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Abstract: We define a surface that interpolates the ballot numbers in the Catalan triangle correspond-
ing to every pair of nonnegative integers (except for the origin). We study the geometric properties
of this surface and prove that it contains exactly five half-lines. The mean curvature and the Gauss
curvature of the surface are also calculated.
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1. Introduction: Catalan Numbers and Catalan Triangle

The Catalan numbers are one of the most well-known sequences of positive integers,
being comparable with Fibonacci or Lucas numbers. Richard Stanley [1] collected 214 com-
binatorial interpretations of Catalan numbers, illustrating their ubiquity. The book also
contains a history of the multiple (re)discoveries of Catalan numbers (Appendix B of [1],
written by Igor Pak).

The most important combinatorial interpretations of Catalan numbers are synthesised
by the following theorem ([1] Theorem 1.5.1):

Theorem 1. The Catalan number Cn counts the following :

(i) Triangulations of a convex polygon with n + 2 vertices.
(ii) Binary trees with n vertices.
(iii) Plane trees with n + 1 vertices.
(iv) Bracketings of a string of n + 1 x’s subject to a nonassociative binary operation.
(v) Ballot sequences of length 2n.
(vi) Dyck paths of length 2n.

The mathematical expression of these magnificent numbers (deeply connected to the
binomial coefficients) is (see [2]):

Cn =
1

n + 1

(
2n
n

)
, (1)

or, equivalently,

Cn =
(2n)!

n!(n + 1)!
=

(
2n
n

)
−
(

2n
n− 1

)
. (2)

The Catalan numbers are closely related to the ballot numbers[3]. These numbers occur
in the solution of the ballot problem, which can be formulated as follows: two candidates
P and Q receive in an election p and q votes, respectively; supposing that P wins (p > q),
what is the probability that P stays (strictly) ahead of Q during the counting of votes? The
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solution was given by J. Bertrand in 1887 [4] and was also found by D. André using the
reflection principle [5] and reformulating the problem in terms of lattice paths: a counting of
votes such that P stays (strictly) ahead of Q corresponds to a lattice path from (0, 0) to (p, q)
with steps (1, 0) and (0, 1), staying under the line y = x (and never touching it, except
for (0, 0)). It can be proved (see [6]) that among the (p+q

p ) possible lattice paths (ways of

counting the votes), there are exactly p−q
p+q (

p+q
p ) that satisfy this condition, which means that

the required probability is p−q
p+q . The numbers

B(p, q) =
p− q
p + q

(
p + q

p

)
(3)

are called ballot numbers.
If the equality of votes is admitted (and in this case we have p ≥ q), then the number

of possible ways of counting is

B(p + 1, q) =
p− q + 1

p + 1

(
p + q

p

)
.

A ballot sequence of length 2n is a sequence of n 1’s and n −1’s, such that every partial
sum is nonnegative. From the relation above, we obtain that the number of ballot sequences
of length 2n is the Catalan number Cn:

B(n + 1, n) =
1

n + 1

(
2n
n

)
= Cn.

If we write the numbers B(p, q), for every p = 1, 2, . . . and q = 0, 1, . . . , p, we obtain a
triangle where the sequence of Catalan numbers appears twice (see (4)).

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

...
. . .

(4)

This triangle is known as the Catalan triangle, being recorded as the sequence A009766
in the On-line Encyclopedia of Integer Sequences [7]. It is not the only triangular ar-
rangement of integers known as “Catalan triangle”. Another famous example is the one
introduced by Shapiro in [8]. Although there are several triangles known as the “Catalan tri-
angle” (see, for instance, [9]), this one consisting of the ballot numbers is “the most-standing
form” [10].

In the next section, we use the gamma function to extend the Catalan triangle (4) to a
continuous surface explicitly defined by a function z = z(x, y). As we know, such a surface
related to a Catalan triangle has not been considered until now.

2. The Surface Associated to the Catalan Triangle

The Pascal surface, which extends the Pascal triangle to real (positive) numbers is
defined by the function

w(x, y) =
Γ(x + y + 1)

Γ(x + 1)Γ(y + 1)
. (5)
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The geometric properties of this surface are studied in [11], while [12] highlights the
relation between the Pascal surface and the coefficients of the reliability polynomials of
some networks.

