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1. Introduction

Number sequences have attracted the attention of many researchers over the years.
Number sequences have found many applications in nature and science and have been
analyzed [1–3]. Many generalizations of these number sequences have been made and
analyzed [4–7]. Some of these generalizations are related to Jacobsthal and Jacobsthal–Lucas
numbers [8–13].

Quaternions are an expansion of complex numbers in mathematics. Quaternions were
first discovered by William Rowan Hamilton in 1843 and applied to mathematics in three-
dimensional space. Quaternions are not commutative. Hamilton defined a quaternion
as the division of two oriented lines in three-dimensional space, or the division of two
equivalent vectors [14].

Quaternions are used in applied mathematics, especially in computer science, physics,
differential geometry, quantum physics, engineering, algebra and to calculate rotational
motions in three-dimensional space.

Many studies have emerged by associating algebra with quaternions.
Horadam defined Fibonacci quaternions in 1963 and gave a generalization of these

numbers [15]. In the studies of [16–20], different applications of quaternions of Fibonacci
and Lucas numbers were studied, and their properties were examined.

Jacobsthal and Jacobsthal–Lucas quaternions are presented and given their many
identities. Jacobsthal numbers and their generalizations have been given, and the properties
of these numbers have been examined [21–23].

Keçilioğlu and Akkuş studied Fibonacci octonions as a generalization of quater-
nions [24].

In [25], Bilgici et al. defined Fibonacci sedenions and gave some identities of these
numbers.

In [26], Çimen et al. introduced Jacobsthal and Jacobsthal–Lucas octonions as a
generalization of quaternions.
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One of the studies conducted in this field is [18], where the higher-order Fibonacci
quaternions were introduced. Additionally, Kızılateş et al. gave their properties and some
identities related to these quaternions [18].

Özkan et al. defined higher-order Jacobsthal numbers as a new study of Jacobsthal
numbers. Then, higher-order Jacobsthal quaternions were defined with the help of these
numbers. The quaternion properties of these numbers and their properties as a sequence of
numbers are examined [27].

In this work, we define higher-order Jacobsthal–Lucas numbers. Then we find the
Binet formula and the recursive relation for these numbers. Then, we describe higher-
order Jacobsthal–Lucas quaternions by using higher-order Jacobsthal–Lucas numbers.
Moreover, we give the basic quaternion properties, such as the norm and conjugate. We also
obtain the Binet formula and the generating function, which are important concepts in the
number sequences for higher-order Jacobsthal–Lucas quaternions. We also calculate Cassini,
Catalan, Vajda and d’Ocagne identities for higher-order Jacobsthal–Lucas quaternions.
Finally, we give some relations between higher-order Jacobsthal and Jacobsthal–Lucas
quaternions.

2. Definitions

The Jacobsthal numbers Jn are defined by

Jn+2 = Jn+1 + 2Jn, n ≥ 0

with J0 = 0 and J1 = 1 [21].
Similarly, the Jacobsthal–Lucas numbers jn are defined by

jn+2 = jn+1 + 2jn, n ≥ 0

with j0 = 2 and j1 = 1 [21].
Their Binet formulas are given by, respectively,

Jn =
an − bn

a− b
=

2n − (−1)n

3

and
jn = an + bn = 2n − (−1)n

where a and b are roots of the equation x2 − x− 2 = 0.
Quaternions are defined in the following form. With p being a quaternion, p is

written as
p = p0 + p1i+ p2j+ p3k

where p0, p1, p2 and p3 are real numbers, and i, j,k are the main quaternions which satisfy
rules in Table 1.

Table 1. The main multiplications.

i j k

i −1 k −j
j −k −1 i

k j −i −1

Let p∗ and ‖p‖ show conjugate and norm of the quaternion p, respectively.

p∗ = p0 − p1i− p2j− p3k,

‖p‖ =
√

p2
0 + p2

1 + p2
2 + p2

3. Note that ‖p‖2 = pp∗.
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The higher-order Jacobsthal quaternions, denoted by OJ(s)n , are defined as follows

OJ(s)n = J(s)n + J(s)n+1i+ J(s)n+2j+ J(s)n+3k,

where i, j and k are quaternion units and J(s)n is a higher-order Jacobsthal number [24].

3. Results
3.1. Higher-Order Jacobsthal–Lucas Numbers

Definition 1. The higher-order Jacobsthal–Lucas numbers are defined by

j(s)n =
jns

js
=

ans + bns

as + bs . (1)

Note that for s = 1, higher-order Jacobsthal–Lucas number j(1)n is the ordinary Jacobsthal–
Lucas numbers.

