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Abstract: In this paper, appropriate least-squares methods were developed to operate in data fusion
scenarios. These methods generate optimal estimates by combining measurements from a finite
collection of samples. The aggregation operators of the average type, namely, ordered weighted aver-
aging (OWA), Choquet integral, and mixture operators, were applied to formulate the optimization
problem. Numerical examples about fitting curves to a given set of points are provided to show the
effectiveness of the proposed algorithms.
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1. Introduction

Several studies have been carried out on data science. Datasets play an important
role in several areas of knowledge, since information can be extracted from them. This
information can be used, for example, in decision making, product improvement, process
automation, and trend forecasting [1–3].

A number of methods and algorithms have been developed in the literature to extract
different information from datasets through mathematical and computational methods. In
general, these algorithms were developed to model datasets collected from a single source.
In this regard, few algorithms have been formulated to solve the problem in a data fusion
scenario, that is, in a scenario where data comes from different sources [4].

The least-squares method (LSM) is a widely used technique for data modeling based
on the minimization of a quadratic function [4–9]. LSM was initially conceived for modeling
data from a single source. In [4], an LSM was developed considering a data fusion situation
(LSM-DF), that is, a method considering data from different sources. LSM-DF was designed
for weighted data fusion.

From a mathematical point of view, the LSM-DF is based on a weighted average of the
length of residual vectors of the equations bk = Akx + vk with k = 1, 2, . . . , L, expressed by

L

∑
k=1
||vk||2Wk

=
L

∑
k=1

vT
k Wkvk

where Wk are the weights, that is, an aggregation of L values with their corresponding
weightings. Here, a very interesting question arises: is weighted averaging the best
method for aggregating the data in all scenarios? Within this context, the study of different
aggregation methods has recently gained prominence.

Aggregation operators constitute a subarea of fuzzy theory that has the characteristic
of combining finite datasets of the same nature into a single dataset [1,2,6,7,10–19]. These
operators are basically classified into three categories: mean, conjunctive, and disjunctive.
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Applications of these operators can be found in medical problems, image processing,
decision making, and engineering problems.

Wk weights are directly related to the ||vk||2 length of residual vectors. However, in
some situations, it would be interesting to dynamically allocate the weights to the Wk
weightings, putting more weight on the more important ||vk||2 values. Thus, considering
the above, the aggregation operators can be considered to bw a viable alternative to change
the behavior of LSM-DF.

This study seeks to optimally combine the least-squares method and the aggrega-
tion operators of the average type, more specifically, the ordered weighted averaging
(OWA) [3,20–22] Choquet integral, [23,24], and mixture [25,26] operators. Furthermore, the
aim of this study is to formulate and solve appropriate least-squares methods to model
finite collections of datasets of the same nature. An important goal of these algorithms is
to generate optimal estimates that aggregate data of different sources. This is necessary
for situations that involve systems that can operate under different failure conditions. A
numerical example is presented to show the effectiveness of the proposed algorithm.

This paper is organized as follows: in Section 2, preliminary results are related with
an admissible order for matrices, aggregation operators, and LSM. In Section 3, LSM-DF
via aggregation operators are deduced. In Section 4, a numerical example is shown.

2. Preliminaries

This section addresses topics that form the theoretical basis for the development
of LSM-DF via aggregation operators. Initially, the admissible order for matrices is dis-
cussed, followed by the aggregation operators of the average type and the classical least-
squares method.

2.1. Admissible Order for Matrices

In this section, we present the concept of admissible order for matrices based on [2,16,27].
This is a special way to consider total orders on the set of all matrices of order m× n with
scalar inR (set of real numbers) denoted byRm×n.

Let A, B ∈ Rm×n. It is clear that A ≤M B given by

A ≤M B if and only if aij ≤ bij, ∀i, j

is a partial order onRm×n.
Considering a matrix A ∈ Rm×n as a vector of columns, i.e., A = [A1, A2, . . . , An]

where Ai are the columns of A (i ∈ {1, 2, . . . , n}), then ≤ can be defined as

A ≤M B if and only if Ai ≤M Bi, ∀i ∈ {1, 2, . . . , n}.

One can extend that partial order for a total order by considering the concept of
admissible order as follows.

