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Abstract: Since rainfall data often contain zero observations, the ratio of the variances of delta-gamma
distributions can be used to compare the rainfall dispersion between two rainfall datasets. To this end,
we constructed the confidence interval for the ratio of the variances of two delta-gamma distributions
by using the fiducial quantity method, Bayesian credible intervals based on the Jeffreys, uniform, or
normal-gamma-beta priors, and highest posterior density (HPD) intervals based on the Jeffreys, uniform,
or normal-gamma-beta priors. The performances of the proposed confidence interval methods were
evaluated in terms of their coverage probabilities and average lengths via Monte Carlo simulation. Our
findings show that the HPD intervals based on Jeffreys prior and the normal-gamma-beta prior are both
suitable for datasets with a small and large probability of containing zeros, respectively. Rainfall data
from Phrae province, Thailand, are used to illustrate the practicability of the proposed methods with
real data.

Keywords: fiducial quantities; highest posterior density; Jeffreys prior; uniform prior; normal-
gamma-beta prior
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1. Introduction

For statistical inference, variance is the second central moment that gives a measure
of the spread or variability of a distribution and is often used for probability and statis-
tical inference. Many researchers have studied and constructed the confidence interval
for the variance of various distributions by using several methods. For example, Harvey
and van der Merwe [1] proposed Bayesian confidence interval methods for the means
and variances of lognormal and bivariate lognormal distributions. Niwitpong [2] sug-
gested the generalized confidence interval approach for a function of the variance of a
lognormal distribution. Puggard et al. [3] constructed the confidence intervals for the
variance and difference between the variances of several Birnbaum-Saunders distributions.
Puggard et al. [4] proposed the confidence interval for comparing the variances of two
independent Birnbaum–Saunders distributions.

Populations containing positive observations, such as environmental data, can be rea-
sonably assessed by using a gamma distribution [5]. Gibbons and Coleman [6] pointed out
that the use of a gamma distribution is more appropriate than a normal distribution when
variability and concentration are related, as is the case with many environmental datasets.
However, rainfall data often contain zero observations, which violates the necessity for
positive data for gamma modeling, and so this must be taken into account when studying
this phenomenon. Aitchison [7] provided guidelines for modeling populations containing
zero observations whereby the probability of obtaining zeros (δ) is constrained by 0 < δ < 1
while the positive observations comprise the remaining probability (1− δ). Later, Aitchison
and Brown [8] coped with this issue by introducing the delta-lognormal distribution in
which the number of zero observations can be viewed as a random variable with a binomial
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distribution while the positive observations are assumed to be from a random variable
with a lognormal distribution.

Many researchers have developed various methods for constructing confidence inter-
vals for various parameters of a delta-lognormal distribution. For example, Yosboonruang
et al. [9] constructed the confidence interval for the coefficient of variation of a single delta-
lognormal distribution. Maneerat et al. [10,11] suggested Bayesian confidence interval
methods for the variance of a delta-lognormal distribution and the difference between the
variances of delta-lognormal distributions and applied them to analyze rainfall dispersion.
Maneerat et al. [12] used the Bayesian approach to construct the confidence interval for
comparing the ratio of the variances of delta-lognormal-distributed rainfall dispersion
datasets in Thailand. Zhang et al. [13] proposed simultaneous confidence intervals for the
ratio of the means of zero-inflated lognormal populations. In a slightly different approach,
Ren et al. [14] proposed simultaneous confidence intervals for the difference between the
means of multiple zero-inflated gamma distributions by using one exact and two approxi-
mate fiducial methods and applied them for analyzing precipitation datasets and found
that the exact method provided more accurate results. Muralidharan and Kale [15] pro-
posed a modified gamma distribution with a singularity at zero and thereby obtained the
confidence interval for the mean of the mixed distribution. Lecomte et al. [16] provided
compound Poisson-gamma and delta-gamma distributions to handle zero-inflated con-
tinuous data under a variable sampling regime. Kaewprasert et al. [17] used Bayesian
estimation for the mean of delta-gamma distributions with application to rainfall data in
Thailand. Khooriphan et al. [18] proposed a Bayesian estimation of rainfall dispersion in
Thailand using gamma distribution with excess zeros. Wang et al. [19] proposed confidence
interval methods for the parameters of a zero-inflated gamma distribution.

The ratio of the variances of two populations of rainfall data containing zero obser-
vations, which can thus be modeled by using the delta-gamma distribution, is a suitable
approach for comparing rainfall dispersion in two areas. Thus, we constructed the con-
fidence interval for the ratio of the variances of delta-gamma distributions by using six
Bayesian approaches: Bayesian credible intervals based on the Jeffreys (BAY-J), uniform
(BAY-U), or normal-gamma-beta (BAY-NGB) priors and highest posterior density (HPD)
intervals based on the Jeffreys (HPD-J), uniform (HPD-U), or normal-gamma-beta (HPD-
NGB) priors and compared them with the fiducial quantity (FQ) approach.

This article is organized as follows. The theoretical background for the proposed
methods for constructing the confidence interval for the ratio of variances of delta-gamma
distributions is covered in Section 2. Simulation study parameters and results are presented
in Section 3. The application of the methods to real datasets is reported in Section 4. Finally,
conclusions based on the study are covered in Section 5.

2. The Confidence Interval for the Ratio of the Variances of Two
Delta-Gamma Distributions

Let Xi = (Xi1, Xi2, ..., Xini ); i = 1, 2 be a random sample from a delta-gamma distri-
bution, denoted as Xi ∼ ∆(δi, αi, βi). The distribution function of a delta-gamma can be
derived as

G(xi; δi, αi, βi) =

{
δi ; xi = 0,
δi + (1− δi)F(xi; αi, βi) ; xi > 0

(1)

where F(xi; αi, βi) stands for the gamma cumulative distribution function. The mean and
variance of a gamma(αi, βi) distribution with shape parameter αi and scale parameter βi
can be defined as αiβi and αiβ

2
i , respectively. The zero and non-zero observed values are

denoted as ni,(0) and ni,(1), respectively, where ni = ni,(0) + ni,(1). The zero observations
follow binomial distribution ni,(0) ∼ Bin(ni, δi) while the non-zero observations follow a
gamma distribution.