Theorem 1. The higher-order Jacobsthal–Lucas numbers provide the following equation

j(s)n+1 = js j(s)n − (−2)s j(s)n−1.

Proof. By using the Binet formula, we obtain

js j(s)n − (−2)s j(s)n−1 = (as + bs)

(
ans + bns

as + bs

)
− (−2)s a(n−1)s + b(n−1)s

as + bs

Since ab = −2, we have

js j(s)n − (−2)s j(s)n−1 = (as + bs)
(

ans+bns

as+bs

)
− (ab)s a(n−1)s+b(n−1)s

as+bs

= ans+s+asbns+bsans+bns+s−ansbs−bnsas

as+bs

= a(n+1)s+b(n+1)s

as+bs = j(s)n+1.

Thus, the desired is obtained. �

Theorem 2. There are the following equations forJ(s)n and j(s)n .

(i) J(s)n j(s)n = j(2s)
n ,

(ii) J(s)n + j(s)n =
J(s)n+1

js
,

(iii) J(s)n − j(s)n =
2(−2)s J(s)n−1

js
.

Proof. By using the Binet formula, we obtain

(i) J(s)n j(s)n =
(

ans−bns

as−bs

)(
ans+bns

as+bs

)
=
(

a2ns−b2ns

a2s−b2s

)
=

(
(an)2s−(bn)2s

a2s−b2s

)
= j(2s)

n .

The proofs of (ii) and (iii) are performed similarly to that of (i). �
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3.2. Higher-Order Jacobsthal–Lucas Quaternions

In this section, we define higher-order Jacobsthal–Lucas quaternions and give some of
their identities.

Definition 2. The higher-order Jacobsthal–Lucas quaternions, denoted by Oj(s)n , are defined as

Oj(s)n = j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k (2)

where i, j and k are quaternion units and j(s)n is a higher-order Jacobsthal–Lucas number.
If we take s = 1 in (2), then we obtain the Jacobsthal–Lucas quaternions.

Definition 3. The real and imaginary parts of the higher-order Jacobsthal–Lucas quaternions are as
follows, respectively:

Re
(

Oj(s)n

)
= j(s)n

and
Im
(

Oj(s)n

)
= j(s)n+1i+ j(s)n+2j+ j(s)n+3k.

Definition 4. The conjugate of the higher-order Jacobsthal–Lucas quaternion is denoted by Oj(s)
∗

n
and defined as

Oj(s)
∗

n = j(s)n − j(s)n+1i− j(s)n+2j− j(s)n+3k. (3)

Definition 5. The norm of the higher-order Jacobsthal–Lucas quaternion is denoted by N
(

Oj(s)n

)
and defined as

N
(

Oj(s)n

)
= Oj(s)n Oj(s)

∗

n =
(

j(s)n

)2
+
(

j(s)n+1

)2
+
(

j(s)n+2

)2
+
(

j(s)n+3

)2
. (4)

Proposition 1: For the higher-order Jacobsthal–Lucas quaternion, we have

Oj(s)n + Oj(s)
∗

n = 2j(s)n .

Proof. From Definition 3, we obtain

Oj(s)n + Oj(s)
∗

n = j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k+ j(s)n − j(s)n+1i− j(s)n+2j− j(s)n+3k= 2j(s)n .

�

Proposition 2. The higher-order Jacobsthal–Lucas quaternions satisfy the following identity:(
Oj(s)n

)2
= Oj(s)n Oj(s)

∗

n + 2j(s)n Oj(s)n .



Axioms 2022, 11, 671 5 of 10

Proof. By using (2), we obtain(
Oj(s)n

)2
=
(

j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k
)(

j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k
)

= −
((

j(s)n

)2
+
(

j(s)n+1

)2
+
(

j(s)n+2

)2
+
(

j(s)n+3

)2
)
+ 2j(s)n

(
j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k

)
, from

(4) = Oj(s)n Oj(s)
∗

n + 2j(s)n Oj(s)n . �

Theorem 3. (Binet formula) The Binet formula of the higher-order Jacobsthal–Lucas quaternions
is defined by

Oj(s)n =
(as)n â + (bs)n b̂

as + bs (5)

where â = 1 + asi+ a2sj+ a3sk and b̂ = 1 + bsi+ b2sj+ b3sk.