Definition 1. A total order 4 on Rm×n is admissible if, for each A, B ∈ Rm×n we have that
A 4 B whenever A ≤M B.

Example 1. Let be A and B column matrices onRm×1 and πi(A) = ai1 the projection on the i-th
line of A. Then,

A 4c B⇔ ∃k ∈ {1, 2, . . . , m} s.t. πk(A) < πk(B) and ∀i, 1 ≤ i < k, πi(A) = πi(B)

is an admissible order.
Therefore, one can generalize an admissible order on Rm×n by considering the following

definition: Let A, B ∈ Rm×n such that A = [A1, A2, . . . , An] and B = [B1, B2, . . . , Bn]. Then

A 4M B⇔ ∃k ∈ {1, 2, . . . , m} s.t. Ak 4c Bk and ∀i, 1 ≤ i < k, Ai = Bi
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is an admissible order onRm×n.

2.2. Aggregation Operators

Aggregation operators are numeric operators that combine multiple input values into
a single output value. In this data fusion process, operators aggregate data from different
sources to obtain a single unit of data from the conducted analysis. Next, the operators
used in this study are presented: OWA, Choquet integral, and mixture operators.

Definition 2 ([12]). (OWA operator) Providing an n- dimensional weight vector, that is, a
W = (w1, w2, . . . , wn) with ∑n

k=1 wk = 1, the OWAW : [0, 1]n → [0, 1] function is defined by

OWAW(x1, x2, . . . , xn) =
n

∑
k=1

wkx(k) (1)

where (x(1), x(2), . . . , x(n)) is the descending order of vector (x1, x2, . . . , xn) and is named an
ordered weighted average function.

Example 2. Defining the w = (w1, w2, . . . , wn) vector of weights, where wi = 0 and wk = 1, for
some fixed k ∈ {1, 2, . . . , n}. So OWAw(x) = xk is the so-called static OWA operator.

Remark 1. As one can see in Definition 2, the sum of all the weights in the OWA aggregation
results is 1 (∑n

k=1 wk = 1). If the weights are matrices, the sum is given by ∑L
k=1 ||Wk||1 = 1 where

|| • ||1 is the norm of the matrices given by

||A||1 = max1≤j≤s

r

∑
i=1
|aij|, where A ∈ Rrxs. (2)

Remark 2. The entries in the OWA aggregation must be sorted; if the entries are a matrix, an
ordering relation must be used over the setRmxn. So, we can consider an admissible order onRmxn

as defined in 1.

The next definition is the fuzzy discrete measure, a significant result for the definition
of the Choquet integral operator.

Definition 3 ([15]). A discrete fuzzy measure is a function µ : 2N → [0, 1] where N =
{ 1, 2, . . . , n} and 2N is the group of parts of N , such that:

• M1 : µ(X) ≤ µ(Y) when X ⊆ Y
• M2 : µ(∅) = 0 and µ(N ) = 1.

Definition 4 ([10]). (Choquet integral operator) µ : 2N → [0, 1] is a discrete fuzzy measure. The
discrete Choquet integral related to the measure µ is the function Cµ : [0, 1]n → [0, 1] defined by:

Cµ(x1, x2, . . . , xn) =
n

∑
k=1

x[k]
[
µ({j ∈ N : xj ≥ x[k]} )− µ({j ∈ N : xj ≥ x[k+1]} )

]
(3)

where (x[1], x[2], . . . , x[n]) = Sort(x1, x2, . . . , xn) is an ascending ordering of the vector
(x1, x2, . . . , xn) and x[n+1] = 2 by convention.

The Choquet integral operator can also be calculated with the following simplified
expression:

Cµ(x1, x2, . . . , xn) =
n

∑
k=1

[
x[k] − x[k−1]

]
µ(Gk) (4)

where x[0] = 0 and Gk = { [k], [k + 1], . . . , [n]} .
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Example 3. Considering fuzzy discrete measure

µ⊥(X) =

{
1, se X = N
0, otherwise.

Thus, the following Choquet integral can be defined by:

Cµ⊥(x1, x2, . . . , xn) = [x[1] − x[0]]µ⊥(G1) + · · ·+ [x[n] − x[n−1]]µ⊥(Gn).

