial approxima-

tions s0 ∈W ×M×Rn, λ0 ∈ Rm+n, as well as a sequence {ωk} such that
+
∑

k=0
∞ωk < +∞

are also given.

4. Convergence Results

Using the method for studying the convergence of the IR algorithm in Euclidean
spaces [20,22], the convergence results of IR algorithms for semivectorial bilevel program-
ming on Riemannian manifolds are given under the following assumptions. From now on,
we assume that the semivectorial bilevel optimization problems on Riemannian manifolds
satisfy assumptions H1–H3 stated below:

H1 There exists L1 such that, for all (x, ω), (x̄, ω̄) ∈ M×W, µ, µ̄ ∈ Rn, and ξ ∈ [0, ξmax],

|C′(x, ω, µ)− C′(x̄, ω̄, µ̄)| ≤ L1d
(
(x, ω, µ), (x̄, ω̄, µ̄)

)
.

H2 There exists L2 such that, for all x, x̄ ∈ M,

|gardxF(x)− gardxF(x̄)| ≤ L2d
(
(x, x̄)

)
.

H3 There exists r ∈ [0, 1), independently of k, such that the point zk = (x̄, ω̄, µ̄) obtained
at the restoration phase satisfies

|C(zk)| ≤ r|C(sk)|,

where sk = (xk, ωk, µk). Moreover, if C(sk) = 0, then zk = sk.

Theorem 1 (Well-definiteness). Under assumptions H1–H3, IR Algorithm 1 for bilevel pro-
gramming is well defined.

Algorithm 1: Inexact Restoration algorithm

1 Define θmin
k = min{1, θk−1, . . . , θ−1}, θ

large
k = min{1, θmin

k + ωk}, and θk,−1 = θ
large
k .

2 (Restoration phase) Find an approximate minimizer x̄ and multipliers µ̄ ∈ Rn for the
problem:

min
x

p

∑
i=1

ωk
i fi(x)

s.t. h(x) = 0,

x ∈ M,

and define zk = (x̄, ωk, µ̄).
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Algorithm 1: Cont.

3 (Direction) Compute

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk,

where Pk is the projection on

πk = {s ∈ M×W ×Rn : 〈C′(zk), γ̇s,zk (0)〉 = 0},

and Pk

(
expzk

(
−ηgradsL(zk, λk)

))
is a solution of the following problem:

min
y∈M×W×Rn

1
2

∥∥∥y− expzk

(
−ηgradsL(zk, λk)

)∥∥∥2

s.t. 〈C′(zk), γ̇y,zk (0)〉 = 0.

If zk = sk, dk
tan = 0, then stop and return xk as a solution of Problem (7). Otherwise, we set

i← 0 and choose δk,0 ≥ δmin.

4 (Minimization phase) If dk
tan = 0, then we take vk,i = zk. Otherwise, we take

tk,i
break = min

{
1, δk,i

dk
tan

}
and find vk,i ∈ πk such that, for some 0 < t < tk,i

break, we have

L(vk,i, λk) ≤ max
{

L(zk + tdk
tan, λk), L(zk, λk)− τ1δk,i, L(zk, λk)− τ2

}
and d(vk,i, zk) ≤ δk,i.

5 If dk
tan = 0, define λk,i = λk. Otherwise, we take λk,i ∈ Rn+m such that |λk,i| ≤ N.

6 For all θ ∈ [0, 1], we define

Predk,i(θ) =θ
[

L(sk, λk)− L(vk,i, λk)− C(zk)T(λk,i − λk)
]
+

(1− θ)
[
|C(sk)| − |C(zk)|

]
.

We take θk,i as the maximum θ ∈ [0, θk,i−1] that it satisfies:

Predk,i(θ) ≥
1
2

[
|C(sk)| − |C(zk)|

]
, (12)

and define Predk,i = Predk,i(θk,i).
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Algorithm 1: Cont.

7 Compute

Aredk,i = θk,i

[
L(sk, λk)− L(vk,i, λk,i)

]
+ (1− θk,i)

[
|C(sk)| − |C(vk,i)|

]
.