The maximum likelihood estimators of parameters αi, βi, and δi can be defined as

α̂i =
1

2(log Xi −∑ni
i=1 log Xi/ni)

, β̂i = Xi/α̂i, and δ̂i = ni,(0)/ni; i = 1, 2.
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where Xi is the sample mean of Xi [20].
According to Aitchison [7], the population mean and variance of Xi can be written as

E(Xi) = (1− δi) · (αiβi) (2)

Var(Xi) = τi = (1− δi) · (αiβ
2
i ) + δi(1− δi) · (αiβi)

2 (3)

Subsequently, the ratio of the two variances becomes

θ =
τ1

τ2
(4)

The methods to construct the confidence interval for θ are proposed in the following
sub-sections.

2.1. The Fiducial Quantity Method

Krishnamoorthy et al. [21] developed FQs based on cube-root-transforming a sample.
Let Xi = (Xi1, Xi2, ..., Xini ); i = 1, 2 be a random sample from a delta-gamma distribution

with shape parameter ai and scale parameter bi. For Yi = X
1
3
i ; i = 1, 2, then Yi is approxi-

mately normally distributed with respective means and variances µi and σ2
i given by

µi = (bia
1
3
i )

(
1− 1

9ai

)
and σ2

i =
b

2
3
i

9a
1
3
i

(5)

Consider the stochastic representations

Xi
d∼ µi + Zi

σi√
ni

and S2
i

d∼ σ2
i

χ2
ni−1

ni − 1
(6)

where notation “ d∼” means “distributed as”. Let xi and si are the observed values of Xi and
Si, respectively; Zi is an independent random variable from a standard normal distribution;
and χ2

ni−1 is an independent random variable from Chi-squared distribution (ni is the
sample size). By solving the above equations for µi and σ2

i , we arrive at

from S2
i

d∼ σ2
i

χ2
ni−1

ni−1

then σ2
i

d∼ (ni−1)S2
i

χ2
ni−1

so σi
d∼
√

ni−1Si√
χ2

ni−1

and Xi
d∼ µi + Zi

σi√
ni

then Xi
d∼ µi +

Zi
√

ni−1√
χ2

ni−1

· Si√
ni

by replacing Xi and Si with xi and si respectively. Thus the FQs of µi and σ2
i are

Qµi = xi +
Zi
√

ni − 1√
χ2

ni−1

· si√
ni

and Qσ2
i
=

(ni − 1)s2
i

χ2
ni−1

(7)

The above FQs, xi and si are fixed, and Zi and χ2
ni−1 are random variables whose

distributions do not depend on any parameters.
Meanwhile, the respective FQs for δi are as follows [22]

Qδi ∼
1
2

Beta(ni,(1), ni,(0) + 1) +
1
2

Beta(ni,(1) + 1, ni,(0)) (8)
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The FQs for the means are [5]

QMi =

{
Qµi

2
+

√(
Qµi

2

)2
+ Qσ2

i

}3

(9)

We can express the FQs for the variances as follows:
Let Vi = aib2

i . Thus, we can rewrite Equation (5). as

µi = V
1
3

i b
−1
3

i

(
1− b2

i
9Vi

)
and σ2

i =
b

4
3
i

9V
1
3

i

We can find Vi =

{
µi+
√

µ2
i +4σ2

i
2(9−1/4)(σ2

i )
−1/4

}4

by solving the above equations for Vi. Thus, the

FQs for the variances are obtained as:

QVi =

{Qµi +
√

Q2
µi
+ 4Qσ2

i

2(9−1/4)(Qσ2
i
)−1/4

}4

(10)

where Qµi and Qσ2
i

are defined as in Equation (7).
Hence, the FQs for τ1 and τ2 become

Qτ1 = (1−Qδ1) ·QV1 + Qδ1(1−Qδ1) ·Q
2
M1

Qτ2 = (1−Qδ2) ·QV2 + Qδ2(1−Qδ2) ·Q
2
M2

(11)

Thus, the FQs for the ratio of the variances of two delta-gamma distributions can be
derived as

Qθ =
Qτ1

Qτ2

(12)

Therefore, the equal-tails 100(1− α)% FQ interval for the ratio of variances can be
defined by

CIFQ = [Qθ(α/2), Qθ(1− α/2)] (13)

where Qθ(α/2) and Qθ(1− α/2) are the 100(α/2)−th and 100(1− α/2)−th percentiles of
the distribution of Qθ , respectively.

The confidence interval for the ratio of variances θ can be obtained by executing
Algorithm 1.
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Algorithm 1 FQ

1: For a given sample from Xi ∼ ∆(δi, αi, βi), compute xi and s2
i of the cube-root-

transformed sample.
2: Generate standard normal variate Zi and Chi-squared variate χ2

ni−1.
3: Generate Beta(ni,(1), ni,(0) + 1) and Beta(ni,(1) + 1, ni,(0)).
4: Compute Qµi , Qσ2

i
, and Qδi from Equations (7). and (8).

5: Compute the FQs for the mean (QMi ) and variance (QVi ) of a gamma distribution from
Equations (9). and (10), respectively.

6: Compute Qτi and Qθ from Equations (11) and (12), respectively.
7: Repeat Steps 2–6 5000 times and obtains an array of Qθ .
8: Compute the 95% confidence interval for θ from Equation (13).
9: Repeat Steps 1–8 10,000 times to compute the coverage probability (CP) and the average

length (AL).

2.2. The Bayesian Methods

The Bayesian credible interval involves estimating the parameter of interest from the
posterior distribution [23], while HPD intervals are based on the Bayesian approach where
the posterior density for every parameter value within the confidence region is higher than
those outside of the region [24]. HPD is regarded as the narrowest possible interval for
the parameter of interest for probability 100(1− α)% [25]. Box and Tiao [26] described the
HPD definition as follows:

Definition 1. Let p(θ|y) be a posterior density function. A region R in the parameter space of θ is
called a HPD region of content (1− α) if
(i) Pr(θ ∈ R|y) = 1− α,
(ii) For θ1 ∈ R and θ2 /∈ R, p(θ1R|y) ≥ p(θ2R|y).

We can explain that the HPD interval has two main properties for a given probability
level 1− α, the interval has the narrowest length and every point within the interval has a
higher probability density than the points outside of it.

In this section, the Bayesian credible interval approaches based on the Jeffreys, uniform,
and normal-gamma-beta priors are presented.

