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Abstract: Let C be a class of T1 topological semigroups, containing all Hausdorff zero-dimensional
topological semigroups. A semigroup X is C-closed if X is closed in any topological semigroup Y ∈ C
that contains X as a discrete subsemigroup; X is injectively C-closed if for any injective homomorphism
h : X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y. A semigroup X is
unipotent if it contains a unique idempotent. It is proven that a unipotent commutative semigroup
X is (injectively) C-closed if and only if X is bounded and nonsingular (and group-finite). This
characterization implies that for every injectively C-closed unipotent semigroup X, the center Z(X) is
injectively C-closed.

Keywords: C-closed semigroup; unipotent semigroup

1. Introduction and Main Results

In many cases, the completeness properties of various objects of general topology
or topological algebra can be characterized externally as closedness in ambient objects.
For example, a metric space X is complete if and only if X is closed in any metric space
containing X as a subspace. A uniform space X is complete if and only if X is closed in
any uniform space containing X as a uniform subspace. A topological group G is Raı̆kov
complete if and only if it is closed in any topological group containing G as a subgroup.

On the other hand, for topological semigroups there are no reasonable notions of
(inner) completeness. Nonetheless, one can define many completeness properties of semi-
groups via their closedness in ambient topological semigroups.

A topological semigroup is a topological space X endowed with a continuous associative
binary operation X× X → X, (x, y) 7→ xy.

Definition 1. Let C be a class of topological semigroups. A topological semigroup X is called

• C-closed if for any isomorphic topological embedding h : X → Y to a topological semigroup
Y ∈ C, the image h[X] is closed in Y;

• injectively C-closed if for any injective continuous homomorphism h : X → Y to a topological
semigroup Y ∈ C, the image h[X] is closed in Y;

• absolutely C-closed if for any continuous homomorphism h : X → Y to a topological
semigroup Y ∈ C, the image h[X] is closed in Y.

For any topological semigroup we have the implications:

absolutely C-closed⇒ injectively C-closed⇒ C-closed.

Definition 2. A semigroup X is defined to be (injectively, absolutely) C-closed if it is X endowed
with the discrete topology.
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In this paper, we are interested in the (absolute, injective) C-closedness for the classes:

• T1S of topological semigroups satisfying the separation axiom T1;
• T2S of Hausdorff topological semigroups;
• TzS of Hausdorff zero-dimensional topological semigroups.

A topological space satisfies the separation axiom T1 if all its finite subsets are closed.
A topological space is zero-dimensional if it has a base of the topology consisting of clopen
(= closed-and-open) sets.

Since TzS ⊆ T2S ⊆ T1S, for every semigroup the following implications hold:

absolutely T1S-closed +3

��

absolutely T2S-closed +3

��

absolutely TzS-closed

��
injectively T1S-closed +3

��

injectively T2S-closed +3

��

injectively TzS-closed

��
T1S-closed +3 T2S-closed +3 TzS-closed.

From now on, we assume that C is a class of topological semigroups such that

TzS ⊆ C ⊆ T1S.

Semigroups having one of the above closedness properties are called categorically
closed. Categorically closed topological groups and semilattices were investigated
in [1–11] and [12–15], respectively. This paper is a continuation of the papers [3,15,16],
which contain inner characterizations of semigroups possessing various categorically closed
properties.

In this paper we shall characterize (absolutely and injectively) C-closed unipotent
semigroups.

A semigroup X is called

• unipotent if X contains a unique idempotent;
• chain-finite if any infinite set I ⊆ X contains elements x, y ∈ I such that xy /∈ {x, y};
• singular if there exists an infinite set A ⊆ X such that AA is a singleton;
• periodic if for every x ∈ X there exists n ∈ N such that xn is an idempotent;
• bounded if there exists n ∈ N such that for every x ∈ X the n-th power xn is an

idempotent;
• group-finite if every subgroup of X is finite;
• group-bounded if every subgroup of X is bounded.

The following characterization of C-closed commutative semigroups was proved in
the paper [16].

Theorem 1. A commutative semigroup is C-closed if and only if it is chain-finite, periodic, nonsin-
gular and group-bounded.

For unipotent semigroups, this characterization can be simplified as follows:

Theorem 2. A unipotent semigroup X is C-closed if and only if X is bounded and nonsingular.