If

Aredk,i ≥ 0.1Predk,i,

then we take

sk+1 = vk,i, λk+1 = λk,i, θk = θk,i, δk = δk,i,

Aredk = Aredk,i, Predk = Predk,i.

and finish the current kth iteration. Otherwise, we choose δk,i+1 ∈ [0.1δk,i, 0.9δk,i], set

i← i + 1, and go to Step 4.

Proof. According to Step 6 and Step 7 of Algorithm 1, it can be calculated that

Aredk,i − 0.1Predk,i = 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

[
L(vk,i, λk)− L(vk,i, λk,i) + C(zk)T(λk,i − λk)

]
= 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

[
C(vk,i)Tλk − C(vk,i)Tλk,i + C(zk)T(λk,i − λk)

]
= 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

Through the condition (12), we have

Aredk,i − 0.1Predk,i ≥ 0.45
[
|C(sk)| − |C(zk)|

]
+ (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

(13)

Then, from the assumption H3,

Aredk,i − 0.1Predk,i = 0.45(1− r)|C(sk)|+ (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

If C(sk) 6= 0, due to the continuity of C and δk,i → 0, we have |C(zk)| − |C(vk,i)| → 0.
Thus, there exists a positive constant δk,i such that

Aredk,i − 0.1Predk,i ≥ 0.

This means that the algorithm is well defined when C(sk) 6= 0.
If C(sk) = 0, then sk is feasible. Since the algorithm does not terminate at the kth

iteration, we know that dk
tan 6= 0. Therefore, we have

zk = sk and C(zk) = C(sk) = 0.
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Combining the condition (12), it follows that

Predk,i(θ) = θ
[

L(sk, λk)− L(vk,i, λk)
]
≥ 0,

and independent of θ, for all i, θk,i = θk,−1. In terms of the inequality (13), when δk,i is
sufficiently small, we obtain

Aredk,i − 0.1Predk,i ≥ 0.

Therefore, Algorithm 1 is well defined.

The next theorem is an important tool for proving the convergence of Algorithm 1. We
prove that the actual reduction Aredk,i∗ , with i∗ the accepted value of i, achieved at each
iteration necessarily tends to 0.

Theorem 2. Under the assumptions H1–H3, if Algorithm 1 generates an infinite sequence, then

lim
k→+∞

Aredk = 0, lim
k→+∞

|C(sk)| = 0.

The same results above occur when λk = 0, for all k.

Proof. Let us prove that limk→+∞ Aredk = 0, i.e., we need to prove

lim
k→+∞

[
θk

[
L(sk, λk)− L(sk+1, λk+1)

]
+ (1− θk)

[
|C(sk)| − |C(sk+1)|

]]
= 0,

that is

lim
k→+∞

[
θkL(sk, λk) + (1− θk)|C(sk)| −

[
θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|

]]
= 0,

namely
lim

k→+∞

[
Ψ(sk, θk)−Ψ(sk+1, θk)

]
= 0,

where Ψ(sk, θk) = θkL(sk, λk) + (1− θk)|C(sk)|.
By contradiction, suppose that there is an infinite indicator set T1 ⊂ {0, 1, 2 . . . } and a

positive constant ζ > 0 such that, for any k ∈ T1, we have

Ψ(sk+1, θk) ≤ Ψ(sk, θk)− ζ.

Let Ψk = Ψ(sk, θk), then

Ψk+1 = θk+1L(sk+1, λk+1) + (1− θk+1)|C(sk+1)|
= θk+1L(sk+1, λk+1) + (1− θk+1)|C(sk+1)|
− θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|
+ θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|
= (θk+1 − θk)L(sk+1, λk+1) + (θk − θk+1)|C(sk+1)|
+ θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|

≤ (θk − θk+1)
[
‖C(sk+1)‖ − L(sk+1, λk+1)

]
+ θkL(sk, λk) + (1− θk)|C(sk)| − ζk.

Equivalently,

Ψk+1 ≤ (θk − θk+1)
[
|C(sk+1)| − L(sk+1, λk+1)

]
+ Ψk − ζk, (14)
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where ζk > 0 and ζk > ζ > 0, k ∈ T1.
According to the definition of θk,−1,

θk − θk+1 + ωk ≥ 0, k ∈ T1.