2.2.1. The Bayesian Methods Using the Jeffreys Prior

This is derived from the square root of the Fisher information matrix [27]; i.e., p(θ) ∝√
|I(θ)|. Since Xi; i = 1, 2 are random samples from a delta-gamma distribution. For,

Yi = X
1
3
i ; i = 1, 2, then Yi is approximately normally distributed with means µi and variance

and σ2
i . The delta-gamma distribution for three unknown parameters can be denoted as

ωi = (δi, µi, σ2
i ) with likelihood function

p(xi|ωi) ∝ δni,(0)(1− δni,(1))∏ni
i=1(σ

2
i )
−1/2

(
− 1

2σ2
i
(xi − µi)

)
Therefore, the Fisher information for ωi becomes

I(ωi) = diag
[

ni
δi(1−δi)

ni,(1)

σ2
i

ni,(1)

2σ2
i

]
Bolstad and Curran [25] defined the Jeffreys prior for δi in a binomial distribution as

p(δi) ∝ (δi)
− 1

2 (1− δi)
1
2 . This allows us to obtain the marginal posterior distribution of δi as

δi(je f )|xi ∼ Beta
(

ni,(0) +
1
2

, ni,(1) +
3
2

)
(14)
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Subsequently, the Jeffreys prior for σ2
i in a lognormal distribution is p(σ2

i ) ∝ σ−2
i .

Therefore, the marginal posterior distribution of σ2
i is

σ2
i(je f )|xi ∼ IG

(
ni,(1)

2
,

∑ni
i=1(xi − µi)

2

2

)
(15)

and the marginal posterior distribution of µi is

µi(je f )|σ2
i(je f ), xi ∼ N(xi, σ2

i(je f )/ni,(1)) (16)

We compute the mean and variance of the gamma distribution by using µi(je f )|σ2
i(je f ), xi

and σ2
i(je f )|xi, respectively, as follows:

Mi(BAY−J) =

{
µi(je f )

2
+

√(
µi(je f )

2

)2
+ σ2

i(je f )

}3

(17)

Vi(BAY−J) =

{
µi(je f ) +

√
µi(je f ) + 4σ2

i(je f )

2(9−1/4)(σ2
i(je f ))

−1/4

}4

(18)

Subsequently,

τ̂i(BAY−J) = (1− δi(je f )) ·Vi(BAY−J) + δi(je f )(1− δi(je f )) ·M2
i(BAY−J) (19)

such that

θ̂BAY−J =
τ̂1(BAY−J)

τ̂2(BAY−J)
(20)

The Bayesian credible interval and HPD interval for the ratio of variances of delta-
gamma distributions are respectively obtained as

CIBAY−J = [θ̂BAY−J(α/2), θ̂BAY−J(1− α/2)] (21)

2.2.2. The Bayesian Methods Using the Uniform Prior

For the uniform prior that gives equally likely a priori to all possible values [28], the
prior probability is a constant function [29]. The uniform prior for δi in binomial distribution
is p(δi) ∝ 1 [25], which leads to obtaining the marginal posterior distribution of δi as

δi(uni f )|xi ∼ Beta(ni,(0) + 1, ni,(1) + 1) (22)

Kalkur and Rao [30] defined the uniform prior of σ2
i as σ2

i ∝ 1, with the marginal
posterior distribution of σ2

i being

σ2
i(uni f )|xi ∼ IG

(
ni,(1) − 2

2
,

∑ni
i=1(xi − µi)

2

2

)
(23)

Similarly, the marginal posterior distribution of µi is

µi(uni f )|σ2
i(uni f ), xi ∼ N(xi, σ2

i(uni f )/ni,(1)) (24)

We can compute the mean and variance of gamma by using µi(uni f )|σ2
i(uni f ), xi and

σ2
i(uni f )|xi, respectively, as follows:

Mi(BAY−U) =

{
µi(uni f )

2
+

√(
µi(uni f )

2

)2
+ σ2

i(uni f )

}3

(25)



Axioms 2022, 11, 689 7 of 19

Vi(BAY−U) =

{
µi(uni f ) +

√
µ2

i(uni f ) + 4σ2
i(uni f )

2(9−1/4)(σ2
i(uni f ))

−1/4

}4

(26)

Hence,

τ̂i(BAY−U) = (1− δi(uni f )) ·Vi(BAY−U) + δi(uni f )(1− δi(uni f )) ·M2
i(BAY−U) (27)

such that

θ̂BAY−U =
τ̂1(BAY−U)

τ̂2(BAY−U)
(28)

Thus, the Bayesian credible interval and HPD interval for the ratio of the variances of two
delta-gamma distributions are respectively obtained as

CIBAY−U = [θ̂BAY−U(α/2), θ̂BAY−U(1− α/2)] (29)

2.2.3. The Bayesian Methods Using the Normal-Gamma-Beta Prior

Maneerat and Niwitpong [31] proposed an HPD-NGB for the common mean of several
delta-lognormal distributions, which performed well for small-to-large sample sizes and
better than HPD-J derived by Harvey and van der Merwe [1]. Let Y = log W be a random
variable from a normal distribution with mean µ = (µ1, µ2) and precision λ = (λ1, λ2)
where W ∼ LN(µ, λ) and λi = σ−2

i . The HPD based on the normal-gamma-beta prior of

θ = (µi, λi, δi) is defined as p(θ) ∝
k

∏
i=1

λ−1
i [δi(1− δi)]

−1/2, where µi, λi follows a normal-

gamma distribution, and δi follows a beta distribution. Thus, the respective marginal
posterior distributions of δi, σ2

i and µi are as follows:

δi(NGB)|xi ∼ Beta
(

ni,(0) +
1
2

, ni,(1) +
1
2

)
(30)

σ2
i(NGB)|xi ∼ IG

(
ni,(1) − 1

2
,

∑
ni,(1)
i=1 (xi − µi)

2

2

)
(31)

µi(NGB)|xi ∼ t2(ni,(1)−1)

(
xi,

∑ni
i=1(xi − xi)

2

ni,(1)(ni,(1) − 1)

)
(32)

where t2(ni,(1)−1) denotes a Student’s t distribution with 2(ni,(1) − 1) degrees of freedom.