Proof. Using (1) and (2), we obtain

Oj(s)n = j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k

= (as)n

as+bs

[
1 + asi+ a2sj+ a3sk

]
+ (bs)n

as+bs

[
1 + bsi+ b2sj+ b3sk

]
= (as)n â

as+bs +
(bs)n b̂
as+bs = (as)n â+(bs)n b̂

as+bs .

�

Theorem 4. There is the following recurrence relation for higher-order Jacobsthal–Lucas quaternions

Oj(s)n+1 = jsOj(s)n − (−2)sOj(s)n−1 (6)

Proof. Let us write the right-hand side of the equation according to (5).

jsOj(s)n − (−2)sOj(s)n−1 = (as + bs)

(
asn â + bsn b̂

as + bs

)
− (−2)s

(
asn−s â + bsn−s b̂

as + bs

)

Since ab = −2, we have

jsOj(s)n − (−2)sOj(s)n−1

=
(

as â + bs b̂
)(

asn â+bsn b̂
as+bs

)
− (ab)s

(
asn−s â+bsn−s b̂

as+bs

)
= asn+s â+asbsn b̂+bsasn â+bsn+s b̂−asnbs â−asbsn b̂

as+bs

= asn+s â+bsn+s b̂
as+bs = Oj(s)n+1.

Thus, the proof is completed. �

Lemma 1. We have

(i) â + b̂ = 2 + jsi+ j2sj+ j3sk,(ii) âbs + b̂as = js + (−2)s(2i+ jsj+ j2sk).
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Theorem 5. If the indicess and n are expanded to negative numbers, then we have

(i) Oj(s)−n = (−2)−sn (bs)n â+(as)n b̂
as+bs ,

(ii) Oj(−s)
−n = (−2)s (as)n â+(bs)n b̂

as+bs ,

(iii) Oj(−s)
n = (−2)sn−sOj(s)−n.

Proof. By using (5), we obtain

(i) Oj(s)−n = (as)−n â+(bs)−n b̂
as+bs

=
â

asn +
b̂

bsn
as+bs = (bs)n â+(as)n b̂

(ab)sn(as+bs)
since ab = −2,

= (−2)−sn (bs)n â+(as)n b̂
as+bs .

Equations (ii) and (iii) are made similarly to that of (i). �

Theorem 6. The generating function of the higher-order Jacobsthal–Lucas quaternions is given by

G(s)(x) =
2 + jsi+ j2sj+ j3sk−

(
js + (−2)s(2i+ jsj+ j2sk)

)
x

js
(
1− jsx + (−2)sx2

) .

Proof.

G(s)(x) =
∞
∑

n=0
Oj(s)n xn

=
∞
∑

n=0

[
(an)s+(bn)s

as+bs +
(an+1)

s
+(bn+1)

s

as+bs i+
(an+2)

s
+(bn+2)

s

as+bs j+
(an+3)

s
+(bn+3)

s

as+bs k

]
xn

= 1
as+bs

∞
∑

n=0
(an)s(1 + asi+ a2sj+ a3sk

)
xn + 1

as+bs

∞
∑

n=0
(bn)s(1 + bsi+ b2sj+ b3sk

)
xn

= 1
as+bs

∞
∑

n=0
(an)sxn â + 1

as+bs

∞
∑

n=0
(bn)sxn b̂

= â
as+bs

∞
∑

n=0
(asx)n + b̂

as+bs

∞
∑

n=0
(bsx)n

=
(

â
as+bs

)(
1

1−asx

)
+
(

b̂
as+bs

)(
1

1−bsx

)
=

â+b̂−(âbs+b̂as)x
(as+bs)(1−(as+bs)x+(−2)sx2)

.

From Lemma 1, we have

G(s)(x) =
2 + jsi+ j2sj+ j3sk−

(
js + (−2)s(2i+ jsj+ j2sk)

)
x

js
(
1− jsx + (−2)sx2

) .

Thus, the proof is obtained. �

Theorem 7. The sum of the higher-order Jacobsthal–Lucas quaternion is

SOj(s)n

=
∞
∑

n=0
Oj(s)n =

2−js+
(

js+(−2)s+1
)
i+(j2s−(−2)s js)j+(j3s−(−2)s j2s)k

js(1−js+(−2)s)
.



Axioms 2022, 11, 671 7 of 10

Proof. If we take for x = 1 in Theorem 6, the proof is finished. �

Theorem 8. For n, m ∈ Z, we have

∞

∑
n=0

Oj(s)n+mxn =
Oj(s)n + (−2)sOj(s)m−1x

1 + jsx + (−2)sx2 .

Proof.