In this paper, we study the surface (S) associated to the Catalan triangle (4), defined
in the three-dimensional Euclidean space by the immersion

(S) : f (x, y) = (x, y, z(x, y)),

where

z(x, y) =
(x− y)Γ(x + y)

Γ(x + 1)Γ(y + 1)
=

x− y
x + y

· w(x, y) (6)

is defined for every (x, y) ∈ [0, ∞) × [0, ∞) − {(0, 0)}. If x and y are nonnegative inte-
gers, then z(x, y) = x−y

x+y (
x+y

x ), which are exactly the numbers in the Catalan triangle (4),
completed (for x ≤ y) to an (infinite) antisymmetric matrix:

∗ −1 −1 −1 −1 −1 −1 −1 −1 . . .
1 0 −1 −2 −3 −4 −5 −6 −7 . . .
1 1 0 −2 −5 −9 −14 −20 −27 . . .
1 2 2 0 −5 −14 −28 −48 −75 . . .
1 3 5 5 0 −14 −42 −90 −165 . . .
1 4 9 14 14 0 −42 −132 −297 . . .
1 5 14 28 42 42 0 −132 −429 . . .
1 6 20 48 90 132 132 0 −429 . . .
1 7 27 75 165 297 429 429 0 . . .
...

...
...

...
...

...
...

...
...

. . .

(7)

We remark that
lim
x→0

z(x, 0) = 1, and lim
y→0

z(0, y) = −1,

so the limit lim
(x,y)→(0,0)

z(x, y) does not exist.

The surface explicitly defined by z = z(x, y), as well as the Pascal surface defined by
z = w(x, y) are represented in Figure 1.

(a)
(b)

Figure 1. (a) Pascal surface; (b) the surface associated to the Catalan triangle (4).



Axioms 2022, 11, 685 4 of 10

The function z(x, y) can be also written as

z(x, y) =
Γ(x + y)

Γ(x)Γ(y + 1)
− Γ(x + y)

Γ(x + 1)Γ(y)
= w(x− 1, y)− w(x, y− 1).

First of all, since
z(y, x) = −z(x, y),

we notice the symmetry of the surface with respect to the straight line

L1 : x = y, z = 0.

We also remark that for x = y + 1 and x = y + 2, respectively, where y = n ∈ N, the
Catalan numbers are obtained. Thus, we have:

z(n + 1, n) = Cn, z(n + 2, n) = Cn+1

and
z(n, n + 1) = −Cn, z(n, n + 2) = −Cn+1.

These points are represented in Figure 2.

Figure 2. The points corresponding to Catalan numbers Cn (the blue ones) and negative Catalan
numbers −Cn (the green ones); the (red) lines L1, . . . , L5 contained in the surface (S).

It is easy to see that, besides the axis of symmetry L1, the surface contains four more
straight lines (see Figure 2):

L2 : y = 0, z = 1

L3 : y = 1, z = x− 1

L4 : x = 0, z = −1

L5 : x = 1, z = 1− y

Theorem 2. The lines Li, i = 1, . . . , 5 are the only straight lines contained in the surface (S).
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Proof. First, we prove that the intersection of the immersed surface (S) with a plane y = k
(where k ≥ 0 is a constant) is a straight line if and only if k = 0 or k = 1. Thus, for k = 0
and k = 1, the straight lines L2 and L3, respectively, are obtained.

Suppose that y = k > 0, k 6= 1. Then, for every x ≥ 0 we have:

z(x, k) =
(x− k)Γ(x + k)

Γ(x + 1)Γ(k + 1)
,

hence z(0, k) = −1 and z(1, k) = 1− k. The straight line defined by the points (0, k,−1)
and (1, k, 1− k) is

y = k, z = (2− k)x− 1.

Since z(k, k) = 0 and k 6= 1, it follows that the surface (S) does not contain this line.
Similarly, L3 and L4 are the only straight lines obtained by intersecting the surface (S)

with planes of the form x = k (L3 is obtained for k = 0 and L4, for k = 1).
Now, let us suppose that

y = αx + β,

with α 6= 0, defines a straight line on the surface (S). We prove that, if β = 0, then α = 1
(and so the line L1 is obtained). For every x > 0, we have:

z(x, αx) =
(1− α)Γ(αx + x)

Γ(x)Γ(αx + 1)
. (8)

Writing (8) for x = 1, 2, 3, we obtain the following points:

(1, α, 1− α), (2, 2α, (1− α)(1 + 2α)),
(

3, 3α,
1
2
(1− α)(1 + 3α)(2 + 3α)

)
.

The only positive value of α for which the points are collinear is α = 1.
Now, suppose that α > 0 and β > 0. We have:

z(x, αx + β) =
((1− α)x− β)Γ((α + 1)x + β)

Γ(x + 1)Γ(αx + β + 1)
. (9)

Taking x = 0, x = 1 and x = 2 in Equation (9), we obtain the points:

(0, β,−1), (1, α + β, 1− α− β) and
(

2, 2α + β,
1
2
(2− 2α− β)(1 + 2α + β)

)
.