We compute the mean and variance of gamma using µi(NGB)|xi and σ2
i(NGB)|xi, respec-

tively, as follows

Mi(BAY−NGB) =

{
µi(NGB)

2
+

√(
µi(NGB)

2

)2
+ σ2

i(NGB)

}3

(33)

Vi(BAY−NGB) =

{
µi(NGB) +

√
µ2

i(NGB) + 4σ2
i(NGB)

2(9−1/4)(σ2
i(NGB))

−1/4

}4

(34)

Hence,

τ̂i(BAY−NGB) = (1− δi(NGB)) ·Vi(BAY−NGB) + δi(NGB)(1− δi(NGB)) ·M2
i(BAY−NGB) (35)

such that

θ̂BAY−NGB =
τ̂1(BAY−NGB)

τ̂2(BAY−NGB)
(36)
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The credible interval and HPD interval based on the BAY-NGB and HPD-NGB methods for
the ratio of variances of delta-gamma distributions are respectively obtained as

CIBAY−NGB = [θ̂BAY−NGB(α/2), θ̂BAY−NGB(1− α/2)] (37)

The confidence interval for the ratio of variances θ can be obtained by executing
Algorithm 2.

Algorithm 2 Bayesian interval

1: Generate Xi ∼ ∆(δi, αi, βi) and compute xi and s2
i of the cube-root-transformed sample.

2: Generate δi|xi from Equations (14), (22), and (30).
3: Generate σ2

i |xi from Equations (15), (23), and (31).
4: Generate µi|σ2

i , xi from Equations (16), (24), and (32).
5: Compute the mean and variance of a gamma distribution.
6: Compute τ̂i and θ̂.
7: Compute the 95% credible intervals and HPD intervals for θ̂ by using Equations (21),

(29), and (37).
8: Repeat Steps 1–7 10,000 times to compute the CP and the AL.

3. The Simulation Study and Results

A simulation study to generate the confidence interval for the ratio of the variance of
two independent delta-gamma distributions by using the proposed methods was conducted
with 10,000 replications (M), 5000 repetitions (m) for FQ, and the nominal confidence level
set as 0.95 using R statistical software version 4.1.0. For equal sample sizes (n1 = n2),
we used (30,30), (50,50), (100,100), or (200,200), and for unequal sample sizes (n1 6= n2),
we used (30,50), (50,100), or (100,200). For the two probabilities of data containing zeros
(δ1, δ2) = (0.2, 0.2), we set shape parameters (α1, α2) as (7.00,7.00), (7.00,7.50), (7.50,7.00),
or (7.50,7.50); for (δ1, δ2) = (0.5, 0.5), we set (α1, α2) as (2.00,2.00), (2.00,2.50), (2.50,2.00), or
(2.50,2.50); and for (δ1, δ2) = (0.8, 0.8), we set (α1, α2) as (1.25,1.25), (1.25,1.50), (1.50,1.25),
or (1.50,1.50); we set rate parameters (β1, β2) as (1,1) for all cases. The performances of FQ,
BAY-J, HPD-J, BAY-U, HPD-U, BAY-NGB, and HPD-NGB were assessed by comparing their
CPs and ALs, with the best-performing one for a particular scenario having a CP close to
or greater than 0.95 and the shortest AL.

The efficacies of the various methods for the nominal 95% two-sided confidence
interval for the ratio of the variances of delta-gamma distributions with equal and unequal
sample sizes in terms of their CPs and ALs are reported in Tables 1 and 2 and Figures 1–4:
Tables 1 and 2 report the simulation results, while Figures 1–4 summarize the CPs and ALs
from Tables 1 and 2.

The findings show that FQ, HPD-J, HPD-U, BAY-NGB, and HPD-NGB attained CPs
greater than or close to the nominal confidence level of 0.95. For small-to-moderate sample
sizes, FQ, BAY-NGB, and HPD-NGB performed well for both small and large δ whereas
the HPD-J and HPD-U performed well for small δ. For large δ, the ALs of HPD-NGB were
the shortest. For large sample sizes, FQ and HPD-J performed well for small δ whereas
HPD-U, BAY-NGB, and HPD-NGB performed well for large δ. For small δ, the ALs of FQ
and HPD-J were shorter than the other methods whereas for large δ, the ALs of HPD-NGB
were the shortest. The results in Figures 1 and 3 reveal that FQ, BAY-NGB, and HPD-NGB
performed well in almost all cases. Figures 2 and 4 show that BAY-J and HPD-J provide the
shortest ALs.

Maneerat et al. [12] proposed the confidence interval for the ratio of the variances
of two delta-lognormal distributions using an HPD based on the normal-gamma prior
(HPD-NG), as well as the method of variance estimates recovery (MOVER). These proposed
methods were compared with existing HPD-J, HPD based on the Jeffreys’ rule prior, the
generalized confidence interval (GCI), and the fiducial GCI. They found that HPD-NG
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performed very well in various situations while MOVER could be recommended for
scenarios with small equal sample sizes. From the simulation results of the present study,
it can be seen that HPD-NGB performed well for moderate-to-large sample sizes, while
HPD-J and HPD-NGB both performed well for small-to-large sample sizes. Hence, both
methods can be recommended for constructing the confidence interval for the ratio of the
variances of two delta-gamma distributions.

Table 1. The CPs and (ALs) of nominal 95% two-sided confidence interval for the ratio of variances
of delta-gamma distributions (n1 = n2).

n1, n2 δ1, δ2 α1, α2

CP
(AL)

FQ BAY-J HPD-J BAY-U HPD-U BAY-
NGB

HPD-
NGB

30, 30 0.2, 0.2 7.00, 7.00 0.9697 0.9456 0.9487 0.9401 0.9443 0.9812 0.9798
(1.3406) (1.1720) (1.1228) (1.1637) (1.1147) (1.4517) (1.3708)

7.00, 7.50 0.9684 0.9449 0.9500 0.9399 0.9471 0.9800 0.9773
(1.1818) (1.0453) (0.9999) (1.0355) (0.9907) (1.2858) (1.2139)

7.50, 7.00 0.9690 0.9447 0.9488 0.9393 0.9447 0.9805 0.9795
(1.4761) (1.3029) (1.2500) (1.2892) (1.2372) (1.6069) (1.5201)

7.50, 7.50 0.9758 0.9542 0.9568 0.9506 0.9520 0.9846 0.9830
(1.3018) (1.1622) (1.1136) (1.1470) (1.0995) (1.4230) (1.3457)

0.5, 0.5 2.00, 2.00 0.9543 0.8024 0.8214 0.8558 0.8755 0.9609 0.9590
(3.5398) (1.9996) (1.8291) (2.4537) (2.1768) (3.5356) (3.0144)