µ⊥(G1) = 1 and µ⊥(Gi) = 0 for the other values of i; therefore, the result is
Cµ⊥(x1, x2, . . . , xn) = x[1] = min(x1, x2, . . . , xn).

Definition 5 ([15]). (Mixture Operator) w1, w2, . . . , wn : [0, 1]→ [0,+∞) are functions called
weight functions. The MIXw1,w2,...,wn : [0, 1]n → [0, 1] function is defined by:

MIXw1,w2,...,wn(x1, x2, . . . , xn) =
∑n

k=1 wk(xk).xk

∑n
k=1 wk(xk)

(5)

is called the mixture function associated with the weight functions w1, w2, . . . , wn.

Example 4. Defining

wi(xi) =

{ 1
n , se xi = 0
xi, otherwise.

For simplicity, consider n = 3. In this case, considering that

MIXw1,w2,w3(x1, x2, x3) =

{
0, se x1 = x2 = x3 = 0

x1
2+x2

2+x3
2

x1+x2+x3
, otherwise

is the mixture function determined by the wi weights defined above.

2.3. Least-Squares Method

LSM is a widely known and applied mathematical optimization method used to solve
several problems, including parameter estimation. This method consists of finding an
optimal solution to the problem by minimizing the square of a residual vector.

Considering the equation

b = Ax + v (6)

where x ∈ Rn×1 is an unknown vector, A ∈ RN×n is a known parameter matrix, b ∈ RN×1

is a known vector, and v ∈ RN×1 is a vector named residual.
The least-squares problem is to find a solution x̂ that minimizes the length of the

residual vector, that is, satisfying the following property:

||b− Ax̂||2 ≤ ||b− Ax||2 (7)

for all x ∈ Rn×1. The || • ||2 denotes the square of Euclidean norm

||v||2 = vTv. (8)

Therefore, the solution to the least-squares problem consists of solving the optimization
problem

minx J(x) (9)

where the functional cost J(x) is given by



Axioms 2022, 11, 678 5 of 16

J(x) = ||b− Ax||2

= (b− Ax)T(b− Ax). (10)

Theorem 1 ([4]). (Least-Squares Method) If matrix A has full rank, then there is a single optimal
solution x̂ for least-squares Problem (9) that is given by

x̂ =
[

AT A
]−1[

ATb
]
. (11)

Moreover, the resulting minimal value of the cost function can be written as

J(x̂) = bTb− bT A
(

AT A
)−1

ATb. (12)

3. LSM-DF via Aggregation Operators

In this section, LSM-DF is developed via aggregation operators. LSM-DF via an OWA
operator, LSM-DF via a Choquet integral operator, and LSM-DF via a mixture operator are
also presented. These LSM-DFs are an alternative to estimation problems in the case of
several datasources.

The next result is necessary to the proof of the LSM-DF via aggregation operators.

Lemma 1. If matrices Ak have full rank and matrix Wk is symmetric definite-positive with k =

1, 2, . . . , L, then ATWA where

A =


A1
A2
...

AL

, W =


W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL

 (13)

is nonsingular.

Proof. Let suppose that ATWA is singular; then, there must exist a nonzero vector λ, such
that ATWAλ = 0, which implies that λT ATWAλ = 0, i.e.,

λT


A1
A2
...

AL


T

W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL




A1
A2
...

AL

λ = 0 (14)

λT AT
1 W1 A1λ + λT AT

2 W2 A2λ + . . . + λT AT
LWL ALλ = 0 (15)

(15) can be rewritten as

||A1λ||2W1
+ ||A2λ||2W2

+ . . . + ||ALλ||2WL
= 0. (16)

|| • ||2W denotes the square of the weighted Euclidean norm

||v||2W = vTWv. (17)

As matrices Wk are symmetric definite-positive, it follows from (16) that ||Akλ||2Wk
= 0

so that Akλ = 0 with k = 1, 2, . . . , L. This, in turn, means that the columns of Ak are linearly
dependent. Hence, Ak is not full-rank.
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3.1. LSM-DF via OWA Operator

For the deduction of LSM-DF via OWA operator, the following equations should be
considered

b(k) = A(k)x + v(k), k = 1, 2, . . . , L (18)

where x ∈ Rn×1 is an unknown vector, A(k) ∈ RN×n known parameters arrays, b(k) ∈
RN×1 known vectors, and v(k) ∈ RN×1 vectors named residuals.