There is an upper bound c > 0, such that

|C(sk)| − ‖L(sk+1, λk+1)‖ ≤ c. (15)

Combining the inequalities (14) and (15), it follows that

Ψj+1 ≤ (θj − θj+1 + ωj)
[
|C(sj+1)| − L(sj+1, λj+1)

]
+ Ψj − ζ j −ωj

[
|C(sj+1)| − L(sj+1, λj+1)

]
≤ (θj − θj+1 + ωj)c + Ψj − ζ j + ωjc

≤ (θj − θj+1)c + Ψj − ζ j + 2ωjc.

Then, for all k ≥ 1, we have

Ψk ≤ Ψ0 + (θ0 − θk+1)c +−
k−1

∑
j=0

ζ j +
k−1

∑
j=0

2ωjc

≤ Ψ0 + 2c +−
k−1

∑
j=0

ζ j +
k−1

∑
j=0

2ωjc.

Since ∑k−1
j=0 2ωj is the convergence and ζ j is bounded away from zero, this implies

that Ψk is unbounded. This is a contradiction. Thus, we have that limk→+∞ Aredk = 0. In
addition, in a similar way, we can prove limk→+∞ |C(sk)| = 0.

According to Theorem 2, it means that the point generated by the IR algorithm for the
KKT transformation (7) will converge to a feasible point eventually. Then, we prove that
dk

tan cannot be bounded away from zero under the following assumption H4. This means
that the point generated by the IR algorithm will converge to a weak Pareto solution of
Problem (7):

H4 There exists β > 0, independently of k, such that

d(sk, zk) ≤ β|C(sk)|.

Theorem 3. Suppose that the assumptions H1, H2, H3, and H4 hold. If {sk} is an infinite sequence
generated by Algorithm 1, {zk} is the sequence defined at the restoration phase in Algorithm 1, then:

1
∣∣∣C(sk)

∣∣∣→ 0.

2 There exists a limit point s∗ of {sk}.
3 Every limit point of {sk} is a feasible point of the KKT reformulation (7).
4 If, for all ω, a global solution of the lower-level problem is found, then any limit point (x∗, ω∗)

is feasible for the weighted semivectorial bilevel programming (6).
5 If s∗ is a limit point of {sk}, there exists an infinite set K ⊂ N such that

lim
k∈K

sk = lim
k∈K

zk = s∗, C(s∗) = 0, lim
k∈K

dk
tan = 0.

Proof. We can prove the first two items from Theorem 2 and the assumption H1–H3. Based
on the conclusions of the first two terms, the third and forth items are valid. The fifth item
follows from the assumption H4 and the first item.
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The above conclusions give the well-definiteness and convergence of the algorithm
proposed for semivectorial bilevel programming on Riemannian manifolds. From the point
of view of the assumption put forward in this paper, the assumptions H3 and H4 are related
to the sequences generated by the IR algorithm. Therefore, it is worth studying establishing
sufficient conditions to ensure their effectiveness. Two assumptions about the lower-level
problem are given below to verify the hypotheses H3 and H4:

H5 For every solution s = (x, ω, µ) of C(x, ω, µ) = 0, such that the gradients gradhi(x),
i = 1, . . . , n of the active lower level constraints are linearly independent.

H6 For every solution s = (x, ω, µ) of C(x, ω, µ) = 0 such that the matrix:

H(x, ω, µ) =
p

∑
i=1

ωiHessx fi(x) +
n

∑
i=1

µiHessxhi(x),

is positive definite in the following set:

Z(x) = {d ∈ Rn|gradh(x)Td = 0, dj = 0 for all j}.

For convenience, to verify H3 and H4, we define the following matrix:

D′(s) =

 p
∑

i=1
ωiHessx fi +

n
∑

i=1
µiHessxhi gradxh

gradxhT 0

.

Lemma 1. The matrix D′(s) is non-singular for any solution s = (x, ω, µ) of C(x, ω, µ) = 0.

Proof. Assuming that there exist u ∈ Rm and v ∈ Rp such that

D′(s)
(

u
v

)
= 0,

then we have ( p

∑
i=1

ωiHessx fi +
n

∑
i=1

µiHessxhi

)
u + gradxhv = 0, (16)

gradxhu = 0. (17)

According to the assumptions H5–H6 and Equalities (16) and (17), it follows that u = 0
and v = 0. This means that the matrix D′(s) is non-singular for any solution s = (x, ω, µ)
of C(x, ω, µ) = 0.