2.00, 2.50 0.9579 0.8046 0.8101 0.8570 0.8679 0.9633 0.9540
(2.2508) (1.2767) (1.1654) (1.5877) (1.4052) (2.2075) (1.9006)

2.50, 2.00 0.9528 0.8064 0.8274 0.8589 0.8746 0.9593 0.9637
(4.6023) (2.6154) (2.4322) (3.1508) (2.8538) (4.6543) (4.0229)

2.50, 2.50 0.9531 0.8046 0.8194 0.8619 0.8647 0.9594 0.9607
(2.9341) (1.6747) (1.5549) (2.0430) (1.8489) (2.9196) (2.5507)

0.8, 0.8 1.25, 1.25 0.9604 0.8441 0.8689 0.9474 0.9456 0.9749 0.9692
(54.7822) (15.1368) (9.0762) (187.644) (47.1799) (60.6257) (27.3089)

1.25, 1.50 0.9662 0.8464 0.8663 0.9510 0.9470 0.9786 0.9686
(33.1790) (9.4095) (5.7188) (111.917) (29.4096) (33.5318) (15.7383)

1.50, 1.25 0.9636 0.8481 0.8797 0.9495 0.9468 0.9771 0.9727
(57.4290) (16.7939) (10.7268) (166.582) (45.5388) (62.8024) (30.5099)

1.50, 1.50 0.9676 0.8568 0.8731 0.9554 0.9491 0.9803 0.9743
(34.5386) (10.4576) (6.7205) (102.669) (28.7895) (36.1227) (17.8842)

50, 50 0.2, 0.2 7.00, 7.00 0.9733 0.9485 0.9498 0.9454 0.9464 0.9821 0.9818
(0.9710) (0.8531) (0.8311) (0.8440) (0.8224) (1.0532) (1.0167)

7.00, 7.50 0.9694 0.9482 0.9471 0.9448 0.9430 0.9822 0.9795
(0.8638) (0.7674) (0.7468) (0.7583) (0.7382) (0.9417) (0.9087)

7.50, 7.00 0.9708 0.9516 0.9505 0.9481 0.9474 0.9814 0.9835
(1.0778) (0.9573) (0.9334) (0.9453) (0.9221) (1.1762) (1.1364)

7.50, 7.50 0.9723 0.9540 0.9543 0.9499 0.9499 0.9852 0.9810
(0.9496) (0.8521) (0.8301) (0.8401) (0.8188) (1.0408) (1.0053)
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Table 1. Cont.

n1, n2 δ1, δ2 α1, α2

CP
(AL)

FQ BAY-J HPD-J BAY-U HPD-U BAY-
NGB

HPD-
NGB

0.5, 0.5 2.00, 2.00 0.9555 0.8074 0.8170 0.8393 0.8481 0.9595 0.9596
(2.1853) (1.3055) (1.2436) (1.4396) (1.3608) (2.1998) (1.9997)

2.00, 2.50 0.9524 0.8000 0.8074 0.8360 0.8367 0.9579 0.9489
(1.4219) (0.8503) (0.8090) (0.9437) (0.8905) (1.4160) (1.2965)

2.50, 2.00 0.9533 0.7989 0.8138 0.8307 0.8463 0.9592 0.9625
(2.9496) (1.7637) (1.6953) (1.9309) (1.8438) (2.9917) (2.7412)

2.50, 2.50 0.9566 0.7966 0.8056 0.8297 0.8389 0.9596 0.9593
(1.8968) (1.1338) (1.0888) (1.2506) (1.1928) (1.9017) (1.7557)

0.8, 0.8 1.25, 1.25 0.9621 0.8403 0.8591 0.9079 0.9075 0.9742 0.9648
(9.7449) (4.7376) (3.8265) (7.7233) (5.3985) (10.3437) (7.3304)

1.25, 1.50 0.9583 0.8422 0.8540 0.9045 0.9088 0.9712 0.9634
(6.7461) (3.3189) (2.6700) (5.6071) (3.8850) (6.9155) (4.9549)

1.50, 1.25 0.9605 0.8470 0.8746 0.9055 0.9201 0.9727 0.9703
(12.0438) (6.0132) (4.9732) (9.2776) (6.7417) (13.0570) (9.4220)

1.50, 1.50 0.9621 0.8454 0.8643 0.9086 0.9138 0.9736 0.9681
(8.1384) (4.1292) (3.4129) (6.4968) (4.7229) (8.5396) (6.2547)

100, 100 0.2, 0.2 7.00, 7.00 0.9669 0.9412 0.9408 0.9391 0.9403 0.9810 0.9786
(0.6607) (0.5822) (0.5738) (0.5777) (0.5694) (0.7181) (0.7042)

7.00, 7.50 0.9720 0.9456 0.9468 0.9433 0.9452 0.9841 0.9826
(0.5827) (0.5186) (0.5109) (0.5145) (0.5068) (0.6364) (0.6240)

7.50, 7.00 0.9731 0.9519 0.9528 0.9499 0.9502 0.9828 0.9808
(0.7294) (0.6491) (0.6399) (0.6433) (0.6344) (0.7966) (0.7816)

7.50, 7.50 0.9742 0.9555 0.9534 0.9534 0.9518 0.9846 0.9835
(0.6452) (0.5804) (0.5718) (0.5751) (0.5669) (0.7083) (0.6949)

0.5, 0.5 2.00, 2.00 0.9537 0.8008 0.8045 0.8160 0.8188 0.9581 0.9538
(1.3306) (0.8227) (0.8030) (0.8586) (0.8366) (1.3450) (1.2799)

2.00, 2.50 0.9496 0.7950 0.7932 0.8103 0.8101 0.9539 0.9465
(0.8744) (0.5394) (0.5260) (0.5645) (0.5497) (0.8795) (0.8403)

2.50, 2.00 0.9497 0.7949 0.8051 0.8095 0.8213 0.9533 0.9600
(1.8266) (1.1256) (1.1039) (1.1716) (1.1474) (1.8542) (1.7716)

2.50, 2.50 0.9532 0.7870 0.7912 0.8026 0.8081 0.9565 0.9532
(1.1874) (0.7289) (0.7142) (0.7614) (0.7449) (1.1976) (1.1488)