A solution to the least-squares problem via operator OWA x̂ must minimize the length
of the residual vector, that is, it must satisfy the following property:

L

∑
k=1
||b(k) − A(k) x̂||2Wk

≤
L

∑
k=1
||b(k) − A(k)x||2Wk

(19)

for all x ∈ Rn×1 and where Wk are a positive-definite symmetric matrices.
Optimal solution x̂ is found by solving the following minimization problem:

minxJOWA(x). (20)

Functional JOWA(x) can be defined as

JOWA(x) := OWAW

(
J1(x), J2(x), . . . , JL(x)

)
(21)

where W = (W1, W2, . . . , Wn) are weight matrices and

Jk(x) := ||v(k)||2

= ||b(k) − A(k)x||2, k = 1, 2, . . . , L. (22)

Therefore, by defining the OWA operator, Function (21) can be rewritten as

JOWA(x) :=
L

∑
k=1
||b(k) − A(k)x||2Wk

=
L

∑
k=1

(
b(k) − A(k)x

)T
Wk

(
b(k) − A(k)x

)
. (23)

The next theorem brings the solution to the least-squares problem via the OWA
operator in (20).

Theorem 2. (LSM-DF via OWA Operator) If matrices A(k) with k = 1, 2, . . . , L have full rank
and Wk are symmetric definite-positive matrices, then there is a unique optimal solution x̂ to the
least-squares problem via OWA operator (LSM-DF via OWA operator) that is given by:

x̂ =

[
L

∑
k=1

AT
(k)Wk A(k)

]−1[ L

∑
k=1

AT
(k)Wkb(k)

]
. (24)

The corresponding minimal value of JOWA(x) is

JOWA(x̂) =
L

∑
k=1

bT
(k)Wkb(k) −

L

∑
k=1

bT
(k)Wk A(k)

( L

∑
k=1

AT
(k)Wk A(k)

)−1 L

∑
k=1

AT
(k)Wkb(k). (25)

Proof. Consider the cost function

JOWA(x) =
L

∑
k=1

(
b(k) − A(k)x

)T
Wk

(
b(k) − A(k)x

)
(26)
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JOWA(x) =
(

b(1) − A(1)x
)T

W1

(
b(1) − A(1)x

)
+
(

b(2) − A(2)x
)T

W2

(
b(2) − A(2)x

)
+ . . .+

(
b(L) − A(L)x

)T
WL

(
b(L) − A(L)x

)
(27)

JOWA(x) =



(
b(1) − A(1)x

)(
b(2) − A(2)x

)
...(

b(L) − A(L)x
)



T
W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL




(
b(1) − A(1)x

)(
b(2) − A(2)x

)
...(

b(L) − A(L)x
)

 (28)

JOWA(x) =




b(1)
b(2)

...
b(L)

−


A(1)
A(2)

...
A(L)

x


T

W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL



×




b(1)
b(2)

...
b(L)

−


A(1)
A(2)

...
A(L)

x

 (29)

that can be rewritten in matrix form as

JOWA(x) =
(

b− Ax
)T

W
(

b− Ax
)

(30)

where

A =


A(1)
A(2)

...
A(L)

, b =


b(1)
b(2)

...
b(L)

, W =


W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL

. (31)

Entries (A(1), A(2), . . . , A(L)) and (b(1), b(2), . . . , b(L)) are descending orders of
(A1, A2, . . . , AL) and (b1, b2, . . . , bL), respectively. W is a diagonal positive-definite sym-
metric matrix with entries Wk.

To find the critical point in x, JOWA(x) must be differentiated and equal to zero

∂

∂x

[
xT ATWAx− xT ATWb− b

T
WAx + b

T
Wb
]
= 0

⇒ xT ATWA− b
T

WA = 0. (32)

Via Lemma 1, matrix ATWA is invertible. Therefore,

x̂ =
[

ATWA
]−1[

ATWb
]
. (33)

Replacing (31) into (33), the solution can be rewritten as

x̂ =

[
L

∑
k=1

AT
(k)Wk A(k)

]−1[ L

∑
k=1

AT
(k)Wkb(k)

]
. (34)
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In fact, for the Hermitian matrix to be defined as positive

∂2JOWA(x)
∂xT∂x

= ATWA =
L

∑
k=1

AT
(k)Wk A(k) > 0 (35)

JOWA(x) in (30) must be a strictly convex function; therefore, x̂ is a unique global
minimum.