The straight line determined by the first two points is defined by:

y = αx + β, z = (2− α− β)x− 1. (10)

The third point is on this line if and only if the following condition is fulfilled:

(2− 2α− β)(1 + 2α + β) = 2(3− 2α− 2β),

or, equivalently,
β2 + (4α− 5)β + 4α2 − 6α + 4 = 0. (11)

This equation has real solutions if and only α ≤ 9
16 .

We know that z(x, x) = 0 on the surface (S). Since on line (10)

x = y ⇔ x =
β

1− α
,

it follows that a necessary condition for line (10) to be contained in (S) is
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(2− α− β)
β

1− α
− 1 = 0,

or, equivalently,
(β− 1)(α + β + 1) = 0.

If α + β = 1 then (11) becomes α2 + α = 0, an equation with no positive solutions.
In the other case, if β = 1, then we obtain from (11) that α = 1

2 , so the equations of line
(10) are written:

y = 1
2 x + 1, z = 1

2 x− 1. (12)

It can be easily verified that line (12) is not contained in the surface (S), although they have
three common points.

If, in the equation y = αx + β, we have α > 0 and β < 0, then we can write

x =
1
α

y− β

α

and, from the reasoning above, we obtain that no such line is contained into (S).
Finally, we consider the case when α < 0 and β > 0. Since y = αx + β ≥ 0, we obtain

that x ∈
[
0,− β

α

]
. The straight line determined by the points

(0, β,−1) and
(
− β

α
, 0, 1

)
has the equations:

y = αx + β, z = −2α

β
x− 1, (13)

and, from the condition z(x, x) = 0, we obtain that α = −1, so Equations (13) are written

y = −x + β, z =
2
β

x− 1.

We should have

z(x,−x + β) = (2x− β)
Γ(β)

Γ(x + 1)Γ(−x + β + 1)
=

2x− β

β
,

for any x ∈ [0, β]. Thus, we obtain that

Γ(x + 1)Γ(−x + β + 1) = Γ(β + 1)

for every x ∈ [0, β], x 6= β/2, which is not possible.
Hence, the only straight lines on the surface (S) are Li, i = 1, . . . , 5.

At the end of this section, we prove the following result regarding the cross section
of the surface associated to the Catalan triangle with planes of the form x = n ∈ N and
y = n ∈ N, respectively.

Proposition 1. The curves of the intersection of surface (6) with planes of the form x = n ∈ N or
y = n ∈ N are the polynomials of degree n.

Proof. Suppose that y = n ∈ N. Then,

z(x, n) = (x− n) · Γ(x + n)
Γ(x + 1)Γ(n + 1)

=
1
n!
(x− n)(x + n− 1)(x + n− 2) . . . (x + 1),

which is a polynomial of degree n. The case x = n ∈ N can be treated similarly.
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3. Geometric Properties of the Surface Associated to the Catalan Triangle

We use the digamma function ψ, which is defined as the logarithmic derivative of the
gamma function (see [13]):

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

.

For formulas on the geometry of surfaces, we refer the reader to [14,15].
We have:

∂z
∂x

= z(x, y)
(

ψ(x + y)− ψ(x + 1) +
1

x− y

)
,

∂z
∂y

= z(x, y)
(

ψ(x + y)− ψ(y + 1) +
1

y− x

)
.

The coefficients of the first fundamental form are given by

g11 =

〈
∂ f
∂x

,
∂ f
∂x

〉
, g12 =

〈
∂ f
∂x

,
∂ f
∂y

〉
, g22 =

〈
∂ f
∂y

,
∂ f
∂y

〉
,

hence

g11 = 1 + z2(x, y)
(

ψ(x + y)− ψ(x + 1) +
1

x− y

)2
,

g12 = z2(x, y)
(

ψ(x + y)− ψ(x + 1) +
1

x− y

)(
ψ(x + y)− ψ(y + 1) +

1
y− x

)
,

g22 = 1 + z2(x, y)
(

ψ(x + y)− ψ(y + 1) +
1

y− x

)2
.

Using these formulas, we determine

det g = g11g22 − g2
12 = 1 +

(
∂z
∂x

)2
+

(
∂z
∂y

)2

= 1 + z2(x, y)

[(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
+

(
ψ(x + y)− ψ(y + 1) +

1
y− x

)2
]

.

The unit normal vector n to the surface is given by

n =
1√

det g
∂ f
∂x
× ∂ f

∂y
=

1√
det g

(
− ∂z

∂x
,− ∂z

∂y
, 1
)

.