Let D(s) be defined on M×W ×Rn, for each ω ∈W, a solution u(ω) = (x(ω), µ(ω))
of C(x, ω, µ) = 0 such that the function v(ω) = u(ω) is continuous on W. Now, we fix
the function v(ω), by Lemma 1, and we can define a function Υ(ω) = D′(ω, v(ω))−1 over
the set W. Let V(v(ω), α) = {v ∈ M×Rn : d(v, v(ω)) ≤ α}. Furthermore, the following
lemma can be obtained.

Lemma 2. There exist α > 0 and β > 0, such that, for all ω ∈ W, it holds |Υ(ω)| < β, and for
all v ∈ V(v(ω), α), Υ(ω) coincides with the local inverse operator of D′(ω, ·).

Proof. Since D′(ω, v) is continuous on (ω, v), v(ω) is continuous on W, and Υ(ω) is
continuous with respect to ω ∈W, there exists β > 0, such that, for all ω ∈W, |Υ(ω)| < β.

For each fixed value of ω ∈W, associated with each v, the continuously differentiable
operator of the vector C(ω, v) verifies the assumption of the inverse function theorem at
v(ω). Hence, there exists α > 0 such that C(ω, ·) has a continuously differentiable local
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inverse operator G(ω) : C(ω, V(v(ω), α)) 7→ V(v(ω), α), and the Jacobian matrix [G(ω)]′

is consistent with Υ(ω). This ends the proof.

Finally, we state that H3 and H4 hold under the assumptions H5 to H6. The next
theorem summarizes this fact, and it can be proven as follows.

Theorem 4. Let r ∈ [0, 1), (ω, u) ∈W ×M×Rn be such that C(ω, u) 6= 0. If the assumptions
H5-H6 hold, then there exist β > 0, ω ∈W, and ū = (x̄, µ̄) ∈ M×Rn such that

|C(ω, ū)| ≤ r|C(ω, u)|,

and
d
(
(ω, u), (ω, ū)

)
≤ β|C(ω, u)|.

Proof. According to Lemmas 1 and 2, combining the assumptions H5 and H6, by using
Taylor expansions of the functions on Riemannian manifolds, the statement follows from
the results of [20]. This ends the proof.

Example 1. We consider the particular case M = R2
+ := {(x1, x2) ∈ R2|x1 > 0, x2 > 0} with

the metric g given in Cartesian coordinates (x1, x2) around the point x ∈ M by the matrix:

M 3 y 7→ (gij)y =
(

g
( ∂

∂yi
,

∂

∂yj

))
:= diag

(
x−1

1 , x−1
2

)
.

In other words, for any vectors u = (u1, u2) and v = (v1, v2) in the tangent plane at x ∈ M,
denoted by Ty M, which coincides with R2, we have

g(u, v) =
u1v1

x1
+

u2v2

x2
.

Let a = (a1, a2) ∈ M and v = (v1, v2) ∈ Ta M. It is easy to see that the (minimizing)
geodesic curve t 7→ γ(t) verifying γ(0) = a, γ(0) = v is given by

R 3 t 7→ (a1e
v1
a1

t, a2e
v2
a2

t
).

Hence, M is a complete Riemannian manifold. Furthermore, the (minimizing) geodesic segment
γ : [0, 1]→ M2 joining the points a = (a1, a2) and b = (b1, b2), i.e., γ(0) = a, γ(1) = b is given
by γi(t) = a1−t

1 bt
i , i = 1, 2. Thus, the distance d on the metric space (M2, g2) is given by

d(a, b) =
∫ 1

0
‖γ̇(t)‖γ(t)dt =

∫ 1

0

√
(

γ̇1(t)
γ1(t)

)2 + (
γ̇2(t)
γ2(t)

)2dt

=

√
(ln

a1

b1
)2 + (ln

a2

b2
)2.