∞
∑

n=0
Oj(s)n+mxn =

∞
∑

n=0

(
(as)n+m â+(bs)n+m b̂

as+bs

)
xn

=
∞
∑

n=0

(as)n+m â
as+bs xn +

∞
∑

n=0

(bs)n+m b̂
as+bs xn = âasm

as+bs

∞
∑

n=0
asnxn + b̂bsm

as+bs

∞
∑

n=0
bsnxn

=
(

âasm

as+bs

)(
1

1−asx

)
+
(

b̂bsm

as+bs

)(
1

1−bsx

)
=
(

1
as+bs

)[
âasm−âasmbsx+b̂bsm−b̂bsmasx

1−(bs+as)x+(ab)sx2

]
=
(

1
as+bs

)[
â(as)m+b̂(bs)m

1−jsx+(−2)sx2 −
asbs

(
â(as)m−1+b̂(bs)m−1

)
x

1−jsx+(−2)sx2

]
=

[
Oj(s)m

1−jsx+(−2)sx2 +
(−2)sOj(s)m−1x

1−jsx+(−2)sx2

]
=

Oj(s)n +(−2)sOj(s)m−1x
1+jsx+(−2)sx2 .

So, the proof is done. �

Theorem 9. The exponential generating function of Oj(s)n is given by

∞

∑
n=0

Oj(s)n
xn

n!
=

âeasx + b̂ebsx

as + bs .

Proof.
∞
∑

n=0
Oj(s)n

xn

n! =
∞
∑

n=0

(
(as)n â+(bs)n b̂

as+bs

)
xn

n!

= 1
as+bs

∞
∑

n=0

(as)n âxn

n! + 1
as+bs

∞
∑

n=0

(bs)n b̂xn

n!

= â
as+bs

∞
∑

n=0

(asx)n

n! + b̂
as+bs

∞
∑

n=0

(bsx)n

n!

= âeas x+b̂ebs x

as+bs .

So, the proof is completed. �

3.3. Some Identities of Higher-Order Jacobsthal–Lucas Quaternions

In this section, we give some identities of higher-order Jacobsthal–Lucas quaternions.

Lemma 2. There are the following equations

âb̂ = k− ρl (7)

and
b̂â = k + ρl (8)

where k = 1− (−2)s − (−2)2s − (−2)3s + jsi+ j2sj+ j3sk, l = (−2)2s
i− (−2)s jsj+ (−2)s

k

and ρ = as − bs.
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Proof.

âb̂ =
(
1 + asi+ a2sj+ a3sk

)(
1 + bsi+ b2sj+ b3sk

)
= 1 + bsi+ b2sj+ b3sk+ asi− asbs + asb2sk− asb3sj+ a2sj− a2sbsk− a2sb2s

+a2sb3si+ a3sk+ a3sbsj− a3sb2si− a3sb3s

= 1 + bsi+ b2sj+ b3sk+ asi− (−2)s + asb2sk− asb3sj+ a2sj− a2sbsk− (−2)2s

+a2sb3si+ a3sk+ a3sbsj− a3sb2si− (−2)3s

=
(

1− (−2)s − (−2)2s − (−2)3s
)
+
(
as + bs + a2sb3s − a3sb2s)i

+
(
a2s + b2s + a3sbs − asb3s)j+ (a3s + b3s + asb2s − a2sbs)k

=
(

1− (−2)s − (−2)2s − (−2)3s + jsi+ j2sj+ j3sk
)
− (−2)2s(as − bs)i

+(−2)s(a2s − b2s)j− (−2)s(as − bs)k

=
(

1− (−2)s − (−2)2s − (−2)3s + jsi+ j2sj+ j3sk
)
− (−2)s(as − bs)

(
(−2)s

i− jsj+ k
)

= k− ρl.

Equation (8) can be similarly proved. �

Theorem 10. (Vajda identity) For any n, m, r ∈ Z, we have

Oj(s)n+mOj(s)n+r −Oj(s)n Oj(s)n+m+r = −(−2)snρ2 J(s)m (js)
−2
[
kJ(s)r + l jsr

]
.

Proof.