0.8, 0.8 1.25, 1.25 0.9553 0.8310 0.8440 0.8621 0.8755 0.9668 0.9637
(3.7848) (2.2414) (2.0428) (2.5366) (2.2693) (4.0075) (3.3653)

1.25, 1.50 0.9592 0.8386 0.8420 0.8708 0.8723 0.9702 0.9588
(2.5811) (1.5459) (1.4084) (1.7612) (1.5750) (2.6887) (2.2802)

1.50, 1.25 0.9565 0.8366 0.8580 0.8687 0.8841 0.9673 0.9727
(4.8404) (2.9052) (2.6763) (3.2390) (2.9372) (5.1819) (4.3894)

1.50, 1.50 0.9639 0.8433 0.8571 0.8750 0.8848 0.9740 0.9690
(3.2934) (2.0003) (1.8424) (2.2460) (2.0369) (3.4707) (2.9718)

200, 200 0.2, 0.2 7.00, 7.00 0.9709 0.9448 0.9428 0.9431 0.9436 0.9813 0.9803
(0.4566) (0.4027) (0.3990) (0.4010) (0.3973) (0.4966) (0.4908)

7.00, 7.50 0.9721 0.9511 0.9486 0.9479 0.9470 0.9841 0.9828
(0.4044) (0.3601) (0.3567) (0.3584) (0.3551) (0.4419) (0.4367)

7.50, 7.00 0.9711 0.9510 0.9505 0.9486 0.9492 0.9819 0.9821
(0.5060) (0.4506) (0.4465) (0.4484) (0.4444) (0.5529) (0.5465)

7.50, 7.50 0.9744 0.9529 0.9523 0.9506 0.9521 0.9853 0.9847
(0.4477) (0.4030) (0.3992) (0.4009) (0.3972) (0.4919) (0.4862)
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Table 1. Cont.

n1, n2 δ1, δ2 α1, α2

CP
(AL)

FQ BAY-J HPD-J BAY-U HPD-U BAY-
NGB

HPD-
NGB

0.5, 0.5 2.00, 2.00 0.9531 0.7896 0.7923 0.7974 0.7988 0.9562 0.9532
(0.8838) (0.5547) (0.5473) (0.5659) (0.5581) (0.8953) (0.8716)

2.00, 2.50 0.9502 0.7895 0.7845 0.7979 0.7916 0.9533 0.9470
(0.5793) (0.3621) (0.3570) (0.3700) (0.3646) (0.5851) (0.5708)

2.50, 2.00 0.9478 0.7830 0.7887 0.7900 0.7968 0.9506 0.9566
(1.2195) (0.7615) (0.7529) (0.7765) (0.7675) (1.2360) (1.2058)

2.50, 2.50 0.9536 0.7918 0.7927 0.8012 0.8012 0.9575 0.9574
(0.7949) (0.4934) (0.4876) (0.5037) (0.4976) (0.8034) (0.7852)

0.8, 0.8 1.25, 1.25 0.9534 0.8263 0.8346 0.8425 0.8487 0.9645 0.9607
(2.0672) (1.3182) (1.2591) (1.3814) (1.3145) (2.1786) (1.9832)

1.25, 1.50 0.9556 0.8360 0.8333 0.8490 0.8501 0.9668 0.9573
(1.4357) (0.9237) (0.8822) (0.9709) (0.9235) (1.5058) (1.3793)

1.50, 1.25 0.9579 0.8316 0.8474 0.8470 0.8614 0.9667 0.9718
(2.6965) (1.7363) (1.6663) (1.8096) (1.7314) (2.8603) (2.6168)

1.50,1.50 0.9605 0.8403 0.8446 0.8532 0.8592 0.9707 0.9642
(1.8546) (1.2043) (1.1559) (1.2597) (1.2054) (1.9569) (1.8021)

Table 2. The CPs and (ALs) of nominal 95% two-sided confidence interval for the ratio of variances
of delta-gamma distributions (n1 6= n2).

n1, n2 δ1, δ2 α1, α2

CP
(AL)

FQ BAY-J HPD-J BAY-U HPD-U BAY-
NGB

HPD-
NGB

30, 50 0.2, 0.2 7.00, 7.00 0.9697 0.9432 0.9445 0.9387 0.9475 0.9808 0.9786
(1.1937) (1.0045) (0.9722) (1.0338) (0.9966) (1.2593) (1.2036)

7.00, 7.50 0.9738 0.9491 0.9469 0.9461 0.9501 0.9844 0.9804
(1.0568) (0.8970) (0.8678) (0.9217) (0.8883) (1.1195) (1.0700)

7.50, 7.00 0.9727 0.9512 0.9511 0.9468 0.9532 0.9816 0.9838
(1.3123) (1.1185) (1.0848) (1.1449) (1.1065) (1.3939) (1.3349)

7.50, 7.50 0.9711 0.9515 0.9495 0.9463 0.9533 0.9819 0.9822
(1.1640) (1.0001) (0.9692) (1.0229) (0.9878) (1.2405) (1.1878)

0.5, 0.5 2.00, 2.00 0.9537 0.7999 0.8181 0.8427 0.8689 0.9586 0.9581
(3.0302) (1.7232) (1.5584) (2.1715) (1.8961) (2.8930) (2.5193)

2.00, 2.50 0.9520 0.8020 0.8088 0.8451 0.8628 0.9558 0.9516
(2.0151) (1.1480) (1.0336) (1.4625) (1.2705) (1.9013) (1.6621)

2.50, 2.00 0.9544 0.8059 0.8238 0.8446 0.8726 0.9571 0.9659
(3.9549) (2.2632) (2.0781) (2.7946) (2.4900) (3.8104) (3.3632)

2.50, 2.50 0.9521 0.7984 0.8141 0.8402 0.8645 0.9564 0.9578
(2.5824) (1.4775) (1.3537) (1.8419) (1.6371) (2.4630) (2.1867)

0.8, 0.8 1.25, 1.25 0.9619 0.8431 0.8749 0.9197 0.9569 0.9753 0.9718
(40.0928) (11.3179) (6.8256) (156.047) (40.3903) (36.1470) (16.9783)

1.25, 1.50 0.9611 0.8384 0.8654 0.9198 0.9548 0.9745 0.9703
(27.1107) (7.7188) (4.6975) (107.454) (27.9729) (23.8861) (11.3980)