The minimal cost JOWA(x̂) can be expressed as

JOWA(x̂) =
L

∑
k=1
||b(k) − A(k) x̂||2Wk

=
(

b− Ax̂
)T

W
(

b− Ax̂
)

= b
T

Wb− b
T

WAx̂− x̂T ATWb + x̂T ATWAx̂ (36)

Replacing (33) into (36) results in

JOWA(x̂) = b
T

Wb− b
T

WA
(

ATWA
)−1

ATWb. (37)

Replacing (31) into (37), the optimal cost can be rewritten as

JOWA(x̂) =
L

∑
k=1

bT
(k)Wkb(k) −

L

∑
k=1

bT
(k)Wk A(k)

( L

∑
k=1

AT
(k)Wk A(k)

)−1 L

∑
k=1

AT
(k)Wkb(k). (38)

Remark 3. Applying k = 1 in Theorem (2), the LSM-DF via OWA operator reduces to the classical
LSM in Theorem (1).

3.2. LSM-DF via Choquet Integral Operator

The deduction of the LSM-DF via the Choquet integral operator follows from the
equations

b[k] = A[k]x + v[k], k = 1, 2, . . . , L (39)

where x ∈ Rn×1 is an unknown vector, A[k] ∈ RN×n known parameters matrices, b[k] ∈
RN×1 known vectors, and v[k] ∈ RN×1 vectors named residuals.

A solution to the least-squares problem via the Choquet integral operator x̂ must
minimize the length of the residual vector, that is, it must satisfy the following property:

L

∑
k=1
||b[k] − A[k] x̂||2Iµ(Gk)

≤
L

∑
k=1
||b[k] − A[k]x||2Iµ(Gk)

(40)

for all x ∈Rn×1 and where Iµ(Gk) is a matrix identity multiplied by discrete fuzzy measure.
The optimal solution x̂ is found by solving the following minimization problem:

minxJCµ
(x) (41)

Functional JCµ
(x) can be defined as

JCµ
(x) := Cµ

(
J1(x), J2(x), . . . , JL(x)

)
(42)
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where

Jk(x) := ||v[k] − v[k−1]||2

= ||(b[k] − A[k]x)− (b[k−1] − A[k−1]x)||2

= ||
(

b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x||2, k = 1, 2, . . . , L. (43)

Therefore, by defining the Choquet integral operator, Function (42) can be rewritten as

JCµ
(x) :=

L

∑
k=1
||
(

b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x||2Iµ(Gk)

=
L

∑
k=1

[(
b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x
]T

Iµ(Gk)

•
[(

b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x
]
. (44)

where Iµ(Gk) is a positive-definite symmetric matrix.
The next theorem brings the solution to the least-squares problem via the Choquet

integral operator in (41).

Theorem 3. (LSM-DF via Choquet Integral Operator) If the A[k] − A[k−1] matrices with k =
1, 2, . . . , L have a full rank and Iµ(Gk) are symmetric definite-positive matrices, then there is a
single optimal solution x̂ for the least-squares problem via Choquet integral operator (LSM-DF via
Choquet integral operator) that is given by:

x̂ =

[
L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

)]−1

•
[

L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)]
. (45)

The corresponding minimal value of JCµ
(x) is

JCµ
(x̂) =

L

∑
k=1

(
b[k] − b[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)
−

L

∑
k=1

(
b[k] − b[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

)
•

( L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

))−1

•
L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)
. (46)

Proof. Consider functional cost

JCµ
(x) =

L

∑
k=1

[(
b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x
]T

Iµ(Gk)

•
[(

b[k] − b[k−1]

)
−
(

A[k] − A[k−1]

)
x
]

(47)

Using the matrices, this can be rewritten as

JCµ
(x) =

(
b′ − A′x

)TW ′
(
b′ − A′x

)
(48)

where
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A′ =


A[1] − A[0]
A[2] − A[1]

...
A[L] − A[L−1]

, b′ =


b[1] − b[0]
b[2] − b[1]

...
b[L] − b[L−1]

,

W ′ =


Iµ(G1) 0 . . . 0

0 Iµ(G2) . . . 0
...

... . . .
...