Another principal result of this paper is the following characterization of injectively
C-closed unipotent semigroups.

Theorem 3. A unipotent commutative semigroup X is injectively C-closed if and only if X is
bounded, nonsingular and group-finite.
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Example 1. For an infinite cardinal κ, the Taimanov semigroup Tκ is the set κ endowed with the
semigrop operation

xy =

{
1, if x 6= y and x, y ∈ κ \ {0, 1};
0, otherwise.

The semigroup Tκ was introduced by Taimanov in [17]. Its algebraic and topological properties
were investigated by Gutik [18] who proved that the semigroup Tκ is injectively T1S-closed. The
same also follows for Theorem 3 because the semigroup Tκ is unipotent, bounded, nonsingular and
group-finite. The Taimanov semigroups witness that there exist injectively T1S-closed unipotent
semigroups of arbitrarily high cardinality.

For a semigorup X, let

Z(X)
def
= {z ∈ X : ∀x ∈ X (xz = zx)}

be the center of X. The center of an (injectively) C-closed semigroup has the following
properties, proven in Lemmas 5.1, 5.3, 5.4 of [16] (and Theorem 1.7 of [19]).

Theorem 4. The center Z(X) of any (injectively) C-closed semigroup is chain-finite, periodic,
nonsingular (and group-finite).

Corollary 1. The center Z(X) of an injectively C-closed unipotent semigroup X is injectively
C-closed.

Proof. By Theorem 4, the semigroup Z(X) is chain-finite, periodic, nonsingular, and group-
finite. By Theorem 1, the semigroup Z(X) is C-closed. By Theorem 2, Z(X) is bouned. If
Z(X) is empty, then Z(X) is injectively C-closed. So, we assume that Z(X) 6= ∅. Being
bounded, the semigroup Z(X) contains an idempotent. Being a subsemigroup of the
unipotent semigroup X, the semigroup Z(X) is unipotent. By Theorem 3, the unipotent
bounded nonsingular group-finite semigroup Z(X) is injectively C-closed.

Another corollary of Theorem 3 describes the center of an absolutely C-closed unipo-
tent semigroup.

Corollary 2. The center Z(X) of an absolutely C-closed unipotent semigroup X is finite and hence
absolutely C-closed.

Proof. By Theorem 4, the semigroup Z(X) is chain-finite, periodic, nonsingular, and group-
finite. If Z(X) is empty, then Z(X) is finite and hence absolutely C-closed. So, we assume
that Z(X) is not empty. Being periodic, the semigroup Z(X) contains an idempotent e.
Since X is unipotent, e is a unique idempotent of the semigroups X and Z(X). Let He be
the maximal subgroup of the semigroup Z(X). The group He is finite because Z(X) is
group-finite. By Theorem 1.7 of [19], the complement Z(X) \ He is finite and hence the set
Z(X) is finite, too.

Corollaries 1 and 2 suggest the following open problems.

Problem 1.

1. Is the center of a C-closed semigroup C-closed?
2. Is the center of an injectively C-closed semigroup injectively C-closed?
3. Is the center of an absolutely C-closed semigroup absolutely C-closed?

2. Preliminaries

We denote by ω the set of finite ordinals and by N def
= ω \ {0} the set of positive integer

numbers.
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For an element a of a semigroup X the set

Ha
def
= {x ∈ X : (xX1 = aX1) ∧ (X1x = X1a)}

is called theH-class of a. Here X1 def
= X ∪ {1} where 1 is an element such that 1x = x = x1

for all x ∈ X1.
By Corollary 2.2.6 [20], for every idempotent e of a semigroup X itsH-class He coin-

cides with the maximal subgroup of X, containing the idempotent e.
For a subset A of a semigroup X and a positive integer number n, let

n√A = {x ∈ X : xn ∈ A} and N√A =
⋃

n∈N

n√A = {x ∈ X : A ∩ xN 6= ∅},

where
xN = {xn : n ∈ N}

is the monogenic semigroup generated by x.
The following lemma is proven in [16], 3.1.

Lemma 1. For any idempotent e of a semigroup, (N√He · He) ∪ (He · N
√

He ) ⊆ He.

3. Proof of Theorem 2

Theorem 2 will be derived from the following lemmas.