1.50, 1.25 0.9592 0.8421 0.8754 0.9165 0.9576 0.9731 0.9757
(41.5169) (12.6202) (8.0997) (144.186) (39.7663) (37.9083) (19.2347)

1.50, 1.50 0.9633 0.8504 0.8767 0.9244 0.9591 0.9765 0.9752
(27.9288) (8.5264) (5.4643) (98.4976) (27.3681) (24.8532) (12.6009)
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Table 2. Cont.

n1, n2 δ1, δ2 α1, α2

CP
(AL)

FQ BAY-J HPD-J BAY-U HPD-U BAY-
NGB

HPD-
NGB

50, 100 0.2, 0.2 7.00, 7.00 0.9723 0.9448 0.9447 0.9431 0.9465 0.9822 0.9823
(0.8419) (0.7190) (0.7066) (0.7296) (0.7159) (0.8958) (0.8735)

7.00, 7.50 0.9700 0.9441 0.9404 0.9434 0.9429 0.9809 0.9807
(0.7452) (0.6412) (0.6300) (0.6503) (0.6379) (0.7959) (0.7760)

7.50, 7.00 0.9750 0.9528 0.9505 0.9499 0.9531 0.9857 0.9832
(0.9235) (0.7996) (0.7869) (0.8093) (0.7954) (0.9911) (0.9675)

7.50, 7.50 0.9743 0.9532 0.9524 0.9503 0.9549 0.9843 0.9857
(0.8218) (0.7160) (0.7042) (0.7240) (0.7113) (0.8835) (0.8623)

0.5, 0.5 2.00, 2.00 0.9511 0.7965 0.8092 0.8201 0.8364 0.9548 0.9550
(1.8500) (1.1130) (1.0490) (1.2452) (1.1620) (1.8027) (1.6689)

2.00, 2.50 0.9529 0.8045 0.7980 0.8286 0.8354 0.9597 0.9509
(1.2170) (0.7311) (0.6876) (0.8217) (0.7651) (1.1809) (1.0969)

2.50, 2.00 0.9494 0.7868 0.7985 0.8093 0.8317 0.9515 0.9589
(2.4361) (1.4641) (1.3922) (1.6248) (1.5318) (2.3858) (2.2273)

2.50, 2.50 0.9564 0.7990 0.8009 0.8259 0.8338 0.9596 0.9584
(1.6124) (0.9668) (0.9177) (1.0792) (1.0155) (1.5698) (1.4699)

0.8, 0.8 1.25, 1.25 0.9585 0.8335 0.8642 0.8827 0.9191 0.9701 0.9687
(7.7112) (3.8873) (3.1102) (6.9755) (4.7917) (7.2172) (5.3521)

1.25, 1.50 0.9586 0.8444 0.8598 0.8885 0.9210 0.9707 0.9642
(5.4096) (2.7443) (2.1945) (4.9852) (3.4183) (5.0004) (3.7310)

1.50, 1.25 0.9583 0.8389 0.8723 0.8782 0.9251 0.9683 0.9734
(9.2636) (4.7883) (3.9429) (8.0576) (5.7833) (8.8128) (6.7038)

1.50, 1.50 0.9584 0.8428 0.8637 0.8847 0.9225 0.9708 0.9698
(6.4244) (3.3469) (2.7510) (5.6927) (4.0797) (6.0353) (4.6216)

100, 200 0.2, 0.2 7.00, 7.00 0.9726 0.9471 0.9469 0.9448 0.9474 0.9837 0.9828
(0.5701) (0.4950) (0.4901) (0.4972) (0.4922) (0.6133) (0.6047)

7.00, 7.50 0.9712 0.9477 0.9476 0.9453 0.9475 0.9832 0.9813
(0.5074) (0.4435) (0.4391) (0.4453) (0.4408) (0.5475) (0.5398)

7.50, 7.00 0.9741 0.9547 0.9551 0.9544 0.9544 0.9845 0.9850
(0.6277) (0.5523) (0.5472) (0.5541) (0.5489) (0.6803) (0.6711)

7.50, 7.50 0.9719 0.9535 0.9521 0.9511 0.9530 0.9849 0.9839
(0.5578) (0.4943) (0.4897) (0.4958) (0.4911) (0.6065) (0.5983)

0.5, 0.5 2.00, 2.00 0.9528 0.7967 0.7992 0.8076 0.8126 0.9565 0.9553
(1.1466) (0.7116) (0.6903) (0.7464) (0.7228) (1.1408) (1.0965)

2.00, 2.50 0.9510 0.7922 0.7890 0.8073 0.8071 0.9553 0.9469
(0.7627) (0.4719) (0.4571) (0.4964) (0.4800) (0.7566) (0.7288)

2.50, 2.00 0.9508 0.7853 0.7953 0.7988 0.8084 0.9541 0.9584
(1.5382) (0.9498) (0.9258) (0.9938) (0.9668) (1.5336) (1.4799)

2.50, 2.50 0.9528 0.7896 0.7911 0.8018 0.8060 0.9574 0.9557
(1.0160) (0.6249) (0.6084) (0.6556) (0.6371) (1.0104) (0.9772)

0.8, 0.8 1.25, 1.25 0.9558 0.8257 0.8417 0.8491 0.8706 0.9661 0.9645
(3.0752) (1.8653) (1.6982) (2.1607) (1.9264) (3.0750) (2.6785)

1.25, 1.50 0.9582 0.8405 0.8464 0.8625 0.8798 0.9678 0.9601
(2.1497) (1.3110) (1.1934) (1.5267) (1.3603) (2.1382) (1.8719)

1.50, 1.25 0.9587 0.8350 0.8555 0.8563 0.8855 0.9684 0.9725
(3.8343) (2.3578) (2.1723) (2.6898) (2.4330) (3.8684) (3.4072)

1.50, 1.50 0.9614 0.8415 0.8575 0.8601 0.8875 0.9711 0.9711
(2.6930) (1.6670) (1.5355) (1.9107) (1.7274) (2.7070) (2.3962)

The CPs greater than the nominal confidence level of 0.95 be in bold and the shortest AL be in italic.
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Figure 1. Line graphs of the CPs of the methods in the simulated scenario with different sample sizes.

Figure 2. Line graphs of the ALs of the methods in the simulated scenario with different sample sizes.
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Figure 3. Line graphs of the CPs of the methods in the simulated scenario with different probabilities
of zero values.