0 0 . . . Iµ(GL)

. (49)

Entries (A[1], A[2], . . . , A[L]), and (b[1], b[2], . . . , b[L]) are ascending orders of
(A1, A2, . . . , AL), and (b1, b2, . . . , bL), respectively. W ′ is a diagonal symmetric definite-
positive matrix with entries Iµ(Gk).

On the basis of Function (48) and the solution of LSM-DF via the OWA operator
presented in Theorem (2), the solution to Optimization Problem (41) is given by

x̂ =
[

A′TW ′A′
]−1[

A′TW ′b′
]
. (50)

which, through Matrices (49), can be rewritten as

x̂ =

[
L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

)]−1

•
[

L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)]
. (51)

Similar to the procedure performed in Theorem (2), the minimal cost JCµ
(x̂) can be

expressed as

JCµ
(x̂) = b′TW ′b′ − b′TW ′A′

(
A′TW ′A′

)−1
A′TW ′b′. (52)

Replacing (49) into (52), the optimal cost can be rewritten as

JCµ
(x̂) =

L

∑
k=1

(
b[k] − b[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)
−

L

∑
k=1

(
b[k] − b[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

)
•

( L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
A[k] − A[k−1]

))−1

•
L

∑
k=1

(
A[k] − A[k−1]

)T
Iµ(Gk)

(
b[k] − b[k−1]

)
. (53)

Remark 4. A[0] is the null matrix and b[0] is the null vector by convention.

Remark 5. By applying k = 1 in Theorem (3), the LSM-DF via Choquet integral operator reduces
to the classical LSM in Theorem (1).

3.3. LSM-DF via Mixture Operator

For the deduction of the LSM-DF via the mixture operator, it is necessary to adapt the
mixture operator presented in Definition (5).
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The weight functions that are dynamic in the mixture operator uses were previously
calculated and became constant (static) weight functions. Thus, the adapted mixture
operator is calculated in two steps. In the first step, the weights are calculated and fixed. In
the next step, aggregations are carried out. The next definition brings the adapted mixture
operator.

Definition 6. (Adapted Mixture Operator) The adapted MIX function can be calculated using the
following steps:

• Step 1: weight functions wk(xk) with k = 1, , 2, . . . , n can be calculated and fixed as follows:

w1(x1) = w1, w2(x2) = w2, . . . , wn(xn) = wn. (54)

• Step 2: with the fixed weight functions, the MIX function can be calculated as follows:

MIXw1,w2,...,wn(x1, x2, . . . , xn) =
∑n

k=1 wkxk

∑n
k=1 wk

. (55)

Now, the LSM-DF via the mixture operator must be deduced. The following equation
must be considered:

bk = Akx + vk, k = 1, 2, . . . , L (56)

where x ∈ Rn×1 is an unknown vector, Ak ∈ RN×n known parameters matrices, bk ∈ RN×1

known vectors, and vk ∈ RN×1 vectors named residuals.
A solution to the least-squares problem via the mixture operator must minimize the

length of the residual vector, that is, it must satisfy the following property:

∑L
k=1 ||bk − Ak x̂||2Wk

∑L
k=1 ||Wk||2

≤
∑L

k=1 ||bk − Akx||2Wk

∑L
k=1 ||Wk||2

(57)

for all x ∈ Rn×1 and where Wk is a positive-definite symmetric matrix.
Optimal solution x̂ is found by solving the following minimization problem:

minx JMIX(x) (58)

Functional JMIX(x) can be defined as

JMIX(x) := MIXW1,W2,...,WL

(
J1(x), J2(x), . . . , JL(x)

)
(59)

where

Jk(x) := ||vk||2

= ||bk − Akx||2, k = 1, 2, . . . , L. (60)

By defining Mixture Operator (59), the function can be rewritten as

JMIX(x) :=
∑L

k=1 ||bk − Akx||2Wk

∑L
k=1 ||Wk||2

=
∑L

k=1(bk − Akx)TWk(bk − Akx)