By straightforward differentiation we obtain:

∂2z
∂x2 = z(x, y)

[(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
+ ψ′(x + y)− ψ′(x + 1)− 1

(x− y)2

]
,

∂2z
∂y2 = z(x, y)

[(
ψ(x + y)− ψ(y + 1) +

1
y− x

)2
+ ψ′(x + y)− ψ′(y + 1)− 1

(y− x)2

]
,

∂2z
∂x∂y

= z(x, y)
[(

ψ(x + y)− ψ(x + 1) +
1

x− y

)(
ψ(x + y)− ψ(y + 1) +

1
y− x

)
+ ψ′(x + y) +

1
(x− y)2

]
It follows that the coefficients of the second fundamental form,
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h11 =

〈
∂2 f
∂x2 , n

〉
, h22 =

〈
∂2 f
∂y2 , n

〉
, h12 =

〈
∂2 f

∂x∂y
, n
〉

are given by the formulas:

h11 =
z(x, y)√

det g

[(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
+ ψ′(x + y)− ψ′(x + 1)− 1

(x− y)2

]
,

h22 =
z(x, y)√

det g

[(
ψ(x + y)− ψ(y + 1) +

1
y− x

)2
+ ψ′(x + y)− ψ′(y + 1)− 1

(x− y)2

]
,

h12 =
z(x, y)√

det g

[(
ψ(x + y)− ψ(x + 1) +

1
x− y

)(
ψ(x + y)− ψ(y + 1) +

1
y− x

)
+ ψ′(x + y) +

1
(x− y)2

]
.

Now, we can compute the mean curvature H, the main extrinsic invariant of the
surface (S), and the Gauss curvature G, the main intrinsic invariant, respectively:

H(x, y) =
g22h11 − 2g12h12 + g11h22

2 det g

=
z(x, y)

2(det g)3/2

{(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
+

(
ψ(x + y)− ψ(y + 1) +

1
y− x

)2

+ 2ψ′(x + y)− ψ′(x + 1)− ψ′(y + 1)− 2
(x− y)2

+ z2(x, y)

[
ψ′(x + y)

(
ψ(x + 1)− ψ(y + 1)− 2

x− y

)2
− 1

(x− y)2

(
2ψ(x + y)− ψ(x + 1)− ψ(y + 1)

)2

−ψ′(x + 1)
(

ψ(x + y)− ψ(y + 1) +
1

y− x

)2
− ψ′(y + 1)

(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
]}

.

G(x, y) =
h11h22 − h2

12
det g

=
z2(x, y)
(det g)2

{
ψ′(x + y)

[(
ψ(x + 1)− ψ(y + 1)− 2

x− y

)2
− 4

(x− y)2

]

− 1
(x− y)2

(
2ψ(x + y)− ψ(x + 1)− ψ(y + 1)

)2
−
(

ψ′(x + y)− 1
(x− y)2

)(
ψ′(x + 1) + ψ′(y + 1)

)
−ψ′(x + 1)

(
ψ(x + y)− ψ(y + 1) +

1
y− x

)2
− ψ′(y + 1)

(
ψ(x + y)− ψ(x + 1) +

1
x− y

)2
}

.

Remark 1. If z(x, y) is an antisymmetric function, that is,

z(y, x) = −z(x, y),

then the surface explicitly defined by z = z(x, y) has the mean curvature H(x, y) with the same
property,

H(y, x) = −H(x, y),

while the Gauss curvature G(x, y) is a symmetric function:

G(y, x) = G(x, y).

These properties can be easily observed in Figure 3, which presents the mean curvature
and the Gauss curvature of the surface (S).
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(a) (b)

Figure 3. (a) The mean curvature H(x, y); (b) the Gauss curvature G(x, y)

4. Conclusions

In our paper, we studied mainly the basic geometrical properties of the surface associ-
ated to the Catalan triangle (for example, we determined the main extrinsic and intrinsic
invariants of that surface, namely, the mean curvature and the Gauss curvature, and plotted
their visualizations). We intend to continue our work in the future, from a theoretical
point of view, as well as looking for applications, for instance in generalized Riemann
spaces. To our knowledge, such a surface related to a Catalan triangle, immersed into the
three-dimensional Euclidean space, has not been considered until now.
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12. Jianu, M.; Dăuş, L.; Nagy, M.; Beiu, R.M. Approximating the level curves on Pascal’s surface. Int. J. Comput. Commun. Control
2022, 17, 4865. [CrossRef]

13. Davis, P. Gamma function and related functions. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 10th ed.; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1972; pp. 258–259.

14. do Carmo, M. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976.
15. Struik, D.J. Lectures on Classical Differential Geometry, 2nd ed.; Dover Publications: New York, NY, USA, 1961.

http://dx.doi.org/10.15837/ijccc.2022.4.4865

	Introduction: Catalan Numbers and Catalan Triangle 
	The Surface Associated to the Catalan Triangle
	Geometric Properties of the Surface Associated to the Catalan Triangle
	Conclusions
	References