Lemma 2. Let X be a periodic commutative semigroup with a unique idempotent e and trivial
maximal subgroup He. If X is not bounded, then there exists an infinite subset A ⊆ X such that
AA = {e}.

Proof. To derive a contradiction, assume that X is not bounded but for every infinite set
A ⊆ X we have AA 6= {e}. Taking into account that X is periodic and unipotent, we
conclude that X = N√He. By Lemma 1, the maximal subgroup He = {e} is an ideal in X.

Inductively we shall construct a sequence of points (xk)k∈ω and a sequence of positive
integer numbers (nk)k∈ω such that for every k ∈ ω the following conditions are satisfied:

(i) xnk
k /∈ {e} ∪ {xni

i : i < k};
(ii) x2nk

k = e;
(iii) maxi<k |x

ni
i X| < nk.

To start the inductive construction, take any x0 ∈ X \ {e} and let n0 be the smallest
number such that xn0+1

0 = e. Such number n0 exists as X is periodic. Since {e} = He is an
ideal in X, it follows from xn0+1

0 = e and 2n0 ≥ n0 + 1 that x2n0
0 = e. Assume that for some

k ∈ N, we have chosen sequences (xi)i<k and (ni)i<k. For every i < k, consider the set xni
i X

and observe that for every a, b ∈ X the inductive condition (ii) implies

(xni
i a)(xni

i b) = x2ni
i ab = eab = e.

This means that (xni
i X)2 = {e} and by our assumption, the set xni

i X is finite. Since
X is unbounded, there exists an element xk ∈ X and a number mk > k + maxi<k |x

ni
i X|

such that xk+mk
k 6= e but x1+k+mk

k = e. Since the set {xj
k : mk ≤ j ≤ mk + k} consists of k + 1

points, there exist a number nk ∈ {mk, . . . , mk + k} such that xnk
k /∈ {xni

i : i < k}. It follows

from xk+mk
k 6= e = x1+k+mk

k and 2nk ≥ mk + mk ≥ 1 + k + mk > nk that xnk
k 6= e = x2nk

k .
This completes the inductive step.

After completing the inductive construction, consider the infinite set A = {xnk
k : k ∈

ω}. We claim that xni
i xnk

k = e for any i ≤ k. For i = k this follows from the inductive
condition (ii). So, assume that i < k. By the induction condition (iii) and the Pigeonhole
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Principle, there exist two positive numbers j < j′ ≤ |xni
i X|+ 1 ≤ nk such that xni

i xj
k = xni

i xj′

k .

Let d = j′ − j ≤ nk and observe that xni
i xj

k = xni
i xj+d

k . Then

xni
i xj+2d

k = xni
i xj+d

k xd
k = xni

i xj
kxd

k = xni
i xj+d

k = xni
i xj

k.

Proceeding by induction, we can prove that xni
i xj

k = xni
i xj+pd

k for every p ∈ ω. Since X

is periodic and {e} = He is an ideal in X, there exists p ∈ N such that xj+pd
k = e and hence

xni
i xj

k = xni
i xj+pd

k = e. Then, xni
i xnk

k = xni
i xj

kxnk−j
k = exnk−j

k = e and hence AA = {e}, which
contradicts our assumption.

Lemma 3. Let X be a periodic commutative semigroup with a unique idempotent e and bounded
maximal subgroup He. If X is not bounded, then there exists an infinite subset A ⊆ X such that
AA = {e}.

Proof. Since He is bounded, there exists a number p ∈ N such that xp = e for all x ∈ He.
Assuming that X is not bounded, we conclude that the subsemigroup P = {xp : x ∈ X} of
X is not bounded. We claim that P ∩ He = {e}. Indeed, for every x ∈ X with xp ∈ He, we
have xe ∈ He by Lemma 1 and hence xp = xpe = (xe)p = e. Since the maximal subgroup
of P is trivial, one can apply Lemma 2 and find an infinite set A ⊆ P ⊆ X such that
AA = {e}.

Our final lemma implies Theorem 2.

Lemma 4. For a unipotent commutative semigroup X, the following conditions are equivalent:

1. X is C-closed;
2. X is periodic, nonsingular and group-bounded;
3. X is bounded and not singular.

Proof. The equivalence (1) ⇔ (2) follows from Theorem 1, and (3) ⇒ (2) is trivial. The
implication (2)⇒ (3) follows from Lemma 3.