It follows easily that the closed ball B(a; R) centered in a ∈ M of radius R ≥ 0 verifies[
a1e−

R√
2 , a1e−

R√
2

]
×
[

a2e−
R√

2 , a2e−
R√

2

]
⊂ B(a; R);

thus, every closed rectangle [ρ1, η1]× [ρ2, η2] (ρ1 > 0, ρ2 > 0) is bounded in the metric space
(M, g) with the distance d.
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Next, we consider the functions F : M → R, f : M → R2 and h : M → R given for any
x ∈ M by

F(x) = −x1,

f1(x) =
1
2
(x1 − 1)2 − 3

4
ln x1 +

3
8
(x2 − 1)2,

f2(x) =
1
4
(x1 − 1)2 − 3

8
ln x1 +

3
16

(x2 − 1)2,

h(x) =
1
3
(x1 − 1)2 +

1
3
(x2 − 1)2 − 1

3
.

It is easy to see that, for x ∈ M and any geodesic segment γ : [0, 1] → M with γ(0) = a,
γ(1) = b, the functions fi(x), i = 1, 2, and h(x) are all convex on M with the Riemannian metric
g. Moreover, the function h(x) satisfies the Slater constraint qualification.

We then consider the corresponding KKT reformulation of the semivectorial bilevel program-
ming on Riemannian manifolds:

min
x,ω

F(x) = −x2

s.t. ω ∈W,
2

∑
i=1

ωigradx fi(x) + gradxh(x)µ = 0,

h(x) = 0,

x ∈ M.

By the definition of the gradient of a differentiable function with respect to the Riemannian
metric g, let ω1 = 1

3 , ω2 = 2
3 , ω1 + ω2 = 1, and µ = ( 1

2 , 3
4 )

T ∈ R2; we have

min
x,ω

F(x) = −x1

s.t. (x1 −
1
2
)2 + (x2 −

1
2
)2 − 1 = 0,

1
3
(x1 − 1)2 +

1
3
(x2 − 1)2 − 1

3
= 0,

x ∈ M.

It is easy to see that the unique optimal solution of the KKT reformulation is x = ( 3−
√

7
4 , 3+

√
7

4 ).
According to Algorithm 1, we first give the initial approximations s0 ∈ W × M × R2,

λ0 ∈ R2, and a sequence {ωk}. In the restoration phase, find an approximate minimizer x̄ =
(x̄1, x̄2) ∈ M and multiplier µ̄ = (µ̄1, µ̄2) ∈ R2 for the problem:

min
x

ωk
1 f1(x) + ωk

2 f2(x)

s.t. h(x) = 0,

x ∈ M,

and define zk = (x̄, ωk, µ̄).
We then compute the direction by using the exponential mapping and the projection defined on

Riemannian manifold M.

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk,

= Pk

zk
1e
−η

grads L(zk ,λk)

zk
1 , zk

2e
−η

grads L(zk ,λk)

zk
2

− zk,
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where L(zk, λk) = −x1 + λk
1

(
∑2

i=1 ωk
i grads fi(x̄) + gradsh(x̄)µ̄

)
+ λk

2h(x̄).

In the minimization phase, we first find vk,i such that L(vk,i, λk) < L(zk, λk) and vk,i ∈
Bk,i = {v : d(v, zk) ≤ δk,i}. Then, by calculating the actual reduction Aredk,i and positive
predicted reduction Predk,i of the merit function Ψ(s, λ, θ) such that Aredk,i ≥ 0.1Predk,i, we
obtain a sequence {sk}.

According to Theorems 3 and 4, the sequence {sk} generated by the IR method established
in the present paper converges to a solution of the semivectorial bilevel programming on Rieman-
nian manifolds.

5. Conclusions

In this paper, a new algorithm for solving the semivectorial bilevel programming
based on the IR technique was proposed, which preserves the two-stage structure of
the problem. In the feasibility phase, lower-level problems can be solved imprecisely
using their properties, and users are free to use special-purpose solvers. In the optimal
stage, a minimization algorithm with linear constraints was used. Moreover, it was also
proven that the algorithm is well-defined and converges to the feasible point under mild
conditions. Under more stringent assumptions, the convergence of sequences generated
by the presented algorithm was proven. Furthermore, the validity of some conditions
generated by the algorithm was given as well.
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