Oj(s)n+mOj(s)n+r −Oj(s)n Oj(s)n+m+r

=
(
(as)n+m â+(bs)n+m b̂

as+bs

)(
(as)n+r â+(bs)n+r b̂

as+bs

)
−
(
(as)n â+(bs)n b̂

as+bs

)(
(as)n+m+r â+(bs)n+m+r b̂

as+bs

)
=

(
1

(as+bs)2

)(
(as)n+m â(bs)n+r b̂ + (bs)n+m b̂(as)n+r â− (as)n â(bs)n+m+r b̂− (bs)n b̂(as)n+m+r â

)
= 1

(as+bs)2

(
âb̂ansbns+rs((as)m − (bs)m)+ b̂âbsnans+rs((bs)m − (as)m))

= 1
(as+bs)2

(
âb̂(−2)nsbrs((as)m − (bs)m)− b̂â(−2)nsars((as)m)− (bs)m

)
= 1

(as+bs)2

(
(−2)ns((as)m − (bs)m)(âb̂brs − b̂âars

))
from Lemma 3.1,

=
(−2)ns((as)m−(bs)m)

(as+bs)2 [kbrs − ρlbrs − kars − ρlars]

=
(−2)ns((as)m−(bs)m)

(as+bs)2 [−k(ars − brs)− ρl(ars + brs)]

=
(−2)ns((as)m−(bs)m)

(as+bs)2

[
−kρJ(s)r − ρl jsr

]
= −(−2)snρ2 J(s)m (js)−2

[
kJ(s)r + l jsr

]
.

So, the desired is obtained. �

Corollary 1. (Catalan identity) For n, r ∈ Z, we obtain

Oj(s)n−rOj(s)n+r −
(

Oj(s)n

)2
= −(−2)snρ2 J(s)−r (js)

−2
[
kJ(s)r + l jsr

]
.

Proof. The proof is obtained from the special case of Vajda identity.
For m = −r, we get

Oj(s)n−rOj(s)n+r −
(

Oj(s)n

)2
= −(−2)snρ2 J(s)−r (js)

−2
[
kJ(s)r + l jsr

]
.

�
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Corollary 2. (Cassini identity) For n ∈ Z, we obtain

Oj(s)n−1Oj(s)n+1 −
(

Oj(s)n

)2
= (−2)s(n−1)ρ2(js)

−2[k + l js].

Proof. For r = 1 and m = −1 in Vajda identity, we have

Oj(s)n−1Oj(s)n+1 −
(

Oj(s)n

)2
= −(−2)snρ2 J(s)−1(js)

−2
[
kJ(s)1 + l js

]
= (−2)s(n−1)ρ2(js)

−2[k + l js].

�

Corollary 3. (d’Ocagne identity) We have

Oj(s)k Oj(s)n+1 −Oj(s)n Oj(s)k+1 = −(−2)snρ2 J(s)k−n(js)
−2[k + l js].

Proof: If we take m + n = k and r = 1 in Vajda identity, the following is obtained.

Oj(s)k Oj(s)n+1 −Oj(s)n Oj(s)k+1 = −(−2)snρ2 J(s)k−n(js)
−2[k + l js].

�

Now, we give some identities between higher-order Jacobsthal and Jacobsthal–Lucas
quaternions.

Theorem 11. We have

(i) OJ(s)n + Oj(s)n =
OJ(s)n+1

js ,

(ii) OJ(s)n −Oj(s)n =
2(−2)sOJ(s)n−1

js .

Proof. We use Theorem 2 for the proof.

(i) OJ(s)n + Oj(s)n = J(s)n + J(s)n+1i+ J(s)n+2j+ J(s)n+3k+ j(s)n + j(s)n+1i+ j(s)n+2j+ j(s)n+3k

=
(

J(s)n + j(s)n

)
+
(

J(s)n+1 + j(s)n+1

)
i+

(
J(s)n+2j+ j(s)n+2

)
j+

(
J(s)n+3k+ j(s)n+3

)
k

=
J(s)n+1

js +
J(s)n+2

js i+
J(s)n+3

js j+
J(s)n+4

js k

=
OJ(s)n+1

js .

The proof of (ii) is performed similarly to that of (i). �

4. Discussion

Based on this study, as an application of these numbers, hyper complex numbers
whose parts are higher-order Jacobsthal–Lucas numbers can be defined.

5. Conclusions

In this paper, we studied higher-order Jacobsthal–Lucas quaternions. We defined the
higher-order Jacobsthal–Lucas numbers and gave the recurrence relation. Using higher-
order Jacobsthal numbers, we introduced higher-order Jacobsthal–Lucas numbers. Then
we gave concepts of the norm and conjugate for these numbers in terms of the quaternion.
Additionally, we gave the recurrence relation, the Binet formula, the generating function,
and the sum formula for these numbers. We obtained Cassini, Catalan, Vajda and d’Ocagne
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identities, which are important in number sequences. We gave some identities between
higher-order Jacobsthal and Jacobsthal–Lucas quaternions.
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