4. Proof of Theorem 3

In this section we prove Lemmas 5 and 6 implying the “only if” and “if” parts of the
characterization Theorem 3, respectively.

Lemma 5. If a unipotent semigroup X is injectively C-closed, then its center Z(X) is bounded,
nonsingular, and group-finite.

Proof. By Theorem 4, the semigroup Z(X) is periodic, nonsingular and group-finite. If
Z(X) is empty, then Z(X) is bounded. If Z(X) is not empty, then by the periodicity, Z(X)
contains an idempotent and hence is unipotent, being a subsemigroup of the unipotent
semigroup X. By Lemma 4, Z(X) is bounded.

Lemma 6. Every bounded nonsingular group-finite unipotent commutative subsemigroup X of a
T1 topological semigroup Y is closed and discrete in Y.

Proof. Replacing Y by the closure of X, we can assume that X is dense in Y.

Claim 1. For every x ∈ X and y ∈ Y there exists a neighborhood U ⊆ Y of y such that the set
x(U ∩ X) is finite.

Proof. To derive a contradiction, assume that there exists a ∈ X and y ∈ Y such that for
every neighborhood U ⊆ Y of y the set a(U ∩ X) is infinite. The periodicity of X ensures
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that X =
⋃
`∈N
√̀

He where
√̀

He = {x ∈ X : x` ∈ He} ⊆ `+1
√

He, see Lemma 1. This lemma
also implies that the set

1
√

He ·Y = HeY = HeX ⊆ HeX = He = He

is finite.
Let k be the largest number such that for every x ∈ k

√
He there exists a neighborhood

U ⊆ Y of y such that the set x(U ∩X) is finite. Since 1 ≤ k < min{` : a ∈
√̀

He}, the number
k is well-defined.

Subclaim 1. For every x ∈ k
√

He there exists a neighborhood V ⊆ Y of y such that the set xV is a
singleton in X.

Proof. By the choice of k, for every x ∈ k
√

He there exists a neighborhood U ⊆ Y of y such
that the set x(U ∩ X) is finite and hence closed in the T1-space Y. Then

xy ∈ xU ⊆ x(U ∩ X) ⊆ x(U ∩ X) = x(U ∩ X) ⊆ X.

Since the space Y is T1 there exists an open neighborhood W of xy such that W ∩
x(U ∩ X) = {xy}. By the continuity of the semigroup operation, the point y has an open
neighborhood V ⊆ U such that xV ⊆W. Then,

xV ⊆ xV ∩ X ⊆ x(V ∩ X) ⊆ xV ∩ x(U ∩ X) = {xy} = {xy} ⊆ X.

By the maximality of k, there exists b ∈ k+1
√

He such that for every neighborhood V ⊆ Y
of y the set b(V ∩ X) is infinite. It follows from b ∈ k+1

√
He that bk+1 ∈ He and hence

(b2)k = b2k = bk+1bk−1 ∈ HeX1 ⊆ He and hence b2 ∈ k
√

He. By Subclaim 1, there exists a
neighborhood U ⊆ Y of y such that the set b2U is a singleton in X. Choose any u ∈ U ∩ X.
By Lemma 1, (b2u)k = b2kuk ∈ HeX ⊆ He and b2y = b2u ∈ k

√
He. By Subclaim 1, there exists

a neighborhood V ⊆ U such that (b2y)V is a singleton in X. Then, the set A = b(V ∩ X) is
infinite but

AA ⊆ b2VV ⊆ b2UV = (b2y)V

is a singleton. However, this contradicts the nonsingularity of X.

Claim 2. For every x ∈ X and y ∈ Y there exists a neighborhood V ⊆ Y of y such that xV is a
singleton in X.

Proof. By Claim 1, there exists a neighborhood U ⊆ Y of y such that the set x(U ∩ X) is
finite and hence closed in the T1-space Y. Then,

xy ∈ xU ⊆ x(U ∩ X) ⊆ x(U ∩ X) = x(U ∩ X) ⊆ X.

Since the space Y is T1, there exists an open neighborhood W of xy such that W ∩
x(U ∩ X) = {xy}. By the continuity of the semigroup operation, the point y has an open
neighborhood V ⊆ U such that xV ⊆W. Then,

xV ⊆ xV ∩ X ⊆ x(V ∩ X) ⊆ xV ∩ x(U ∩ X) = {xy} = {xy} ⊆ X.