Figure 4. Line graphs of the ALs of the methods in the simulated scenario with different probabilities
of zero values.

4. Application of the Methods with Real Data

The performances of confidence interval methods were compared by analyzing rain-
fall data reported by the Upper Northern Region Irrigation Hydrology Center, Phrae
province, Thailand.
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4.1. Application of the Ratio of Variances of Two Delta-Gamma Distributions with Equal
Sample Sizes

For n1 = n2, we used monthly rainfall data from January and February 1980 to 2021
in Song district, Phrae province, Thailand. The densities of the rainfall data are shown in
Figure 5.

First, we attempted to fit the positive rainfall data using four models normal, lognor-
mal, Cauchy, and gamma by using the Akaike information criterion (AIC), the results of
which are reported in Table 3; the lowest AIC value was obtained by fitting with the gamma
distribution, which is thus the most suitable distribution. Q-Q plots of positive rainfall data
are shown in Figure 6.

Table 3. AIC results of positive rainfall data.

Rainfall Station Normal Lognormal Cauchy Gamma

Song (January) 198.35 178.43 198.48 175.61

Song (February) 205.29 183.56 198.98 178.75

Rong Kwang
(January) 158.92 145.36 164.03 143.15

Rong Kwang
(February) 216.35 196.28 211.51 195.57

The summary statistics for the rainfall in the February dataset from the Song station,
x1 = 16.9478, n1 = 42, n1,(1) = 23, n1,(0) = 19, while the maximum likelihood estimators for
δ1, α1, β1, and τ1 are δ̂1 = 0.45, α̂1 = 0.6242, β̂1 = 27.1507, and τ̂1 = 323.1406, respectively.
Similarly, the summary statistics for the rainfall in the January dataset from the Song
station are x2 = 23.1142, n2 = 42, n2,(1) = 21, n2,(0) = 21, while the maximum likelihood
estimators for δ2, α2, β2, and τ2 are δ̂2 = 0.5, α̂2 = 0.5666, β̂2 = 40.7940, and τ̂2 = 605.0296
are respectively. The 95% two-sided confidence intervals results for θ reported in Table 4
indicate that the AL provided by HPD-U was the shortest, and thus it is the best approach
for constructing the confidence interval for the ratio of the variances of two rainfall datasets
with equal sample sizes from the Rong Kwang district, Phrae province, Thailand.

Figure 5. The densities of the rainfall data from Song district station, Phrae province, Thailand, for
(a) January and (b) February from 1980–2021.
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Figure 6. Q-Q plots for distribution fitting of the positive rainfall data from the Song district station,
Phrae province, Thailand, for (a) January and (b) February from 1980–2021.

Table 4. The 95% two-sided confidence intervals for the ratio of variances of rainfall datasets from
Song district, Phrae province, Thailand.

Methods
Confidence Intervals for θ

Length of Intervals
Lower Upper

FQ 0.0011 5.5189 5.5178

BAY-J 0.1374 0.1790 0.0416

HPD-J 0.1366 0.1776 0.0410

BAY-U 0.1399 0.1800 0.0401

HPD-U 0.1395 0.1790 0.0395

BAY-NGB 0.1386 0.1791 0.0405

HPD-NGB 0.1384 0.1788 0.0404

4.2. Application of Variances of Two Delta-Gamma Distributions with Unequal Sample Sizes

For n1 6= n2, we used monthly rainfall data in January from 1969 to 2021 and February
1953 to 2021 in Rong Kwang district, Phrae province, Thailand. The densities of the rainfall
data are shown in Figure 7.

Fitting of the positive rainfall data was attempted with four models: normal, lognor-
mal, Cauchy, and gamma, the AIC values for which are reported in Table 3. The results
show that the gamma distribution is the best fit. Q-Q plots of positive rainfall data are
shown in Figure 8.

The summary statistics for the rainfall in the February dataset from the Rong Kwang
station, x1 = 19.9666, n1 = 65, n1,(1) = 24, n1,(0) = 41, while the maximum likelihood
estimators for δ1, α1, β1, and τ1 are δ̂1 = 0.63, α̂1 = 0.9649, β̂1 = 20.6922, and τ̂1 = 245.3991,
respectively. Similarly, the summary statistics for the rainfall in the January dataset from the
Rong Kwang station as x2 = 22.9294, n2 = 50, n2,(1) = 17, n2,(0) = 33, while the maximum
likelihood estimators for δ2, α2, β2, and τ2 are δ̂2 = 0.66, α̂2 = 0.6001, β̂2 = 38.2077, and
τ̂2 = 415.8480 are respectively. The 95% two-sided confidence intervals results for θ
reported in Table 5 indicate that the AL provided by HPD-J was the shortest, and thus
it is the best approach for constructing the confidence interval for the ratio of variances
of two rainfall datasets with unequal sample sizes from the Rong Kwang district, Phrae
province, Thailand.
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Figure 7. The densities of the rainfall data from Rong Kwang district station, Phrae province, Thailand,
for (a) January from 1969–2021 and (b) February from 1953–2021.

Figure 8. Q-Q plots for distribution fitting of the positive rainfall data from the Rong Kwang district
station, Phrae province, Thailand, for (a) January from 1969–2021 and (b) February from 1953–2021.

Table 5. The 95% two-sided confidence intervals for the ratio of variances of rainfall datasets from
Rong Kwang district, Phrae province, Thailand.

Methods
Confidence Intervals for θ

Length of Intervals
Lower Upper

FQ 0.0023 18.8012 18.7989

BAY-J 0.3574 0.5822 0.2248

HPD-J 0.3483 0.5685 0.2202

BAY-U 0.3534 0.5904 0.2370

HPD-U 0.3420 0.5715 0.2295

BAY-NGB 0.3597 0.5924 0.2327

HPD-NGB 0.3511 0.5757 0.2246
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5. Conclusions

We constructed the confidence interval for the ratio of the variances of two delta-
gamma distributions by using the FQ, BAY-J, HPD-J, BAY-U, HPD-U, BAY-NGB, and
HPD-NGB approaches. The CPs and ALs as performance measures for the methods
were assessed via Monte Carlo simulation. Our findings show that for small and large δ,
HPD-J and HPD-NGB can be recommended for constructing the confidence interval for
this scenario. Maybe other priors are more effective. Therefore, choosing priors is very
important in the Bayesian method.
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