∑L
k=1 ||Wk||2

. (61)

The next theorem brings the solution to the least-squares problem via the mixture
operator in (58).
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Theorem 4. (LSM-DF via Mixture Operator) If the Ak matrices with k = 1, 2, . . . , L have a full
rank and Wk are symmetric definite-positive matrices, then there is a single optimal solution x̂ to the
least-squares problem via the mixture operator (LSM-DF via mixture operator)(58) that is given by:

x̂ =

[
L

∑
k=1

AT
k Wk Ak

]−1[ L

∑
k=1

AT
k Wkbk

]
. (62)

The corresponding minimal value of JMIX(x) is

JMIX(x̂) =
L

∑
k=1

bT
k Wkbk −

L

∑
k=1

bT
k Wk Ak

( L

∑
k=1

AT
k Wk Ak

)−1 L

∑
k=1

AT
k Wkbk. (63)

Proof. Consider the function

JMIX(x) =

[
∑L

k=1(bk − Akx)TWk(bk − Akx)

∑L
k=1 ||Wk||2

]
(64)

that can be rewritten as

JMIX(x) = α(β−Ax)TW(β−Ax) (65)

where

A =


A1
A2
...

AL

, β =


b1
b2
...

bL

,W =


W1 0 . . . 0
0 W2 . . . 0
...

... . . .
...

0 0 . . . WL

,

α =
1

∑L
k=1 ||Wk||2

(66)

whereW is a diagonal positive-definite symmetric matrix with entries Wk.
To find the solution to optimization problem x̂, J(x) must be differentiated in (65) and

equal to zero. On the basis of the theorem, the solution of the derivative is given by

∂

∂x

[
α(β−Ax)TW(β−Ax)

]
= 0

α
∂

∂x

[
(β−Ax)TW(β−Ax)

]
= 0. (67)

On the basis of Theorem (2), the solution of the derivative is given by

α
[

xTATWA− βTWA
]
= 0. (68)

Therefore,

x̂ =
[
ATWA

]−1[
ATWβ

]
. (69)

Through Matrices (66), the solution can be rewritten as

x̂ =

[
L

∑
k=1

AT
k Wk Ak

]−1[ L

∑
k=1

AT
k Wkbk

]
. (70)

Minimal cost JMIX(x̂) can be expressed as

JMIX(x̂) = βTWβ− βTWAx̂− x̂TATWβ + x̂TATWAx̂ (71)
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replacing(69) into (71), the result is

JMIX(x̂) = βTWβ− βTWA
(
ATWA

)−1
ATWβ. (72)

Replacing (66) into (72), the optimal cost can be rewritten as

JMIX(x̂) =
L

∑
k=1

bT
k Wkbk −

L

∑
k=1

bT
k Wk Ak

( L

∑
k=1

AT
k Wk Ak

)−1 L

∑
k=1

AT
k Wkbk. (73)

Remark 6. The optimal solution of the LSM-DF via a mixture operator reduces to the LSM-DF
in [4].

4. Illustrative Example

In this section, we present artificially created (by authors) datasets in order to illustrate
the behavior, effectiveness, and the relationship between the proposed methods for finding
the best fitting curve to a given set of points from a mathematical point of view. Table 1
shows two simulated datasets about income and consumption.

Table 1. Simulated datasets about income and consumption.

Income (x1) Consumption (y1) Income (x2) Consumption (y2)

139 122 140 123
126 114 129 117
90 86 92 89
144 134 145 136
163 146 163 147
136 107 138 109
61 68 64 68
62 117 63 119
41 71 43 73
120 98 122 100

First, the LSM was separately applied to the datasets, and the following results were
found:

ŷ1 = 0.49x1 + 52.69, (74)

ŷ2 = 0.49x2 + 53.65. (75)

The MSEs between ŷ1 with y1 and ŷ2 with y2 were 211.52 and 221.67, respectively.
Model (74) was more accurate than Model (75).