Claim 3. For every n ∈ N, x ∈ X and y ∈ Y, there exists a neighborhood V ⊆ Y of y such that
xVn is a singleton in X.
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Proof. For n = 1 the statement follows from Claim 2. Assume that for some n ∈ N we
know that for every x ∈ X and y ∈ Y there exists a neighborhood U ⊆ Y of y such that
xUn is a singleton {a} in X. By Claim 2, there exists a neighborhood V ⊆ U of y such that
aV is a singleton in X. Then xVn+1 ⊆ xVnV = aV is a singleton in X.

Claim 4. For every k ∈ N the subspace k
√

He = {x ∈ X : xk ∈ He} of Y is discrete.

Proof. To derive a contradiction, assume that for some k ∈ N the subspace k
√

He is not
discrete and let k be the smallest number with this property. Since 1

√
He = He is finite,

k > 1. Let y be a non-isolated point of k
√

He. It follows that yk ∈ He and (y2)k−1 = ykyk−2 ∈
HeX1 ⊆ He and hence y2 ∈ k−1

√
He. By the minimality of k, the space k−1

√
He is discrete. By

the continuity of the semigroup operation, there exists a neighborhood V0 ⊆ Y of y such
that V0V0 ∩ k−1

√
He = {y2}. By Claim 2, we can additionally assume that V0y = {y2}.

By induction we shall construct a sequence of points (xn)n∈ω in k
√

He and a decreasing
sequence (Vn)n∈ω of open sets in Y such that for every n ∈ ω the following conditions
are satisfied:

(i) xn ∈ Vn ∩ k
√

He \ {xi}i<n;
(ii) y ∈ Vn+1 ⊆ Vn and xnVn+1 = {y2}.

Assume that for some n ∈ ω we have chosen a neigborhood Vn of y and a sequence
of points {xi}i<n. Since y is a non-isolated point of k

√
He, there exists a point xn satisfying

the inductive condition (i). Observe that xny ∈ V0y = {y2}. By Claim 2, there exists a
neighborhood Vn+1 ⊆ Vn of y such that xnVn+1 = {xny} = {y2}. This completes the
inductive step.

After completing the inductive construction, we obtain the infinite set A def
= {xn}n∈ω ⊆

Xk such that AA = {y2}. However, this contradicts the nonsingularity of X.

Claim 5. For every k ∈ N the set k
√

He is closed in Y.

Proof. To derive a contradiction, assume that for some k the set k
√

He is not closed in Y. We
can assume that k is the smallest number with this property. Since 1

√
He = He is finite, k > 1

and hence {x2 : x ∈ k
√

He} ⊆ k−1
√

He. Fix any point y ∈ k
√

He \ k
√

He and observe that

y2 ∈ {x2 : x ∈ k
√

He} ⊆ k−1
√

He =
k−1
√

He ⊆ k
√

He,

see Lemma 1. By Claim 4, the space k
√

He is discrete. Consequently, there exists a neighbor-
hood U ⊆ Y of y such that UU ∩ k

√
He = {y2}. Since y ∈ k

√
He \ k
√

He, the set A = U ∩ k
√

He is
infinite and AA ⊆ UU ∩ k

√
He = {y2}, which contradicts the nonsingularity of X.

The boundedness of X implies that X = k
√

He for some k ∈ N. By Claims 4 and 5, the
set k
√

He = X is closed and discrete in Y.

5. Conclusions

This paper studies the categorical closedness properties of unipotent commutative
semigroups. The main results of our work are Theorem 2, characterizing C-closed unipotent
commutative semigroups, and Theorem 3, characterizing injectively C-closed unipotent
semigroups. Theorem 3 implies Corollary 1 (and Corollary 2), in that the center of an
injective (and absolutely) C-closed unipotent semigroup remains injectively (and absolutely)
C-closed. Since each periodic commutative semigroup decomposes into a disjoint union
of unipotent subsemigroups, the information on the categorical closedness properties
of unipotent semigroups can shed some light on the categorical closedness properties
of commutative semigroups and will be applied in our subsequent papers devoted to
studying categorically closed semigroups.
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