Second, the LSM-DF via OWA, Choquet integral, and mixture operators were calcu-
lated in the two datasets, and the following weighting matrices were used in the simulation:
W1 = 0.7 ∗ diag(10) and W2 = 0.3 ∗ diag(10); more weight was given to W1 than to W2. The
following results were found:

ŷO = 0.49x + 53.34, (76)

ŷC = 0.49x + 52.65, (77)

ŷM = 0.49x + 52.95. (78)

The MSEs between ŷO, ŷC and ŷM with y1 were 211.18, 211.57, 211.28, respectively. The
MSEs between ŷO, ŷC and ŷM with y2 were 222.14, 223.87 and 223 respectively. Tables 2 and 3
compare samples with regard to x1 and x2, respectively, of Equations (76)–(78). Table 4
compares the samples of y1 to the samples generated by Equations (74), (76)–(78). Table 5
compares the samples of y2 with the samples generated with Equations (76)–(78).
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MSE shows that Models (76)–(78) were more accurate than Model (74). The LSM-DF
via OWA, Choquet integral, and mixture operators outperformed the LSM.

Table 2. Sample with regard to x1 of Equations (76)–(78).

Income (x1) Consumption (ŷO) Consumption (ŷC) Consumption (ŷM)

139 121.45 120.76 121.06
126 115.08 114.39 114.69
90 97.44 96.75 97.05
144 123.90 123.21 123.51
163 133.21 132.52 132.82
136 1119.98 119.29 119.59
61 83,23 82.54 82.84
62 83.72 83.03 83.33
41 73.43 72.74 73.04
120 112.14 111.45 111.75

Table 3. Sample with regard to x2 of Equations (76)–(78).

Income (x2) Consumption (ŷO) Consumption (ŷC) Consumption (ŷM)

140 121.94 121.25 121.55
129 116.55 115.86 116.16
92 98.42 97.73 98.03
145 124.39 123.70 124
163 133.21 132.52 132.82
138 120.96 120.27 120.57
64 87.40 84.01 84.31
63 84.21 83.52 83.82
43 74.41 73.72 74.02
122 113.12 112.43 112.73

Table 4. Sample of y1 and samples generated with Equations (74), (76)–(78).

y1 ŷ1 ŷO ŷC ŷM

122 120.80 121.45 120.76 121.06
114 114.43 115.08 114.39 114.69
86 96.79 97.44 96.75 97.05
134 123.25 123.90 123.21 123.51
146 132.56 133.21 132.52 132.82
107 119.33 119.98 119.29 119.59
68 82.58 83,23 82.54 82.84
117 83.07 83.72 83.03 83.33
71 72.78 73.43 72.74 73.04
98 111.49 112.14 111.45 111.75

Table 5. Sample of y2 and the samples generated by Equations (76)–(78).

y2 ŷ2 ŷO ŷC ŷM

123 122.25 121.94 121.25 121.55
117 116.86 116.55 115.86 116.16
89 98.73 98.42 97.73 98.03
136 124.70 124.39 123.70 124
147 133.52 133.21 132.52 132.82
109 121.27 120.96 120.27 120.57
68 85.01 87.40 84.01 84.31
119 84.52 84.21 83.52 83.82
73 74.72 74.41 73.72 74.02
100 113.43 113.12 112.43 112.73
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5. Conclusions

In this paper, the LSM-DF was studied through aggregation operators in order to
explore different ways to aggregate data. More specifically, the LSM-DF via an OWA
operator, the LSM-DF via a Choquet integral operator, and the LSM-DF via a mixture
operator were defined. These operators were particularly chosen due to their efficiency
when applied to other methods in different areas of knowledge [12,13,22,24,26]. These new
methods provide a theoretical framework with variations of the classic least square, which
may be more suitable in certain applications. For instance, LSM-DF via OWA operator could
be chosen for situations where one wants to place greater weights on the first data entries.

The main objective of developing these methods is to estimate an optimal parameter
for situations involving more than one dataset, and to show how it can be changed for
different types of data. The methods were mathematically demonstrated by applying
aggregation operators of the average type to optimization problem. The illustrate example
was set up to demonstrate the mathematical behavior of these procedures trough fitting
curves in comparison with an approach that does not incorporate the aggregation operators
in its formulation.

In future studies, we want to explore some applications that can show the advantages
and disadvantages of each method, and set up LSM for other aggregation operators such
as a weighted OWA (WOWA) operator and a Sugeno integral operator. Furthermore, these
methods will be extended to models subject to parametric uncertainties.
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